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Phosphoprotein is the main cofactor of the viral RNA poly-
merase of Mononegavirales. It is involved in multiple interac-
tions that are essential for the polymerase function. Most
prominently it positions the polymerase complex onto the nu-
cleocapsid, but also acts as a chaperone for the nucleoprotein.
Mononegavirales phosphoproteins lack sequence conservation,
but contain all large disordered regions. We show here that N-
and C-terminal intrinsically disordered regions account for 80%
of the phosphoprotein of the respiratory syncytial virus. But
these regions display marked dynamic heterogeneity. Whereas
almost stable helices are formed C terminally to the oligomeri-
zation domain, extremely transient helices are present in the
N-terminal region. They all mediate internal long-range con-
tacts in this non-globular protein. Transient secondary ele-
ments together with fully disordered regions also provide pro-
tein binding sites recognized by the respiratory syncytial virus
nucleoprotein and compatible with weak interactions required
for the processivity of the polymerase.

Human respiratory syncytial virus (hRSV),3 a member of the
family Pneumoviridae (1) and order Mononegavirales (MNV),
is the main viral cause of lower respiratory tract illness
worldwide, and the main agent responsible for bronchioli-
tis and pneumonia in infants (2). All children have been

infected by the age of two, requiring hospitalization in �5%
cases (3). Elderly and immunocompromised adults are also
at increased risk. No efficient treatment is presently avail-
able for hRSV (4), and vaccination is challenging due to com-
plex immunogenicity (5). The search for hRSV antiviral
drugs directed toward specific viral functions is therefore
still ongoing (6).

The hRSV RNA-dependent RNA complex (RdRp) consti-
tutes a virus-specific target with specific protein-protein inter-
actions that have not all been investigated in detail (7). It uses
the nonsegmented single-stranded negative sense RNA
genome of hRSV as a template. In infected cells, the viral RdRp
is found in specific inclusion bodies (8), which have been shown
to be transcription and replication centers for other Mononega-
virales, e.g. rabies (9) and vesicular stomatitis viruses (10). The
apo RdRp complex is composed a minima of the large catalytic
subunit (L) and its essential cofactor, the phosphoprotein (P)
(11, 12). The P protein plays a central role in the RdRp by inter-
acting with all main RdRp components. During transcription
and replication it tethers the L protein to the nucleocapsid
(NC), consisting of the genomic RNA packaged by the nucleo-
protein (N), by direct interaction with N (13–16). hRSV P also
binds to the transcription antitermination factor M2-1 (17–19).
Phosphorylation of P has been proposed to regulate these inter-
actions, although it is not essential for replication (20 –22). P
also acts as a chaperone for neo-synthesized N by forming an
N0�P complex that preserves N in a monomeric and RNA-free
state (23). We have shown previously that formation of hRSV
NC�P and N0�P complexes proceeds via two distinct binding
sites on P (14, 24).

Bioinformatic and biochemical investigations have estab-
lished that hRSV P is tetrameric and contains large dis-
ordered N- and C-terminal regions (25–27). Fragment Y*
(Table 1) was described as a minimal oligomerization
domain (OD) with predicted helical coiled-coil structure
(28). However, a clear picture of the overall structure of P is
still lacking, mainly because of its structural disorder. Our
aim was to get a deeper insight into the structural plasticity
of P and to explore the role of transiently ordered regions for
interactions with hRSV RdRp proteins, here with N, by using
NMR spectroscopy.
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Results

Extent of Intrinsically Disordered Regions in hRSV Phos-
phoprotein—To probe the structural organization of hRSV
phosphoprotein at the single residue level by NMR, we first
used full-length P protein (PFL). The two-dimensional 1H-15N
HSQC spectrum of PFL exhibits sharp amide signals with nar-
row 1H chemical shift dispersion in the 7.5– 8.5 ppm range (Fig.
1). This is the signature of intrinsically disordered proteins
(IDPs) and regions (IDRs) (29). Experimental conditions were
adjusted for the detection of IDP amide protons, low tempera-
ture (288 K) and acidic pH (6.5), to reduce the contribution
of water exchange to line widths. Only 60% (140 of 229) of
expected PFL amide signals were observed. 40% of amide signals
were too broad to be detected and correspond to protein
regions undergoing dynamic processes and conformational
exchange at the �s-ms time scale. They comprise the OD (frag-
ment Y*, �40 residues), but also extensive additional regions
(�50 residues).

Due to the structural heterogeneity of P, we resorted to pro-
tein fragments to delineate domains. Several fragments had
been produced before (13, 24, 25, 30). Constructs are detailed in
Table 1. In particular, PND�OD and POD�CD correspond to the
N- and C-terminal domains with OD. PND and PCD are their
counterparts without OD. The 1H-15N HSQC spectra of P frag-
ments exhibit sharp lines and narrow 1H chemical shift disper-
sion, similarly to PFL (Fig. 1). All signals superimpose well,
showing that the fragments are representative of the corre-
sponding domains in PFL. For instance, overlay of PND�OD and
POD�CD spectra reproduces the spectrum of PFL (Fig. 1). Com-
parison of PND and PND�OD indicates that the OD signals are
missing for PND�OD. Remarkably, fragment PCD displays more
signals than POD�CD, revealing that the C-terminal domain of P
contains residues that are not completely disordered when
attached to the OD (Fig. 1).

Sequential assignment of backbone chemical shifts was car-
ried out separately for all fragments. The signals of the 120
N-terminal residues and 40 C-terminal residues could be
observed for all constructs, including PFL, indicating that they
form two independent N- and C-terminal IDRs in P. The sig-
nals of the Asp125-Thr160 region, equivalent to fragment Y*
(Table 1), were missing for all constructs containing the OD.
Residues Ser161-Glu204 were also missing in the spectra of
POD�CD and PFL, but were present in the spectrum of PCD.

Determination of Transient Secondary Structure Elements in
hRSV Phosphoprotein—On closer inspection, many NMR sig-
nals display local heterogeneity in intensity and line width.
Taking advantage of the sensitivity of 13C backbone and 1H�
chemical shifts to protein dihedral angles, we determined resi-
due-specific secondary structure propensities (SSPs) in PND,
PND�OD, PCD, P�OD, and PFL, using Talos� (31) (Fig. 2A). Out-
side the Ser161-Glu204 region no significant secondary structure
was detected. This confirms that the N and C termini of P are
fully disordered. Still, weak �-helical propensity is observed in
the N-terminal IDR for residues Asp12-Ile24 and Phe98-Lys103.
The latter define two transient helices �N1 and �N2 (Fig. 2B).

In contrast, residues Leu173-Lys205, which can only be
observed in P fragments devoid of the OD, display high �-hel-

ical propensity and define two helices, �C1 (Leu173-Met187) and
�C2 (Asn189-Lys205), with up to 70 and 95% propensity, respec-
tively (Fig. 2, A and B). Because SSPs depend on the model used
to extract them, we also extracted SSPs with �2D (32). We
obtained lower �-helical propensities than with Talos� (up to
20% for �C1 and 70% for �C2), indicating that these helices are
also transient, with �C2 being almost stable. The �C1/2 region
does not induce oligomerization on its own, because P�OD and
PCD display the same line widths as PND (Fig. 1). �C1 and �C2
thus form a second C-terminal IDR with high �-helical propen-
sity, in addition to the fully disordered C terminus. This domain
likely accounts for the thermal transition observed in P at phys-
iological temperature (27), indicating that these helices do not
tightly associate in the P tetramer. Signal broadening of �C1/2 in
tetrameric P fragments may be explained by the increased
molecular size, which affects overall dynamics in solution, or by
interactions between these transient helices and possibly with
the OD.

Investigation of the Dynamics of hRSV Phosphoprotein by 15N
Nuclear Relaxation—We measured 15N relaxation parameters
for a tetrameric (PND�OD) and three monomeric (PND, PCD,
and P�OD) fragments of P (Fig. 2C) to analyze the dynamic
behavior of the different regions of P. P IDRs display overall
homogeneous, negative or near zero heteronuclear 1H-15N
nuclear Overhauser effects (NOEs), indicative of large ampli-
tude backbone fluctuations on a ps-ns time scale. The �C1/2
region displays higher NOE values (0 – 0.5), suggesting that it is
more ordered. This is also the case for the transient �N1 helix.
15N transverse relaxation rates (R2) are more heterogeneous
along the sequence of P, but consistent among P fragments. R2
values are much higher for regions with �-helical SSP as com-
pared with completely random regions, denoting differential
tumbling in solution and conformational exchange between
disordered and ordered conformational states, on a �s-ms time
scale. A fifth region (Asn78-Ser86) without clear SSP displays
similar behavior (Fig. 2C), suggesting that exchange broadening
also arises from internal interactions. 15N longitudinal relax-
ation rates (R1), which are not sensitive to exchange, are nearly
uniform along the sequence of P, but underline the structural
singularity of �C1. Relaxation parameters of P IDRs are globally
independent of the length of the fragments, suggesting that
their motions are not significantly restricted and that they are
not stably associated with any part of the protein.

Detection of Long-range Contacts in hRSV P by Paramagnetic
Relaxation Enhancement—Next, we used paramagnetic relax-
ation enhancement (PRE) to investigate the spatial organiza-
tion of P. Line broadening due to PRE in a �15 Å radius around
a paramagnetic spin label can be used to measure long-range
distances by NMR in globular proteins, but also to probe long-
range contacts in IDPs (33, 34). The sequence of PFL does not
contain any cysteine. We therefore introduced cysteines by
mutating individual residues distributed along the sequence of
PFL and labeled them with IAP free radical (35). The �C1/2
region remained undetectable in the 1H-15N HSQC spectra of
all Cys mutants in their diamagnetic state, similarly to wild type
PFL. We therefore concluded that the mutations did not impact
P oligomerization. Hence PREs could only be measured outside
the OD and �C1/2 region.
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The PRE profiles (Fig. 3) are all rather broad and consistent
with diffuse contacts mediated by large highly flexible regions.
Gradually decreasing PREs are observed for up to 40 residues

on each side of a spin label in fully disordered regions of P
(positions 23, 99, and 237). Moreover all spin labels, except at
position 237, induced PREs in more distal regions. Strikingly,
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stronger PREs were measured in regions with transient struc-
tural elements and in the Asn78-Ser86 region, identified by 15N
relaxation measurements. Long-range contacts were detected
within the N-terminal IDR of P using the S23C and S99C
mutants, but also between this region and the OD, using the
S143C and S156C mutants, and even the C-terminal �-helical
IDR using E179C and E193C. Only the C terminus does not
appear to be involved in any specific contact, because strong
PREs are only observed for proximal spin labels. The absence of
PREs between the C- and N-terminal IDRs moreover provides
evidence for a parallel organization of the hRSV P tetramer.

Interactions of hRSV P with Nucleocapsid Analogs—Because
transiently structured regions of IDPs are potential molecular
recognition elements (36, 37), we carried out NMR interaction
experiments to investigate the impact of transient structures
within P on hRSV nucleoprotein binding. We first tested N in
the form of N-RNA rings, which mimic the hRSV nucleocapsid
(38). As the nucleocapsid binding domain of P (PNCBD) had
been assigned to its 9 C-terminal residues (13), we worked with
15N-labeled PCD instead of PFL. In the presence of N-RNA rings,
the signals of the eight last residues are completely broadened
out in the 1H-15N HSQC spectrum of PCD (Fig. 4, A and B),
confirming that they are involved in P binding to the NC. An
overall 15% intensity loss seems to arise from increased viscos-
ity, as assessed by a control experiment with excess BSA
(Fig. 4B).

Direct observation of N-bound P residues by 1H-15N
HSQC could not be achieved due to the large size of N-RNA
rings. We therefore proceeded with the monomeric N-ter-
minal domain of N (NNTD), which was shown to be relevant
for NC�P binding (14, 39). By titrating NNTD into 15N-PCD,
linear chemical shift perturbations (CSPs) were observed for
PNCBD (e.g. Asn234 and Ser237 in Fig. 4C). A titration end
point was reached with 5 eq of NNTD (Fig. 4C). By fitting the
CSP data with a two-site fast exchange model, a Kd of 25–50
�M was determined, in agreement with a Kd of 30 �M previ-
ously determined for the NNTD�PCD complex by isothermal
titration calorimetry (39).

Notably, CSPs and line broadening occurred concomitantly,
pointing to moderately fast exchange between free and NNTD-

bound P. However, at the titration end point lines are broader
than expected for a 35-kDa complex (Fig. 4C). Surprisingly, no
signal was recovered for the very C-terminal Phe241 residue,
which in X-ray structures appears to be the main structural
determinant for NC�P complex formation, by tightly inserting
into a hydrophobic pocket at the surface of NNTD (39). Our
results thus suggest the possibility of additional binding modes
corresponding to weaker interactions. Indeed, the large line
broadening observed for �C1 (Fig. 4D) would be in favor of a
secondary binding site on �C1. This effect is also observed with
the P161–229 fragment deleted of PNCBD, although attenuated
(Fig. 4D), suggesting that binding to �C1 could be promoted by
binding to PNCBD.

Investigation of the hRSV N0�P Binding Mode—In a last part
we investigated the N0�P binding mode by using Nmono, a mono-
meric N mutant impaired for RNA binding (24). Nmono leads to
line broadening at the �N1 site in PND�OD (Fig. 4, E and F), in
agreement with previous results that showed that the N-termi-
nal P40 peptide was able to pull down Nmono (24). NMR inter-
action experiments with Nmono and PFL show that Nmono is
competent for both NC�P and N0�P binding modes, via PNCBD

and �N1, respectively (Fig. 4F). Because both sites in PFL can be
occupied with only 1 eq of Nmono, either none of the complexes
is very tight or the two sites are not mutually exclusive.

Unexpectedly, a third region, �N2, was perturbed (Fig. 4, E
and F). As previous experiments with the P60 –126 fragment
showed that this region does not bind to Nmono (24), line broad-
ening of �N2 signals would not be explained by direct binding to
N. However, we showed by PRE that �N2 transiently associates
with �N1. Formation of an N0��N1 complex could displace the
equilibrium between free and �N1-bound �N2.

As a control, we performed additional interaction experi-
ments with 15N-labeled N-terminal P fragments and NNTD.
Surprisingly, we observed perturbations (Fig. 5, A and B). How-
ever, the intensity ratio patterns are different from Nmono.
Nmono perturbed a large region (Met1-Ser30), whereas NNTD

affects only a few residues around Lys25 (Figs. 4F and 5B), sug-
gesting a difference in binding. We carried out complementary
experiments by measuring spectra of 15N-NNTD in the presence
of P40. Line broadening was induced in different NNTD regions
(Fig. 5, C and D) delineating a contiguous surface on N (Fig. 5E).
This surface is on the inside of the nucleocapsid as opposed to
the binding site of the C terminus of P in the NC�P complex (Fig.
5E). It partly overlaps with the interaction surface of the N-ter-
minal arm of the adjacent protomer in N-RNA rings, but is
shifted with respect to the interaction surface recently pub-
lished for the human Metapneumovirus (hMPV) N0�P complex,
where the N-terminal P1–28 peptide obstructs the binding sites
of the N- and most prominently C-terminal arms of adjacent N
protomers (40).

FIGURE 1. 1H-15N HSQC spectra of 15N-labeled RSV phosphoprotein. A, schematic representation of the boundaries of RSV P and P fragments measured by NMR.
Deleted regions are symbolized by boxes in broken line. Hatched areas indicate protein regions with missing amide assignments. B, 1H-15N HSQC spectra of PFL,
PND�OD, POD�CD, PND, PCD, and P�OD were acquired under identical experimental conditions (50 –100 �M concentration, 288 K temperature, 14.1 T magnetic
field). A different color was used for each construct to plot contours and show assignments, with full-length P (PFL) in black. For all deletion mutants, the
spectrum is superimposed onto that of PFL for comparison. Amide resonance assignments are indicated for PND�OD, POD�CD, PND, and PCD (residue number and
amino acid type in single-letter code). Asn and Gln NH2 side chain signals are not individually assigned. For PND the inset shows assignments of the crowded
central region of the spectrum.

TABLE 1
Definition of hRSV phosphoprotein fragments

Designation of P fragments Boundaries

PFL M1-F241
PND�OD M1-R163
PND M1-Q126
POD�CD T127-F241
PCD S161-F241
P�OD M1-E121�S161-F241
P161–229 S161-G229
P40 M1-I40
Fragment X (41) E104-R163
Fragment Y* (28) S119-T160
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Discussion

Domain Organization in hRSV P—hRSV phosphoprotein is
characterized by extensive structural disorder that hampers
high resolution structural characterization. The only struc-
tured part appears to be the tetramerization domain, which has
been investigated by bioinformatic tools (26), resistance to
protease digestion (28, 41), and deletion series (13, 25, 42).
Although fragment Y*, which exhibits high stability and homo-
geneity (25, 27, 28), has been acknowledged as the core of the
tetramerization domain, the OD of hRSV P is often represented
by fragment X (Table 1), longer then Y* by 15 residues at its N
terminus. Predicted structural models of fragment X present
this stretch as a second short coiled-coil domain (28, 42). We

show here that this stretch has no significant SSP and is highly
dynamic in solution, at least in the absence of protein partners.
This is also in agreement with the observation that PND was not
able to form oligomers (25).

In contrast to Mononegavirales N proteins, which share a
conserved fold (43), P proteins have largely diverged, hRSV P
having the shortest sequence (44). However, several regions of
P are highly conserved among Pneumoviridae, more particu-
larly the OD (Fig. 6A). Its structure was solved by X-ray diffrac-
tion for hMPV P (45). It displays a coiled-coil helical conforma-
tion for a region equivalent to the hRSV fragment Y*, indicating
that a short OD is specific of this family. The protomers are
arranged in a parallel orientation, consistently with the PRE
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results for hRSV P, and not as a dimer of anti-parallel dimers
like in Mumps virus P (46, 47).

Finally, we were able to identify a C-terminal domain with
high �-helical propensity, whose dynamics are distinct from
those of the OD and the fully disordered C terminus. The pres-
ence of transient C-terminal helices was also proposed for
hMPV, based on small angle X-ray scattering data (45), showing
that they constitute another hallmark of Pneumoviridae. But
whereas �C1 is partly conserved, �C2 appears to be specific of
the Orthopneumovirus genus (Fig. 6A). A tentative structural
model of P in its most disordered state, summarizing the struc-
tural information determined by NMR, is given in Fig. 6B.

Functional Relevance of Transiently Structured Regions in
hRSV P—The central role of the phosphoprotein in hRSV rep-
lication is associated to its role as a hub inside the RdRp com-
plex, mediating interactions with both viral and cellular pro-
teins (18, 24, 48). We show here that two regions identified
before as binding regions for Nmono (24) and M2-1 (17, 18), �N1
and �N2, respectively, display weak �-helical propensity. These
transient helices might fold completely upon binding, as related
for other protein-protein interactions (36, 37). Such a hypoth-
esis would be supported by the large number (�30) of N-termi-
nal P residues involved in the interaction with Nmono (Fig. 4).
Our definition of �N1 matches with the second helix formed by

hMPV P1–28 in the X-ray structure of the N0�P complex (40).
The sequence of �N1 is rather well conserved among Pneumo-
viridae (Fig. 6A), suggesting that �N1 constitutes a molecular
recognition element for N0.

Contradictory data are available for the interaction proper-
ties of the �-helical C-terminal domain of P. Immunoprecipi-
tation assays showed that deletion of residues 160 –180
impaired N binding in bRSV P (49), but not in hRSV P (50),
despite high sequence conservation of N and P between hRSV
and bRSV. This internal region partly overlaps with �C1 and
was also perturbed in NMR interaction experiments with NNTD
(Fig. 4), which prompted us to propose it as a secondary N
binding site. Moreover, temperature-sensitive mutations of P
were reported in the same region (50). G172S and E176G do not
support replication at 37 °C, which was linked to decreased
interaction between N and P. The triple mutant R174A/E175A/
E176A proved non-functional in a minigenome assay, but was
still able to bind to N. Finally, a recombinant E176G RSV virus
reverted to Asp176 (50). These data underline the functional
importance of residue Glu176, which contributes to a negative
cluster with Glu175 and Glu179, exacerbated in the structural
context of the �C1 helix (Fig. 6B). If we link these results with
the lability of �C1, it appears that structural modulation of this
helix could have a direct impact on RSV replication. In contrast,
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Leu198-Asn217 has been reported to be a “negative N-binding
region,” the deletion of which enhanced N binding (16). This
region partly overlaps with �C2 and was not affected by NNTD in
our experiments (Fig. 4).

Disordered Regions in hRSV P Mediate Diffuse as Well as
Specific Interactions—In light of the X-ray structure of the
hMPV N0�P complex (40), the hRSV P40/NNTD interaction does
not seem to be relevant for the N0�P complex. However, it may
shed light on the binding properties of �N1. The interaction
surfaces on NNTD and N0 are proximal and connected by the
interaction surface with the N-terminal arm of an adjacent
protomer in N-RNA rings (Fig. 5E). The P40/NNTD interaction
might therefore correspond to an intermediate state on the

binding/folding pathway of �N1, whereby hydrophobic interac-
tions play a role, as shown by the hydrophobic face in fully
formed �N1 (Fig. 6B), involved in N0 binding (40). �N1 appears
to be a sticky helix that is able to mediate external (N/P) as well
as internal interactions, the latter being favored by the tetra-
meric organization of P.

More generally, we identified transient internal long-range
contacts in hRSV by PRE, mainly mediated by regions with
SSPs. These seemingly unspecific interactions may play several
roles. Compaction of the structure of P can be achieved, pre-
venting unspecific interactions with other proteins in the cell.
The interplay between �N1 and �N2, which both expose hydro-
phobic faces when stabilized (Fig. 6B), suggests that upon bind-
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ing to one site, another site could become competent for bind-
ing. Plasticity of the structure of P can also help fulfilling the
requirement of simultaneous binding at the C and N terminus
to a same protein partner, e.g. to N. At the same time diffuse
interactions may play a role by retaining RdRp relevant proteins
in hRSV inclusion bodies (8).

The hRSV L binding site was recently reported to span resi-
dues Pro218-Glu239 (Fig. 6B), and it was proposed that this
region might fold into a helix (30). Under our experimental
conditions this region did not display any significant SSP, con-
formational exchange, or internal contacts, similarly to PNCBD.
Analogy with PNCBD suggests that this region might not fold
upon binding. Except for Phe241, PNCBD is disordered in its
bound form, as shown by X-ray crystal structures of NNTD com-
plexed to C-terminal P peptides (39). Although Phe241 is essen-

tial for NC�P binding, fuzzy electrostatic interactions mediated
by acidic residues as well as phosphorylation of serines in
PNCBD significantly contribute to the affinity of P (14, 39, 51).
Our NMR data suggest that even Phe241, the linchpin for P
binding to the NC, could explore different binding sites. Inter-
actions that come into play in the NC�P complex are thus based
on disorder and on a balance between recognition and moder-
ate affinity, required for the processivity of the polymerase. This
could be a more general scheme for P interactions with other
RdRp components.

Experimental Procedures

Plasmids—Plasmids for expression of recombinant hRSV
proteins in E. coli were described previously for N terminally
GST-fused hRSV phosphoprotein and P fragments listed in
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model of the hRSV P tetramer. The location of regions with �-helical propensity is shown and their sequences are given in helical wheel representation. The
location of RdRp protein binding sites is also shown, for regions with and without significant SSPs.
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Table 1 (13, 24, 25, 30) and C terminally His-tagged hRSV
nucleoprotein (13), NNTD (N residues 31–252) (14), and the
K170A/R185A Nmono mutant (24).

Expression and Purification of Proteins—All proteins were
expressed in E. coli BL21(DE3). 15N- and 15N,13C-labeled P pro-
tein samples for NMR experiments were produced in minimum
M9 medium supplemented with 1 g liter�1 15NH4Cl (Euriso-
top), 4 or 3 g liter�1 unlabeled or 13C-labeled glucose (Euriso-
top), and 100 �g ml�1 of ampicillin, using a protocol adapted
from cultures in rich medium (30). Bacteria were disrupted
(Constant Systems Ltd) in 50 mM Tris, pH 7.8, 60 mM NaCl, 1
mM EDTA, 2 mM �-mercaptoethanol, 0.2% Triton X-100 lysis
buffer. After clarification by ultracentrifugation the superna-
tant was mixed with 2 ml of glutathione-Sepharose beads (GE
Healthcare) per liter of culture and incubated for 15 h at 4 °C.
The resin beads were then washed with thrombin cleavage
buffer (20 mM Tris, pH 8.4, 150 mM NaCl, 2 mM �-mercapto-
ethanol, 2.5 mM CaCl2) before addition of 5 units of biotinylated
thrombin (Novagen). The beads were incubated for 16 h at 4 °C.
Thrombin was removed with streptavidin resin (Novagen)
according to the manufacturer’s instructions. Purification of N
protein was carried out as described previously for Nmono (24),
NNTD (39), and N-RNA rings (13). His tags were not removed.
The quality of protein samples was assessed by SDS-PAGE.
Samples were subsequently dialyzed into NMR buffer (20 mM

sodium phosphate, pH 6.5, 100 mM NaCl) and concentrated to
50 –300 �M on Amicon Ultra centrifugal filters (10 kDa cut-off,
Merck-Millipore).

Paramagnetic Spin Labeling—Individual residues of hRSV P,
preferentially serines (Ser23, Ser99, Ser143, Ser156, Glu179,
Glu193, Ser237), were mutated into cysteines using the Quik-
Change mutagenesis kit (Stratagene). Mutant proteins were
expressed and purified like wild type. Buffers contained 5 mM

dithiothreitol (DTT) as a reducing agent. Protein samples were
completely reduced by addition of another 5 mM DTT at room
temperature for 2 h. DTT was then removed by passing twice
through a Biospin desalting column (Bio-Rad) equilibrated in
50 mM Tris, pH 8.0, 200 mM NaCl. Protein samples were reacted
overnight in the dark at 15 °C with 10 molar eq of 3-(2-iodoac-
etamido)-PROXYL radical (IAP, Sigma) in a 45 mM solution in
ethanol. Unreacted IAP was removed by applying the samples
three times onto Biospin desalting columns equilibrated in
NMR buffer.

NMR Spectroscopy—NMR measurements were carried out
on a Bruker Avance III spectrometer at a magnetic field of 14.1
T (600 MHz 1H frequency) equipped with a cryogenic TCI
probe. The magnetic field was locked with 7% 2H2O. The tem-
perature was 288 K if not indicated otherwise. Spectra were
processed with Topspin 3.1 (Bruker Biospin) and analyzed with
CCPNMR 2.2 (52).

Sequential backbone assignment of the hRSV phosphopro-
tein constructs was carried out with BEST versions of HNCA,
HN(CO)CA, HNCACB, HN(CO)CACB, and HNCO triple res-
onance experiments (53). 1H� chemical shifts were obtained
from HNHA or HBHA(CO)NH experiments. 1H and 13C
chemical shifts were referenced to 4,4-dimethyl-4-silapentane-
1-sulfonic acid. Assignment completeness was 95% amides,
87% 13C�, 98% 13C�, 60% 13C�, and 86% 1H� for PND; 74%

amides, 69% 13C�, 79% 13C�, 79% 13C�, and 76% 1H� for
PND�OD; 98% amides, 95% 13C�, 98% 13C�, 99% 13C�, and 93%
1H� for PCD; 95% amides, 93% 13C�, 99% 13C�, 99% 13C�, 81%
1H�, and 78% 1H� for P�OD; 61% amides, 59% 13C�, 64% 13C�,
64% 13C�, 56% 1H�, and 57% 1H� for PFL (S23C mutant).

NMR Interaction Experiments—NMR interaction experi-
ments were carried out at a magnetic field of 14.1 T by acquiring
1H-15N HSQC spectra of 15N-labeled P constructs in a 30 –100
�M concentration range in the presence of 0.25 to 10 molar eq
of unlabeled N protein in the form of NNTD, Nmono, or N-RNA
rings. Samples were prepared by mixing concentrated pro-
tein solutions. Line broadening was analyzed by measuring
the intensity ratios of amide signals between the spectra with
and without N protein in CCPNMR 2.2. Dissociation con-
stants for the PCD�NNTD complex were determined for each
perturbed residue by assuming a two-site fast exchange
model with a 1:1 stoichiometry and by fitting 1H and 15N
chemical shift differences with Origin 7 (OriginLab) accord-
ing to Equation 1,

	� � �free
 �
1

2
	�bound � �free
	A � r � �	 A � r
2 � 4r


(Eq. 1)

where r � [N]tot/[PCD]tot, Kd � (A � 1) � [PCD]tot and [PCD]tot �
50 �M.

Complementary experiments were performed with 15N-
NNTD (50 �M in 20 mM MES, pH 6.5, 250 mM NaCl buffer) at
293 K, by adding lyophilized P40 with 1:1 to 12:1 ratios (solubil-
ity limit).

15N Relaxation Measurements—15N relaxation data were
recorded at a magnetic field of 14.1 T and a temperature of 288
K. R1 and R2 relaxation rates were measured for 50 –200 �M
15N-labeled PND, PND�OD, PCD, and P�OD with a pseudo-three-
dimensional version recorded in an interleaved manner with a
recycling delay of 4 s. Relaxation delays were 5, 50, 100, 200(*2),
400, 600, 800, 1200, and 2000 ms for R1 measurements and 34,
68, 136, 204(*2), 271, 339, 407, 543, and 814 ms for R2. Hetero-
nuclear 1H-15N NOEs were measured by recording two inter-
leaved spectra with on- and off-resonance 1H saturation dur-
ing the recycling delay. Peak intensities were extracted in
CCPNMR 2.2. Relaxation curves were fitted to a monoexpo-
nential model and errors estimated from covariance matrix
analysis in CCPNMR 2.2.

PRE Measurements—PREs were determined as the ratios
between 1H-15N HSQC peak intensities in the paramagnetic
and diamagnetic state (Ipara/Idia). Measurements were carried
out at 14.1 T and 288 K. The diamagnetic state was obtained by
incubating the spin-labeled sample with 10 molar eq of ascorbic
acid (Sigma) from a 45 mM solution at pH 6.5 for 3– 4 h at 303 K.

Modeling—Homology modeling of OD residues Asp129-
Leu152 was done with Modeler 9v16 (54) using hMPV Leu170-
Leu193 (PDB 4BXT) as a template. P IDRs were built in CYANA
3.97 (55) by using dihedral angle restraints generated from PCD
backbone chemical shifts with Talos� (31).

Illustrations—Figures were prepared using PyMOL (56).
Helical wheel diagrams were generated with DrawCoil 1.0.
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