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Neural plasticity is an intrinsic and essential characteristic of the nervous system
that allows animals “self-tuning” to adapt to their environment over their lifetime.
Activity-dependent synaptic plasticity in the central nervous system is a form of
neural plasticity that underlies learning and memory formation, as well as long-lasting,
environmentally-induced maladaptive behaviors, such as drug addiction and overeating
of palatable hyper-caloric (PHc) food. In western societies, the abundance of PHc
foods has caused a dramatic increase in the incidence of overweight/obesity and
related disorders. To this regard, it has been suggested that increased adiposity may
be caused at least in part by behavioral changes in the affected individuals that are
induced by the chronic consumption of PHc foods; some authors have even drawn
attention to the similarity that exists between over-indulgent eating and drug addiction.
Long-term misuse of certain dietary components has also been linked to chronic
neuroimmune maladaptation that may predispose individuals to neurodegenerative
conditions such as Alzheimer’s disease. In this review article, we discuss recent
evidence that shows how consumption of PHc food can cause maladaptive neural
plasticity that converts short-term ingestive drives into compulsive behaviors. We also
discuss the neural mechanisms of how chronic consumption of PHc foods may alter
brain function and lead to cognitive impairments, focusing on prenatal, childhood
and adolescence as vulnerable neurodevelopmental stages to dietary environmental
insults. Finally, we outline a societal agenda for harnessing permissive obesogenic
environments.

Keywords: obesity, overweight, adiposity, food addiction, indulgent eating, hedonics, neuroinflammation, neural
plasticity

INTRODUCTION

Given the abundance and omnipresence of palatable hyper-caloric (PHc) foods, overweight
and obesity have become a pandemic phenotype in a large portion of the world’s population
(WHO, 2016a). Thus, an increased understanding of the underlying causes of obesity is
warranted in order to better prevent and treat this growing and global health problem.
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Short-term homeostatic control of food intake is essential
for animal survival. In addition to this, top-down modulation
of homeostatic circuits including palatability and post-prandial
rewarding effects modulate food ingestion and seeking
behavior (Tulloch et al., 2015). Those drives can support
and motivate long-term foraging strategies and planning. In
the modern calorie-permissive societies, in which lower energy
investments are required to obtain PHc food, those hard-wired
capacities, which once evolved to cope with uncertain caloric
availability in the wilderness and were evolutionary acquired
as adaptive characters, now clearly became maladaptive and
do not promote health. Evidence reviewed here suggest that
PHc food consumption is self-reinforcing and may further
lead to health problems, including cognitive impairments
and possibly neurodegenerative diseases that produce a
decrease in general wellbeing and productivity. But how eating
densely caloric foods can modify brain and behavior in such
drastic ways?

In this review article we will explore the brain plasticity
mechanism that contribute to persistent overeating and thus
causing overweight/obesity, focusing on the overlap of learning
and memory, addictive behaviors and indulgent eating. As well
we pinpoint critical neurodevelopmental periods for dietary
environmental insults. Graphical summaries are depicted on
Figures 1, 2 and key terms definitions can be found as glossary
on Table 1.

Neural Plasticity and Addictive Behaviors
One of the most outstanding properties of the nervous system
is its ability to modify its structure and function in response
to experience, thus allowing individual ontogenic ‘‘self-tuning’’
to particular environmental drivers. The phenomenon of neural
plasticity is known to underlie the learning, consolidation and
refinement of both adaptive and maladaptive behaviors (Abbott
and Nelson, 2000; Citri and Malenka, 2008; Sehgal et al.,
2013). At the synaptic level, activity-dependent modifications

FIGURE 1 | Theoretical framework as Venn diagram showing
intersections of learning and memory, drug addiction and indulgent
eating (see text for details).

of the strength or efficacy of synaptic transmission shape
the response properties of neural circuits. The versatility and
complexity of neural computations is made possible by a
huge diversity of cellular plasticity mechanisms (Nelson and
Turrigiano, 2008). Those include Hebbian-type plasticity, such as
long-term potentiation (LTP) and long-term depression (LTD),
as well as homeostatic synaptic scaling and metaplasticity (Pérez-
Otaño and Ehlers, 2005).

Some studies have suggested that the development of
addictive behaviors share common features with traditional
learning models (Figure 1; Jones and Bonci, 2005). For
example, N-methyl-D-aspartate (NMDA) receptors blockade,
which effectively blocks LTP and LTD in many brain regions
(Malenka and Bear, 2004), also prevents many behavioral
adaptations normally associated with drug reinforcement, such
as conditioned-place preference, behavioral sensitization and
self-administration (Mameli and Lüscher, 2011). Furthermore,
relapse caused by exposure to cues associated with the drug
experience is a major clinical problem that contributes to the
persistence of addiction, and its underlying mechanisms are
thought to depend at least in part on the phenomenon of
pattern completion in the hippocampal CA3 region, which
is a hallmark of contextual memory retrieval (Kauer and
Malenka, 2007; Kesner et al., 2016). On the other hand, synaptic
scaling of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA)-receptors surface expression in the nucleus
accumbens (NAcc) neurons has been observed with the
appearance of addictions (Sun and Wolf, 2009; Tang and
Dani, 2009; Reimers et al., 2014). In addition, a single
cocaine administration induces metaplasticity in the ventral
tegmental area (VTA) through increased synaptic non-GluA2
containing AMPA receptors as well as NR2B containing
NMDA receptors, contributing to sensitization upon further
exposure, as well as possibly lowering the threshold for
further plasticity events in the VTA—NAcc pathway (Creed
and Lüscher, 2013). More controversial, however, is the
idea that humans can develop ‘‘food-dependence’’ through
learning and habit-formation, and that obesity may be seen,
at least in some cases, as a clinical manifestation of ‘‘food
addiction’’ (Volkow and Wise, 2005; Blumenthal and Gold,
2010; Volkow et al., 2013a; García-García et al., 2014; Carlier
et al., 2015). Even though food, as opposed to drugs of abuse,
is needed for an organism’s survival, dependence on PHc
foods in humans and animal models shares characteristics
with drug addiction (Figure 1). These include activation of
the mesolimbic dopaminergic system (Blackburn et al., 1986;
Hernandez and Hoebel, 1988), the activation of similar brain
structures (Robinson et al., 2016), as well as an overlapping
symptomatology such as the appearance of tolerance, compulsive
behaviors (Johnson and Kenny, 2010; Rossetti et al., 2014)
and withdrawal symptoms in relation to PHc food that has
been consistently observed in obese individuals (Iemolo et al.,
2012; García-García et al., 2014). In this regard, there are
many similarities between the eating behavior of some obese
individuals and the diagnostic criteria for substances dependence
on the Diagnostic and Statistical Manual of Mental Disorders
(DSM -IV, -5). For instance, both patterns of behavior show
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FIGURE 2 | (A) When the obesogenic environment overlaps critical
neurodevelopmental periods, enhanced maladaptive neural plasticity may be
expected; which could eventually lead to uncontrolled ingestive behavior (food
addiction). Interplay of food reward and homeostatic ingestive behavior may
evolve in wilderness to promote biological fitness under extremely different
evolutionary pressures; e.g., scarcity and unpredictable access to food, low
dense caloric food, large caloric investments in foraging/hunting.
(B) Obesogenic environment driven by palatable hyper-caloric (PHc) food can
be experimentally modeled in rodents by exposure to high carbohydrate/high
fat diet (HFD) resulting in increased adiposity evidenced by body composition
analysis by micro-computed tomography; yellow = sub cutaneous
fat/pink = visceral fat, blue = lean mass, ultimately causing diet induced
obesity (DIO). Experimental evidence documents that exposure to a high
carbohydrate/HFD negatively impact on cognitive functions, with increased
sensitivity during prenatal, childhood and adolescence neurodevelopmental
stages. In particular, hippocampal (Hipp) and pre-frontal cortex (PFC)
dependent tasks are negatively impaired; whereas amygdala (Amy) dependent

(Continued)

FIGURE 2 | Continued
function seems to be enhanced. Cognitive impairments are accompanied (or
preceded) by ingestive addictive behaviors driven by the dopaminergic reward
system that initiates its projections on the ventral tegmental area (VTA) directly
innervating the Amy, PFC, as well as the nucleus accumbens (NAcc; Lisman
and Grace, 2005; Russo and Nestler, 2013), the brain structure assessing the
hedonic and saliency stimuli properties. It should be remarked that direct
projections from VTA to Hipp are on current debate (Takeuchi et al., 2016),
thus are depicted with a dash-line. The “reward deficiency syndrome” propose
that addiction vulnerability results on from hyporesponsiveness of the midbrain
dopaminergic system, leading individuals to seek out and engage in addictive
behaviors in order to compensate for underarousal (George et al., 2012),
which is in line to the theory of food addiction (Volkow and Wise, 2005; Davis
et al., 2011) in particular for PHc food (Ifland et al., 2009; Schulte et al., 2015).

signs of: tolerance; withdrawal; substances taken in larger
amounts or for longer time than intended; unsuccessful efforts
to control usage; a large amount of time spent obtaining,
using, or recovering from use of the substance; a neglect of
social, occupational, or recreational activities; and continued
use despite a recurrent physical or psychological problem
caused or exacerbated by the substance (Davis et al., 2011).
Following this rationale and aiming to develop a reliable
tool for diagnosing food addiction, the DSM-IV criteria
for substance dependence have been adapted to create the
Yale Food Addiction Scale (YFAS, Gearhardt et al., 2009,
2016).

Additionally, it is important to recognize that purified and
concentrated ingredients used to produce PHc food do resemble
the production of addictive drugs that refine cocaine from coca
leaf or heroin from poppies (Ifland et al., 2009). There is still
scientific debate and no consensus has been reached on the
etiological magnitude of food addiction on explaining obesity
(Carter et al., 2016), however it is clear by now that in particular
PHc foods, like addictive drugs, may produce powerful changes
in the brain reward circuitry that we did not evolve for, leading to
overconsumption and weight gain. Supporting this view, recent
evidence indicates that the addictive effect of food, as for drugs,
may be dependent on the rate of its absorption and metabolism;
foods reported to be more addictive are rapidly digested and
absorbed (Schulte et al., 2015; Criscitelli and Avena, 2016) and
are also highly rewarding as we will comment on the next
section.

Reward-Modulated Nutrient Intake
In addition to the homeostatic circuitry that underlie eating
(reviewed in Morton et al., 2014), food intake is strongly
regulated by hedonic or reward-based signals, which can often
override the homeostatic pathways during periods of relative
energy abundance by increasing the desire to consume palatable
foods (Lutter and Nestler, 2009). Presentation of palatable foods
induces potent release of dopamine into the NAcc, originating
in the VTA projection, contributing to the motivational and
rewarding value of food (Figure 2B). Crucially, the activation of
this pathway during meals is related to a loss of control over food
intake in some individuals (Stoeckel et al., 2008).

The hedonic component of food intake can be further
divided in palatability and post-prandial reward. The palatability
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TABLE 1 | Glossary.

Diet induced obesity (DIO) Procedure to expose experimental subjects to a hypercaloric diet intervention (e.g., HFD, Western diet).

High fat diet (HFD) Diet used on pre-clinical experiments usually with at least 45 kcal% from fat (predominately lard). In contrast a control diet contains
10 kcal% from fat.

Homeostatic synaptic scaling Homeostatic synaptic scaling or simply synaptic scaling is a post-synaptic synaptic plasticity mechanism that changes the global
level of postsynaptic AMPA receptors according to a neuron’s activity history.

Long term depression (LTD) Sustained, use-dependent decrease of the efficiency of a connection between two or more neurons

Long term potentiation (LTP) Sustained, use-dependent increase of the efficiency of a connection between two or more neurons

Indulgent eating Indulgent behavior caused by loss of self-control is characterized by time-inconsistent preferences, or a tendency to overweigh
short-term rewards relative to more distant ones, and a tendency in the short term to ignore the costs of one’s actions. Thus
indulgent eating in some case might be the first step of overeating and other eating behavior disorders.

Metaplasticity Phenomenon by which the activity history of a given synapse determines its susceptibility to further activity-dependent
modification as well as the nature of such modification.

Outcome devaluation Outcome devaluation occurs when a food reward used during training is devalued by allowing free access to it or by pairing it with
an aversive consequence such as gastric malaise.

Overeating/hyperphagia Is the excess food ingestion in relation to the energy that an organism expends, resulting in overweight/obesity phenotype. It might
be related to hypothalamic hyperphagia disorders.

Palatability Is the hedonic reward provided by foods which often varies relative to the homeostatic satisfaction of nutritional, water, or energy
needs.

Pattern completion Ability to recall an entire memory when presented with a partial sensory cue.

Roux-En-Y gastric bypass
surgery

Surgical procedure in which the proximal part of the stomach is cut from the rest. The small intestine is then cut and its distal part
is attached to the newly formed pouch below the esophagus, while the proximal part (connected to the larger remaining portion
of the stomach) is attached further down. This procedure has been successfully employed in humans to treat morbid obesity.

Synaptic pruning Widespread process of synapse elimination that occurs during childhood and adolescence, in an experience-dependent fashion.

Synaptic stripping Removal of dysfunctional synapses by activated microglia.

Western diet (also known as
cafeteria diet)

Diet used on pre-clinical experiments where the animal self-selects from palatable, readily available foods including cookies,
candy, cheese and processed meats. These foods contain a substantial amount of salt, sugar and fat, which are meant to
simulate the human Western diet.

subcomponent can be inferred since mammals have innate
preference for sweet-flavored solutions over bitter ones
independently of their caloric content, and rats learn to
prefer a saccharin-sweetened solution over water once it is
recognized as safe (Bermúdez-Rattoni, 2004; Yarmolinsky et al.,
2009; Drewnowski et al., 2012). Consumption of sucralose,
a non-caloric artificial sweetener, induces increases in NAcc
dopamine release at levels comparable to sucrose (de Araujo
et al., 2008). However, taste palatability alone, independent of
its nutritive properties fails to elicit the full rewarding effect
of a ‘‘good meal’’, which integration is dependent upon the
summation of relatively independent multisensory ‘‘layers
of reward’’, that include not only taste pleasantness and
post-prandial reward, but also visual and olfactory anticipatory
cues (de Araujo, 2011).

Post-prandial reward perception is thought to play a
central role in the modulation of eating habits (Antoni
et al., 2016). In fact, recent evidence has shown that rodents
can learn to identify food as rewarding based solely on its
caloric content, independently of their taste. For example,
ageusic trpm5−/− mice, though initially failing to distinguish
between water and a sucrose solution, later develop a
preference for sucrose that is indistinguishable from that
of wild-types (de Araujo et al., 2008; Simon et al., 2008;
Domingos et al., 2011). Pre- and post-absorptive signals
from the gut that could alter dopaminergic activity and
hence account for the taste-independent rewarding value of
sugar are thought to be involved (de Araujo et al., 2012).
Indeed, recent evidence has shown that the hormone leptin
interfered with the ability of sucrose to produce taste-

independent dopaminergic neurons firing. Conversely, other
evidences suggest that in addition to its well-established
orexygenic effects, the gut peptide ghrelin may have a role in
post-prandial reward processing (Müller et al., 2015; Reichelt
et al., 2015).

PHc Food Consumption and Neural
Plasticity
Post-prandial reward processing in food consumption involves
dopamine efflux in the dorsal striatum (de Araujo et al., 2012).
In rodents, this region contains distinct neural circuits that
are involved in goal-directed behavior, in the case of the
dorsomedial striatum, whereas in habit-based behavior, in the
case of the dorsolateral striatum (Figure 2B). Imbalance in
these action-control systems is thought to underlie a wide
range of neuropsychiatric disorders (Balleine and O’Doherty,
2010). Indeed, there is an extensive overlap between the neural
circuits activated by PHc food and drugs of abuse (Kenny,
2011a). In recent years, efforts have been deployed to unveil
whether obesity and drug addiction share some common
mechanisms, for instance in the long-term modification of
reward-seeking behavior (Benton and Young, 2016). In this
regard, one crucial question is to ask whether exposure to
PHc foods can produce long-term plastic changes in the neural
circuitry underlying goal-directed and habit-based behavior? If
PHc foods cause some kind of addiction, a shift towards habit-
based behavior is expected. This issue was recently addressed
by a group of researchers who exposed rats to restricted
access to sweetened condensed milk (i.e., PHc food) during
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5 weeks and then measured their sensitivity to outcome-
devaluation (Furlong et al., 2014). In this case, the task of
outcome-devaluation makes use of an instrumental learning
paradigm in which animals learn to lever-press for a food
reward; once the task is well learned the outcome—the food
pellet—is subsequently devalued by allowing free access to
it or by pairing it with an aversive consequence such as
gastric malaise; so lever-pressing is expected to diminish
in animals using a goal-directed strategy. When the task
was accomplished via a habit-based strategy instead, the
outcome devaluation will not affect the operant response
such as pressing a lever. Interestingly, they observed that
animals with previous exposure to PHc food, showed greater
persistence in lever pressing compared to controls, suggesting
that those animals had acquired a habit-based strategy. Also
they showed enhanced activation of the dorsolateral striatum,
a region involved in habitual behavior. Accordingly, AMPA
or dopamine (D)1-receptors antagonism in the dorsolateral
striatum rescued behavior to the level of controls. Therefore
these results show that a history of consumption of PHc
foods may facilitate a shift towards habitual-type control of
behavior (Furlong et al., 2014). Importantly, it has recently
been shown that behavioral sensitivity to outcome-devaluation
is also compromised in obese young men (Horstmann et al.,
2015). A study modeling PHc food in rats showed that high
fat diet (HFD) exposure from weaning to adulthood reduced
instrumental performance and decreased sensitivity to outcome
devaluation, suggesting impaired motivation, increased habitual
behavior, or both (Tantot et al., 2017). Importantly, these
behavioral impairments could be abolished by training adults
with a task that reinforces goal-directed behavior (Tantot et al.,
2017).

Chronic consumption of PHc food, as it is the case
for drugs of abuse, can lead to long-term modifications
in the brain circuits involved in reward-seeking behavior
(Kenny, 2011b; Volkow et al., 2013b). But food ingestion,
as we mentioned, is a complex behavior involving many
multisensory reward ‘‘layers’’. So what characteristic of PHc
food is more likely to cause changes in the brain’s circuitry,
and ultimately in behavior? To address this issue, a recent
study evaluated whether neuronal modifications observed after
sustained consumption of PHc correlated with the hedonic
value of food, or with its caloric contents (Guegan et al.,
2013). For this, they trained mice to lever-press for food
rewards that were either normal chow, hypercaloric or palatable
isocaloric food and analyzed dendritic spine morphology.
In addition, they compared the persistence of food seeking
behavior in the three groups of mice once food restriction
was relieved. Interestingly, mice trained to obtain isocaloric
palatable food showed higher persistence of lever pressing than
the two other groups, while having access to food ad libitum.
Furthermore, non-rewarded lever-press was also higher in
mice presented with palatable isocaloric food, suggesting this
diet also promoted impulsive-like behavior. Importantly, this
behavioral change was not observed in the KO mice for
the cannabinoid receptor type 1 (CB1−/−), suggesting a role
for this endocannabinoid receptors in impulsive food-seeking.

When examining dendritic morphology in the three groups,
the authors observed that dendritic spine density was increased
in the medial prefrontal cortex (PFC) and NAcc shell, regions
associated with addictive behavior, in the palatable isocaloric
food group, compared to mice that ate hypercaloric food or
normal chow. Consistently, this phenomenon was also shown to
be dependent on CB1 receptors (Guegan et al., 2013). However,
the degree to which neural plasticity mechanisms driven by
post-prandial reward interact with those related to learned
pleasantness of taste perception remains to be established. It is
interesting to note meanwhile, that surgical treatments that have
been shown to effectively treat obesity in humans (e.g., bypass
surgery) may effectively dampen sweet appetite by interfering
with post-prandial striatal dopamine release, as evidenced in a
rodent study (Han et al., 2016). In addition, Roux-En-Y gastric
bypass surgery in rats was shown to alter neural activity in brain
regions related to taste perception and reward (Thanos et al.,
2015).

As we have reviewed, certain environmental factors and
behavior patterns may lead to ‘‘food addiction’’ and ultimately
to obesity. Moreover certain lines of evidence suggest that
some gene clusters may predispose individuals to both
diet induced obesity (DIO) as well as brain inflammation
(Heber and Carpenter, 2011). Certain people may therefore
be genetically predisposed to absorb fat more efficiently. In
addition, DIO by HFD exposure was recently shown to depend
on neurotensin, a neuropeptide with significant dopaminergic
interactions, and longitudinal studies in humans have shown
that pro-neurotensin plasma level is a reliable predictor for
the eventual development of obesity (Li et al., 2016). Even
though such hereditary view of obesity may slightly downplay
the role of behavior and dietary control on obesity, it clearly
highlights the fact that a sedentary lifestyle and western diet are
at odds with our evolutionary capacity to optimally absorb fats
(Bellisari, 2008). In addition, it pinpoints clear pharmacological
strategies that may be used in addition to changes in lifestyle
and dieting.

Cognitive Consequences of PHc Food
Exposure and Increased Adiposity
It has been reported that PHc foods that lead to obesity are
related to a reduced ability to express synaptic plasticity in
certain brain areas related to cognition (Dingess et al., 2016;
Klein et al., 2016; Tran et al., 2016). For instance, chronic
HFD consumption disrupts intracellular cascades involved in
synaptic plasticity and insulin signaling/glucose homeostasis
(Dutheil et al., 2016) and affects neuronal plasticity-related
protein levels (Cai et al., 2016). Nutritional imbalance triggered
by this diet eventually impacts glutamate neural pathways, up
regulating glial glutamate transporters (GLT-1 and GLAST),
down regulating glutamate-degrading enzymes, diminishing
basal synaptic transmission and hindering NMDA-induced LTD
(Valladolid-Acebes et al., 2012).

Consistently, obesogenic dietary factors, such as simple
carbohydrate and saturated fatty acids, have been linked to
memory impairments and hippocampal dysfunction (Kanoski,
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2012; Sobesky et al., 2014) and evidence suggests that the
brain may be particularly vulnerable to obesogenic diets
during sensitive neurodevelopmental periods such as pre-
natal, infancy and adolescence stages (Figure 2A; Valladolid-
Acebes et al., 2013; Noble and Kanoski, 2016; Reichelt,
2016). In rodents, evidence shows that HFD exposure impairs
memory of a variety of behavioral test, such as Morris’
water maze, Barnes’ maze, radial arm maze, Y- and T-
maze, and novel object recognition (Cordner and Tamashiro,
2015). Interestingly, whereas abundant evidence shows that
HFD impairs long-term memory and cognitive flexibility in
spatial learning tasks (mainly dependent on hippocampus
integrity), some learning processes, such as those that include
an anxiogenic or aversive component (amygdala-dependent)
may actually be enhanced by such diets (Figure 2B). For
instance a recent study found increased emotional memory
and amygdala plasticity in rats exposed to HFD from weaning
to adulthood, through a mechanism that is dependent on
glucocorticoid receptors in the amygdala (Boitard et al.,
2015).

Studies in humans have shown that HFD consumption,
obesity and metabolic syndrome are associated with poor
cognitive performance in children (Bauer et al., 2015; Martin
et al., 2016) and adults (Singh-Manoux et al., 2012; Papachristou
et al., 2015; Lehtisalo et al., 2016; Yao et al., 2016), and increases
risk for development of dementia (Francis and Stevenson, 2013;
Freeman et al., 2014). Intake of a HFD that includes mostly
omega-6 and saturated fatty acids is associated with worse
performance on a cognitive tasks (Kalmijn et al., 1997) and
with increased risk for Alzheimer’s disease (Kalmijn et al., 1997;
Luchsinger et al., 2002) hypertension and diabetes (Fowler,
2016). In this regards, caloric restriction has been shown
to partially revert the HFD effects (Murphy et al., 2014).
Individuals adhering to anti-hypertensive diet combined with
caloric restriction and exercise show significant improvements
in both executive-function memory learning and psychomotor
speed when evaluated at 4 months following intervention (Smith
et al., 2010). Interestingly, there is strong evidence suggesting that
dietary restriction in adult non-human primates has beneficial
effects on the preservation of cognitive performance during the
course of aging (Colman et al., 2009; Mattison et al., 2012).
In addition, a recent meta-analysis suggested that bariatric
surgery is generally followed by improved cognitive functions in
human patients (Handley et al., 2016), although it should also
be warned that under certain circumstances, neuropsychiatric
complications, such as increased suicide risk may also occur
after this surgical treatment (Peterhänsel et al., 2013; Yen et al.,
2014).

New research with animal models has begun to shed light
on the neuroinflammatory mechanisms that may underlie the
cognitive impairments observed in obese individuals (Castanon
et al., 2015). For example, recent evidence in rats showed
that fat transplantation produced microglial activation in the
hippocampus while lipectomy had opposite effects. The authors
went on to show that the cytokine interleukin (IL)-1 positively
correlated with adiposity levels as well as cognitive impairments,
and IL-1 receptor antagonism rescued the cognitive deficits

observed in these animals (Erion et al., 2014; Sobesky et al.,
2014). Furthermore, HFD exposure was recently shown to
provoke a decrease in hippocampal dendritic spine density as
well as synaptic plasticity deficits due to synaptic stripping by
microglia, which could be reversed by diet suspension (Hao et al.,
2016).

Prevention and Sensitive Periods to
Nutritional Environmental Insults
As is the case for many other diseases, there seems to
be critical periods for the development of obesity. Early
studies established that gestation, the period between 5 and
7 years of age, and adolescence are critical for the risk of
developing long-term obesity (Dietz, 1994), although a more
recent longitudinal study suggested that childhood obesity is
itself highly dependent on the mother’s diet during pregnancy
(Glavin et al., 2014). Studies in rats showed that offspring
of dams fed with HFD had higher leptin concentration and
glucose intolerance along with increased adiposity (Tamashiro
et al., 2009). Similarly in mice, offspring of HFD fed dams
show strikingly increased preference for sucrose as well
as non-caloric sweetener solution when tested as adults.
Interestingly, these mice also show increased sensitivity to
cocaine and amphetamine, as well as reduced basal dopamine
levels in the striatum and the VTA, which is consistent with
higher motivation to obtain food reward (Peleg-Raibstein et al.,
2016).

At the neurodevelopmental level, adolescence is characterized
by extensive experience-dependent synaptic pruning (Petanjek
et al., 2011), as well as changes in gliogenesis and myelination
(Fields, 2005; Barbarich-Marsteller et al., 2013; Estes and
McAllister, 2016). Moreover, it was recently suggested that
blood-brain barrier permeability may be increase by HFD
exposure (Kanoski et al., 2010; Hsu and Kanoski, 2014)
and is differentially modulated during adolescence (Brenhouse
and Schwarz, 2016). Some regions, such as the PFC, which
matures up until early adulthood, undergo extensive remodeling
and functional plasticity during this period (Reichelt, 2016).
In recent years, adolescence has also been established as a
critical period for the development of obesity and obesity-
related cognitive impairments as some of the underlying
neural mechanism are starting to be elucidated (Labouesse
et al., 2016; Reichelt, 2016). In a series of experiments,
mice were fed HFD during adolescence and later tested in
novel location recognition memory, a task that is highly
dependent on proper hippocampus function and that is
particularly sensitive to manipulations in dorsal CA1 (Assini
et al., 2009; Vogel-Ciernia and Wood, 2014). When tested
as adults, these mice were less efficient than their control
counterparts in this task and this difference was observable
even after being switched to food restriction during a
5-week period. In contrast, the same HFD treatment had
no effect when administered during adulthood. Intriguingly,
this impairment in spatial memory was accompanied by
increased neural cell adhesion molecule (NCAM, also known
as CD56) accumulation and dendritic spine density increase
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in the hippocampal CA1 region (Valladolid-Acebes et al.,
2013). More recently, adolescent HFD exposure was also shown
to alter the levels of the extracellular matrix glycoprotein
reelin and impair LTD at PFC synapses (Labouesse et al.,
2016). Also it has been observed a diminished neurogenesis
and behavioral flexibility in hippocampus-dependent tasks in
mice exposed to HFD during adolescence (Boitard et al.,
2012). Supporting the notion that PHc food lead to cognitive
impairments in particular during vulnerable periods, it has
been reported that a HFD supplemented with 10% sucrose
was also shown to produce learning and memory impairments
in juvenile mice (Xu et al., 2015). More recently, a study
demonstrated that rats fed with so-called Western diet
(i.e., PHc food) during adolescence had post-traumatic stress
responsivity as adults. The study also showed a significant
decrease in hippocampal volumes as well as enlarged lateral
ventricles in these animals (Kalyan-Masih et al., 2016).
Importantly, a promising study showed that by suppressing
HFD exposure during adulthood, neurocognitive deterioration
seems to be restored in rats even when they were chronically
exposed to this diet during adolescence (Boitard et al.,
2016).

Outlook, Living in and Harnessing
Permissive Obesogenic Environments
Together, these data provide rationale for particular beneficial
effects of early educational/psychosocial interventions, as well
as a more aggressive campaigning of warning the effects of
PHc food consumption targeting sensitive neurodevelopmental
periods; i.e., pregnancy, childhood and adolescence. For
instance, it was recently demonstrated that when healthy
nutrition is presented as choices that are coherent with
adolescent values (such as independence from parents or
other figures of authority and freedom from the influence of
mass advertising by junk food giants companies), USA eight
graders were more likely to stick to a healthy dietary choices
(Bryan et al., 2016). Additionally, direct negative monetary
incentives were also shown to modulate consumer choice
by taxation. For example, in an audacious move trying to
control the extreme high prevalence of overweight/obesity,
and considering that caloric beverages were major sources
of energy among children and adults (Stern et al., 2014),
the Mexican government announced the implementation
a 10% tax on sugar-sweetened beverages as well as on
non-essential food with high caloric density, starting on
January 2014. Indeed, a recent analysis confirmed that by
December 2014, sales had already dropped by 12% and
the data suggested that Mexican consumers were indeed
switching to cheaper and healthier alternatives (Colchero et al.,
2016).

To increase sales, industrialized food enhances rewarding
properties by manipulating salt, sugar, fat, flavors and other food
additives to make such foods more like addictive commodities
(Cocores and Gold, 2009; Gearhardt et al., 2011; Carter et al.,
2016). In the other hand, minimal regulation from governmental
health agencies limits food industry and so far there is

no public warning about the potential addiction and health
problems of PHc food consumption. In this regard, as for
other addictive substances like nicotine or alcohol, additional
societal support might encourage policy-making bodies to: (a)
to start warning about the potential addiction towards PHc
food; (b) to regulate PHc food consumption for children,
as the first step in modulating adult access to addictive
food (Carter et al., 2016); (c) to foster additional research
aiming to define the addictive properties of different refined
food ingredients/additives as well as its mixture; and (d) to
empower consumers by providing clear and straightforward
health information in food labels as well as on advertising
campaigns.

In summary, recent but indubitable experimental and
clinical evidence have documented the deleterious health
effects of the permissive obesogenic environment that most
western countries are facing, as we have reviewed here, now
evidently extending to mental health due to dysregulation in
neuronal plasticity (Figure 2A). It is clear that our human
physiology did not evolved to face constant and ubiquitous
challenges imposed by obesogenic environments, resulting in an
overweight/obesity pandemic (WHO, 2016a) that is challenging
health systems by imposing unprecedented economic loads
(OECD, 2014). Thus it is urgent and necessary to develop
comprehensive, long lasting and multidimensional societal
agendas to control and revert obesogenic environments
by: (a) empowering citizens to take knowledge-based
decision and become responsible consumers; (b) protecting
consumers in vulnerable stages (i.e., pregnant women,
children and adolescents) either by taxation, regulation or
bans (WHO, 2016b); and last but not least (c) promoting
economic growth based in innovation-driven healthy food
alternatives.
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