Effects of depth, soil and vegetation types on indicators of soil organic carbon lability in forest soils
Laure Soucémarianadin, Lauric Cécillon, Bertrand Guenet, Claire Chenu, François Baudin, Manuel Nicolas, Pierre Barré

To cite this version:
Laure Soucémarianadin, Lauric Cécillon, Bertrand Guenet, Claire Chenu, François Baudin, et al.. Effects of depth, soil and vegetation types on indicators of soil organic carbon lability in forest soils. 6th International Symposium on Soil Organic Matter, Sep 2017, Harpenden, France. pp.142. hal-01604925

HAL Id: hal-01604925
https://hal.science/hal-01604925
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
6th INTERNATIONAL SYMPOSIUM ON SOIL ORGANIC MATTER

3–7 SEPTEMBER 2017
HARPENDEN, UNITED KINGDOM
www.som2017.org

JOINT MEETING OF

BRITISH SOCIETY OF SOIL SCIENCE

ABSTRACTS
C-MIP: An international model inter-comparison simulating organic carbon dynamics in bare fallow soils

*Roberta Farina1, Fiona Ehrhardt2, Gianni Bellocci3, Claire Chenu4, Jean-François Soussana5, Mohamed Abdalla5, Jorge Álvaro-Fuentes6, Mira Blauer7, Lorenzo Brilli7, Bidisha Chakrabarti8, Hugues Clivot9, Max De Antoni9, Claudia Di Bene1, Chris Dorich11, Fabien Ferchaud9, Nuala Fitton5, Rosa Francaviglia1, Uwe Franko12, Brian Grant13, Bertrand Guenet14, Matthew T. Harrison15, Miko U.F. Kirschbaum16, Katrin Kuka17, Aleksi Lehtonen18, Raphaël Martin3, Elizabeth Meier29, Lorenzo Menichetti20, Laura Mula21, Claas Nendel22, Susanne Rolinski23, Joanna Sharp24, Anita Shepherd25, Ward Smith26, Val Snow27, Arezoo Taghizadeh-Toosi28, Elena Tsutskikh12, Qing Zhang29, Sylvie Recous30

1CREA, Italian Council for Agricultural Research and Economics, Agricoltura e Ambiente, Rome, Italy
2INRA, Paris, France
3INRA, UMR Ecosystème Prairial, Clermont-Ferrand, France
4AgroParisTech, Thiverval-Grignon, France
5University of Aberdeen, Institute of Biological and Environmental Sciences, Aberdeen, United Kingdom
6Consejo Superior de Investigaciones Científicas CSIC, Zaragoza, Spain
7University of Florence - Iribmet-CNR, Florence, Italy
8ICAR-Indian Agricultural Research Institute, New Delhi, India
9INRA, UR 1158 AgroImpact, Barenton-Bugny, France
10Queensland University of Technology, Brisbane, Australia
11Colorado State University, Fort Collins, CO, United States
12Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
13Agriculture Canada, Ottawa, Canada
14CNRS-LSCF, Gif-sur-Yvette, France
15Tasmanian Institute of Agriculture, Burnie, Australia
16Landcare Research, Palmerston North, New Zealand
17Julius Kühn-Institut (JKI), Braunschweig, Germany
18Natural Resources Institute Finland (LUKE), Helsinki, Finland
19CSIRO, St. Lucia, Australia
20SLU, Uppsala, Sweden
21Università di Sassari, Dipartimento di Agraria e Nucleo Ricerca Desertificazione, Sassari, Italy
22Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
23Potsdam Institute for Climate Impact Research, Potsdam, Germany
24The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
25Rothamsted Research, Okehampton, United Kingdom
26Agriculture and Agri-Food Canada, Ottawa, Canada
27AgResearch, Christchurch, New Zealand
28Aarhus University, Viborg, Denmark
29Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing, China
30INRA, UMR FARE, Reims, France

Introduction

C sequestration in agricultural soils contributes to the achievement of the climate objectives (e.g. COP-21’s “4 per 1000” initiative). Reliable methodologies are needed to assess the soil C sequestration potential of agricultural lands in different management, soil and climate conditions. Simulation models extrapolate C dynamics from current knowledge in both time and space. This is difficult when soil is covered by vegetation, for the continuous input of plant residues and root exudates, and the influence of plants on soil water and temperature dynamics. Long-term bare fallow (LTBF) experiments offer ideal conditions to test models simulating soil organic C dynamics.

Objectives

The aim is to assess the ability of a set of models to simulate soil C dynamics on LTBF experiments, with particular reference to recalcitrant pools.
O-2b.12

Unravelling complexity of biophysical interactions in soil: linking fungal traits, pore geometry and distribution of soil organic matter hotspots to explain evolution of CO₂.

*Wilfred Otten¹, Ruth Falconer², Xavier Portell-Canal¹, Philippe Baveye³, Patricia Garnier³, Claire Chenu³
¹Cranfield University, Cranfield, United Kingdom
²Abertay University, Dundee, United Kingdom
³AgroParis tech, Thiverval-Grignon, France

Soil structure provides a home to large numbers of microorganisms offering them a food base, support, access to water, air and nutrients and protection from predators. To be able to function, soils need to deliver these essential requirements for life, at micro-habitat scales. Soil structure is the soil characteristic that makes this possible. Therefore, soil structure holds the key to life in soil, regulates many ecosystem services and ultimately underpins sustainable life on Earth. Despite this, the exact way in which soil structure exerts its control is not fully understood and considered to be too complex to be explicitly included in modelling of key processes such as SOM dynamics.

In this study we ask: can we develop a predictive framework for fungal ecology in heterogeneous soil that bridges scales, and what benefits would it bring?

To address this question we developed a model that considers fungal interactions at scales directly relevant to the organisms (micro-meters) in order to predict ecosystem services, such as the evolution of CO₂, as an emergent property of these interactions. The model is based on fungal traits, and explores through scenario modelling how these impact upon exploration of pore networks as determined by X-ray CT, and how this is affected by the location of particulate organic matter and the distribution of water within the pore space. The model predicted two important behaviours that are not captured by other models: (i) the evolution of CO₂ increases in a non-linear way with increasing organic matter content. This response suggests a critical behaviour could be expected in microbial processes involved in the decomposition of SOM; (ii) the same amount of SOM in a soil sample (e.g. represented as a bulk property) can lead to substantial different CO₂ evolutions, predicted to differing by a factor 200, depending on the spatial distribution and accessibility within the soil structure. This is the first modelling framework that is capable of combining fungal dynamics in structured soil with SOM dynamics and evolution of CO₂. The advantage of the modelling approach is that scenarios can be rapidly explored beyond what is experimentally tractable, and as such can explore parameter spaces where soil functioning and biodiversity may be resilient to change, and can guide further experimental testing.
O-2c.10
High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – Combining experimental and modeling approaches.

*Rémi Cardinael1,2,3,4, Bertrand Guenet5, Tiphaine Chevallier7, Christian Dupraz6, Thomas Cozzi3, Claire Chenu3
1CIRAD, UR Aida, Montpellier, France
2IRD, UMR Eco&Sols, Montpellier, France
3AgroParisTech, UMR Ecosys, Thiverval-Grignon, France
4CIRAD, Harare, Zimbabwe
5LSCE, Gif-sur-Yvette, France
6INRA, UMR System, Montpellier, France

Question

In temperate agroforestry systems, soil organic carbon (SOC) stocks are generally increased [1], but is difficult to disentangle the different factors responsible for this SOC storage. Organic carbon (OC) inputs to soil may be larger, but SOC decomposition rates may also be modified owing to physical protection, microclimate, or priming effect from tree roots. Our objective was therefore to assess if organic inputs could be the main driver of SOC storage in agroforestry systems.

Methods

This study was performed in an 18-year-old silvoarable system associating hybrid walnut trees and durum wheat, and in an adjacent agricultural control plot. SOC stocks and all OC inputs to the soil, i.e., leaf litter, tree fine root senescence [2,3], crop residues, and tree row herbaceous vegetation were quantified down 2 m depth [4]. We then adapted a model [5] to simulate SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity.

Results

Measured OC inputs to soil were increased by about 40% (+ 1.11 t C ha\(^{-1}\) yr\(^{-1}\)) down 2 m depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha\(^{-1}\) down to 1 m depth (Fig. 1). The model described properly the measured SOC stocks and distribution with depth, especially when priming effect was taken into account (Fig. 2).

Conclusions

Modeling showed that the observed SOC storage in an agroforestry system would result from increased OC inputs, which were measured, and from an acceleration of SOC decomposition. This compensatory mechanism could reduce a lot the potential of agroforestry soils to store SOC, especially at depth. Deep-rooted trees modify OC inputs to soil, a process that deserves further studies given its potential effects on SOC dynamics.

References

Figures

Figure 1. Measured SOC stocks and OC inputs to the soil a) in the agricultural control plot, b) in the 18-year-old agroforestry plot.

Figure 2. Measured and modeled soil organic carbon contents (kg C m\(^{-3}\)) in an agricultural control plot and in an 18-year-old silvoarable system with a two pools model without priming effect (no PE), with a two pools model with priming effect (PE) and with a three pools model without PE.
Figure 1

(a) OC stocks (t C ha\(^{-1}\))

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>OC stocks (t C ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>93.0</td>
</tr>
<tr>
<td>0.3</td>
<td>26.3</td>
</tr>
<tr>
<td>0.6</td>
<td>23.6</td>
</tr>
<tr>
<td>0.9</td>
<td>50.7</td>
</tr>
<tr>
<td>1.2</td>
<td>49.5</td>
</tr>
<tr>
<td>1.5</td>
<td>46.3</td>
</tr>
</tbody>
</table>

Total SOC stocks: 205.9

OC inputs (t C ha\(^{-1}\) yr\(^{-1}\))

<table>
<thead>
<tr>
<th>Crop residues</th>
<th>0.43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root OC inputs</td>
<td>2.29</td>
</tr>
<tr>
<td>Total OC inputs</td>
<td>2.69</td>
</tr>
</tbody>
</table>

(b) OC stocks (t C ha\(^{-1}\))

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>OC stocks (t C ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>24.6</td>
</tr>
<tr>
<td>0.3</td>
<td>31.3</td>
</tr>
<tr>
<td>0.6</td>
<td>24.3</td>
</tr>
<tr>
<td>0.9</td>
<td>33.3</td>
</tr>
<tr>
<td>1.2</td>
<td>50.5</td>
</tr>
<tr>
<td>1.5</td>
<td>45.1</td>
</tr>
</tbody>
</table>

Total SOC stocks: 226.1

OC inputs (t C ha\(^{-1}\) yr\(^{-1}\))

Litterfall	0.73
Crop residues	0.27
Vegetation	2.13

Root OC inputs: 1.39

Total OC inputs: 2.24

Color legend:
- Deciduous willow
- Walnut trees
- Herbaceous vegetation
Figure 2
Multidecadal persistence of organic matter in soils: Insights from STXM-NEXAFS and nano-SIMS investigations

*Pierre Barré1, Suzanne Lutfalla1,2, Isabelle Basile-Doelsch3, Sylvain Bernard4, Corentin Le Guillou5, Laurent Remusat4, Claire Chenu2
1CNRS, Geology laboratory, Paris, France
2AgroParisTech, Ecosys, Thiverval-Grignon, France
3INRA, CEREGE, Aix, France
4CNRS, IMPMC, Paris, France
5CNRS, UMET, Villeneuve d’Ascq, France

The mineral matrix and clays in particular protect soil organic matter (SOM) from decomposition by microorganisms. Better understanding the mechanisms responsible for the pluri-decadal persistence of carbon in soils requires constraining the dynamics, the distribution and the chemical nature of both SOM and associated mineral phases. Benefiting from the unique opportunity offered by a long-term bare fallow (LTBF) experiment having started in 1928 in Versailles (France), we report C and N decline with time for six different particle-size fractions ([sand >50µm], coarse silt [20-50µm], fine silt [2-20µm], coarse clays [0.2-2µm], intermediate clays [0.05-0.2µm] and fine clays [0-0.05µm]). We also report spatially resolved characterization at the submicrometer scale of SOC dynamics using STXM-based NEXAFS and nano-SIMS. As expected, total C and N declined with time in all fractions. The lowest declines were observed for intermediate size clays [0.05-0.2µm] in which only 53% of C and 63% of N were lost between the initiation of the bare fallow and 2008. C/N ratios of SOM associated to clays significantly decreased with time whereas C/N ratios of SOM associated to silt fractions remained constant. SOM associated to intermediate and fine clays were notably very low (below 5) after 8 decades of bare fallow. Bulk-scale C-NEXAFS data reveals that the speciation of SOC remained almost constant with LTBF duration. STXM-based NEXAFS investigations at the submicrometer scale revealed that all smectitic clays were associated to OM coatings at all dates whereas illite particles became progressively SOM-free with increasing bare fallow duration. STXM-based NEXAFS investigations also revealed that particles of organic matter can be observed within the coarse clay fractions even after 8 decades of bare fallow. Nano-SIMS investigations on bulk clay fractions showed that OM decline was similar for Si-, Al- and Fe-rich regions. Our study provides new lines of evidence for the higher protection of N-rich SOM by minerals and is the first direct observation of the specific ability of smectites to protect SOM at a pluri-decadal timescale.
Effects of depth, soil and vegetation types on indicators of soil organic carbon lability in forest soils

Laure Soucémarianadin¹, Lauric Cécillon², Bertrand Guenet³, Claire Chenu⁴, François Baudin⁵, Manuel Nicolas⁶, Pierre Barré³

¹CNRS-ENS, Geosciences, Paris, France
²IRSTEA, Grenoble, France
³CNRS, Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France
⁴AgroParisTech-INRA, UMR ECOSYS, Thiverval-Grignon, France
⁵Université Pierre et Marie Curie, ISTEP, Paris, France
⁶Office National des Forêts, R&D, Fontainebleau, France

Soil organic matter is a key property as it influences soil ecosystem services like productivity, water storage, etc. In particular, the labile soil organic carbon (SOC) fraction plays a central role in short- to medium-term nutrient availability and soil structural stability. There is little evidence to differentiate the relative importance of factors influencing the labile SOC fraction in contrasted pedological and vegetation conditions. Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes are considered as classical indicators of the labile soil organic carbon (SOC) pool. Thermal analyses, in particular Rock-Eval 6 (RE6) analysis, have also shown promising results in the determination of SOC biogeochemical stability.

Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions we assessed the effects of depth (n = 5; up to 1 m), soil class (entic Podzol; dystric Cambisol; Calcisol) and vegetation types (deciduous; coniferous) on SOC biogeochemical and thermal stability. We explored how respired-C isolated by a 10-week laboratory soil respiration test, POM-C isolated by a physical SOC fractionation scheme (particle-size > 50 µm and d < 1.6 g·cm⁻³) and four RE6 parameters, correlated to short- or long-term SOC persistence, evolved in a set of 233 soils samples from 53 forest sites. Results showed that depth was the dominant discriminating factor, affecting significantly all parameters. With depth, we observed a decrease of both classical labile SOC indicators and the thermally labile SOC pool and an increase of the thermally stable SOC pool, along with an oxidation and a depletion of hydrogen-rich moieties of the SOC. Soil class and vegetation type had contrasted effects. For instance, entic Podzols and dystric Cambisols had relatively more thermally stable SOC in the deepest layer than Calcisols but more labile SOC in the surface layer than Calcisols. Soils in deciduous stands tend to contain a higher proportion of thermally stable SOC than soils in coniferous stands. This study shows that both vegetation and soil types influenced SOC stability at various depths and thus should be considered when mapping soil climate regulation ecosystem service.
P-3b.06

Is Rock-Eval 6 thermal analysis a good indicator of soil organic carbon lability? – A method comparison study in forest soils

*Laure Soucémarianadin¹, Lauric Cécillon², Claire Chenu³, François Baudin⁴, Manuel Nicolas⁵, Cyril Girardin⁶, Pierre Barré¹

¹CNRS-ENS, Geosciences, Paris, France
²IRSTEA, Grenoble, France
³AgroParisTech-INRA, UMR ECOSYS, Thiverval-Grignon, France
⁴Université Pierre et Marie Curie, ISTEP, Paris, France
⁵Office National des Forêts, R&D, Fontainebleau, France

Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes are considered as classical indicators of the labile soil organic carbon (SOC) pool. However, there is still no widely accepted standard method to assess SOC lability and the pertinence of these two time-consuming methods to characterize SOC turnover can be questioned. Alternate ways of determining the labile SOC component are thus well-needed. Thermal analyses, in particular Rock-Eval 6 (RE6) analysis has shown promising results in the determination of SOC biogeochemical stability. Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions, including deep samples, we compared three different techniques used for SOC lability assessment. We explored whether respired-C isolated by a 10-week laboratory soil respiration test, POM-C isolated by a physical SOC fractionation scheme (particle-size > 50 µm and d < 1.6 g·cm⁻³) and several RE6 parameters were comparable and how they correlated. As expected, respired-C and POM-C fractions strongly decreased with depth. RE6 parameters showed that SOC from deeper soil layers was also thermally less labile, more oxidized and H-depleted. Indeed, SOC from deeper soil layers had lower Cᵢ + Cᵣ (proportion of thermally labile SOC), higher T₅₀_HC_PYR (temperature at which 50% of the pyrolizable hydrocarbons were effectively pyrolyzed), larger oxygen index, and smaller hydrogen index. Surprisingly, the two classical indicators of the labile SOC pool (respired-C and POM-C) were only marginally correlated (p = 0.051) and showed layer-specific correlation. Similarly, respired-C was poorly correlated to RE6 parameters. The POM-C fraction showed a strong negative correlation with T₅₀_HC_PYR (ρ = −0.73) and good correlations with other RE6 parameters.

Our study showed that RE6 parameters were good estimates of the POM-C fraction, which represents a labile SOC pool (residence time of ca. a couple decades) that is meaningful regarding SOC stock changes upon modifications in land management. RE6 thermal analysis could therefore be a fast and cost-effective alternative to more time-consuming methods used in SOC pool determination, and may be integrated into soil monitoring networks to provide high-throughput information on SOC dynamics.
Organic carbon mineralization rates with depth in a calcareous soil under an agroforestry system

Thomas Cozzi¹, Rémi Cardinael², *Cyril Girardin³, Tiphaine Chevallier⁴, Claire Chenu¹

¹AgroParisTech, Thiverval Grignon, France
²CIRAD, Harare, Zimbabwe
³INRA, Campus AgroParisTech, Thiverval Grignon, France
⁴IRD, Montpellier, France

Agroforestry systems, i.e. agroecosystems in which trees are intercropped with annual crops or with grasslands, have the capacity to store more carbon in the soil in comparison to reference systems [1, 2, 3]. The residence time of the carbon additionally stored in the soil is critical in the perspective of mitigating greenhouse gas emissions. To our knowledge, the temporal stability this carbon has not been assessed yet. To do so, we used a long term agroforestry experiment located in southeast France, where hybrid walnuts have been planted 18 years ago, with a density of 110 trees ha⁻¹ and are intercropped with durum wheat. The soil is a silty and carbonated deep alluvial Fluvisol. Soil OC stocks have been measured on this site and we sampled the tree row, the inter-row and the reference plot down to 180 cm. Samples have been incubated in the laboratory at pF 2.5. The evolved CO₂ was monitored as well as its Δ¹³C. The measurements were performed in order to quantify the contribution of soil organic matter and carbonates to the evolved CO₂. We found that carbonates made an important contribution to the evolved CO₂, with up to 70% of evolved CO₂ presumably originating from the carbonates. There was no different of SOC mineralization rates between the tree row, inter-row and control plot except in the 0-10 cm layer where it was larger in the former. This could be explained by the abundance of SOC in this layer of tree rows corresponding to particulate organic matter. The mineralization rates of SOC decreased with depth, showing the increased stability of SOC in the subsoil. We found no evidence of increased stability of the organic carbon stored in agroforestry plots. Most of the additionally stored organic C occurs in the surface layer and is labile (particulate organic matter). Below 10 cm rates of mineralization as measured in vitro are similar, but more SOC is present in the agroforestry plot, in particular in the tree row. This study also shows the importance of accounting for inorganic carbon when measuring mineralization rates of organic matter in calcareous soils.

Which is the best method to isolate soil organic carbon fractions with distinct turnover times?

*Christopher Poeplau¹, Axel Don¹, the SOMFrac team¹
¹Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

A myriad of methods to fractionate soil organic carbon (SOC) exists, which have been developed based on different research questions and views of SOC stabilization mechanisms. A major goal of SOC fractionation is to separate the bulk SOC into fractions having discrete turnover times. The lack of a comprehensive method comparison impedes the choice for a method. For an international methods comparison study (SOMfrac) we used soils from three experimental sites with long-term C3-C4 vegetation changes (22, 22 and 36 years ago) and tested 21 different SOC fractionation methods. Using the natural abundance of δ13C, we were able to track the enrichment of C4-derived carbon in different SOC fractions as an indirect measure for turnover time. The methods that apply a combination of physical (density, size) and chemical (oxidation, extraction) were most effective to obtain fractions with a wide range of turnover times. Coarse light fraction SOC and oxidation resistant SOC were the most and least C4-carbon enriched fractions, respectively. Surprisingly, even after 36 years of C4-plant cultivation (Maize and Miscanthus), no method was able to isolate a fraction were the C3-carbon was completely replaced by C4-carbon. This hampers the direct link between any fractions of SOC and the most active and labile pool in SOC models. Particles with a density of >2.8 g cm³ showed similarly low C4-carbon enrichment as oxidation resistant SOC, indicating the importance of metal-oxides for SOC stabilization. Particle size fractionation significantly outperformed aggregate size fractionation because of the fact that larger aggregates contain smaller ones. Using further quality criteria such as redundancy in turnover time, recovery and reproducibility, an evaluation scheme was established to identify and evaluate the strengths and weaknesses of the 21 different methods.
The energetic and chemical fingerprints of persistent soil organic carbon

*Pierre Barré1, François Baudin2, Sylvain Bernard3, Lauric Cécillon4, Bent T. Christensen5, Sabine Houot6, Thomas Kätterer7, Suzanne Lutfalla1,6, Corentin Le Guillou8, Andy Macdonald9, Folkert van Oort6, Alain F. Plante10, Katell Quénéa11, Alix Vidal11, Claire Chenu6

1 CNRS, Geology laboratory, Paris, France
2 Université Paris 6, ISTEP, Paris, France
3 CNRS, IMPMC, Paris, France
4 IRSTEA, Grenoble, France
5 Aarhus University, Department of Agroecology, Tjele, Denmark
6 AgroParisTech, Ecosys, Thiverval-Grignon, France
7 Swedish University of Agricultural Sciences, Uppsala, Sweden
8 CNRS, UMET, Villeneuve d’Ascq, France
9 Rothamsted Research, Harpenden, United Kingdom
10 University of Pennsylvania, Earth and Environmental Science, Philadelphia, United States
11 Université Paris 6, METIS, Paris, France

The absence of convincing physical or chemical procedures to characterize or isolate relatively labile versus persistent soil organic carbon (SOC) pools makes the study of persistent SOC difficult. Long-term bare fallow (BF) experiments, in which C inputs have been stopped for decades, provide a unique opportunity to study persistent SOC without the inherent artefacts induced by extraction procedures, the hypothesis being that SOC is gradually enriched in persistent C with time as labile components decompose. We determined the evolution of thermal and chemical characteristics of bulk SOC in five long-term BF experiments across Europe (Askov, Grignon, Rothamsted, Ultuna and Versailles), using a multi-technique approach involving Rock-Eval pyrolysis (RE), thermogravimetry and differential scanning calorimetry (TG-DSC), Near Edge X-Ray Absorption Fine Structure (NEXAFS) and pyrolysis gas chromatography-mass spectrometry (TMAH-Py-GC-MS). Results of RE and TG analyses showed that the temperature needed to combust the SOC increased with BF duration at all sites. Conversely, SOC energy density (in mJ mg⁻¹ C) measured by DSC decreased with BF duration. RE results showed that hydrogen index (HI) tended to decrease with BF duration whereas the oxygen index (OI) did not show consistent trends across sites. NEXAFS signals presented little differences and were dominated by carboxyl peak. TMAH-Py-GC-MS results showed a strong relative decrease in lignin-derived compounds with BF duration and a small decline in cutin and suberin-derived compounds. Conversely, the relative intensity of alkanes increased with bare fallow duration. Our results showed that in spite of the heterogeneity of the soils at the 5 long-term BF sites, SOC that has persisted in soils for several decades have similar and defined thermal and energetic properties: persistent SOC burns at higher temperature and its combustion generates less energy. Persistent SOC in the studied temperate soils also shares some chemical properties: it has a lower HI values and is depleted in lignin-derived compounds. The increased burning temperature and lower energy density of persistent SOC suggest that SOC stability may be a function of the high energy cost and low energy gain from decomposition of this material.
Does pore scale biogeography exist in different soil types?

*Claire Chenu\(^1\), Valérie Pouteau\(^2\), Naoise Nunan\(^3\)

\(^1\)AgroParisTech, Thiverval-Grignon, France
\(^2\)INRA, Thiverval-Grignon, France
\(^3\)CNRS, IEES, Paris, France

Microbial activity is largely controlled by the abiotic conditions prevailing in their habitats, which are very heterogeneous at the microscopic scale. A few studies have demonstrated a microbial biogeography at the pore scale. Different regions in the soil pore network can be considered to be different microbial habitats and these different regions have been shown to be well correlated with organic carbon mineralization rates. We aimed to test whether such a functional biogeography exists for different soil types and whether it is consistent across soils. We selected six topsoils with contrasted texture, soil organic matter content and pH (2 cambisols, 3 luvisols and 1 podzol under different managements). We added a 13C labelled, easily mineralisable organic substrate, pyruvate, to soil samples previously equilibrated at different matric potentials, in order to place the substrate preferentially in soil pores with neck diameters of 3 to 10 µm or 30 to 100µm, according to the Jurin-Laplace law. The soil samples were then incubated at pF 1.5 for 3 weeks and CO2 and 13C-CO2 were monitored. At the end of incubation, total and 13C-PLFA were extracted and analysed. Basal mineralisation, expressed as % total organic C was affected by soil type, mainly related soil pH and the quality of the organic matter. The 6 soils exhibited contrasted microbial community composition, as shown by their PLFA profiles. The addition of pyruvate did not induce any priming effect in soils, except in the long term bare fallow soil, where the mineralization of SOM was presumably limited by energy. In the long term bare fallow soil, pyruvate mineralization was the same whatever the region it was placed in, suggesting other controls of its mineralization than the characteristics of pore scale habitats. In four soils out of six, the mineralization of pyruvate was more rapid when it was initially placed in large pores (30 to 100µm) than in small pores (3 to 10 µm), suggesting that pore scale biogeography may be a general feature in soils and that coarser pores are more favourable habitats for soil organic matter mineralization.
National and international SOM policy

Oral Presentation: O-7a.01

Promoting carbon sequestration in soils: The 4 per 1000 initiative

Magali Garcia Cardenas¹, Farshad Amiraslani², *Claire Chenu³, Martin Kaonga⁴, Lydie-Stella Koutika⁵,⁶, Jagdish Ladha⁷, Beata Madari⁸, Cornelia Rumpel⁹, Yasuhito Shirato¹⁰, Pete Smith¹¹, Brahim Soudi¹², Jean-François Soussana¹³, David Whitehead¹⁴, Lini Wollenberg¹⁵

¹University of La Paz, La Paz, Bolivia
²Tehran University, Tehran, Iran, Islamic Republic Of
³AgroParisTech, Thiverval-Grignon, France
⁴Cambridge Center for Environment, Cambridge, United Kingdom
⁵CRDPI, Pointe Noire, Congo
⁶CRDPI, Pointe-Noire, Congo
⁷International Rice Research Institute, Manilla, Philippines
⁸Embrapa, Montpellier, France
⁹CNRS, Thiverval-Grignon, France
¹⁰NIAES, Tsukuba, Japan
¹¹University of Aberdeen, Aberdeen, United Kingdom
¹²Agronomy and Veterinary Medicine Institute, Rabat, Morocco
¹³INRA, Paris, France
¹⁴Landcare Research, Lincoln, New Zealand
¹⁵University of Vermont, Burlington, VT, United States

The "4%" Initiative was launched at the COP21 as part of the Lima-Paris Action Agenda. It aims to improve the organic matter content of soils and promote soil organic carbon (SOC) sequestration to increase soil fertility and thereby contribute to food security, to foster adaptation to climate change and contribute to mitigating climate change. The initiative focuses primarily on agricultural soils, because of their frequent poor soil organic carbon content and degradation and of their crucial role in food provision but also considers forest soils and the preservation of existing SOC stocks. The objectives of the initiative are:

(i) to promote research on the knowledge needed for the initiative (mechanisms and potential of organic C sequestration in soils; SOC sequestering management agricultural and forestry practices; adoption and transition to these practices; monitoring SOC stocks) and to

(ii) to foster initiatives, by a variety of actors, to better manage SOC in the field via agricultural practices.

The governance of the "4%" Initiative is organised into three bodies, which will interact closely with each other: the consortium of all members, who elect the president and vice president of the initiative, the forum of partners and the scientific and technical committee (STC). The work of all these bodies is facilitated by the executive secretary.

The STC has the mission to support SOC sequestration programs initiated by a wide variety of actors by setting reference criteria for the evaluation of SOC management projects and actions. The committee will give advice on these actions and formulate proposals for the orientations of international scientific research and cooperation programs. The advice given by the STC is founded on the principles and goals of the Initiative and coherent with the Sustainable Development Goals. This presentation will present the on-going work of the STC on the sustainable SOC sequestration indicators. The challenge is to identify easily utilizable indicators relative to SOC storage itself, but also to mitigation of GHG emissions, improved productivity and food security, better adaptation to climate change, but also relative to other impacts of SOC sequestration strategies (on water quality or land tenure for example).