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Introduction

This work continues our search for controls that stabilize componentwise positive equilibria in chemostat models, under the incomplete state measurements and model uncertainties that usually occur in biotechnology laboratories, and so is strongly motivated by the ubiquity of the chemostat in a plethora of biological and engineering settings that are of compelling interdisciplinary interest, in which stabilization of componentwise positive equilibria is needed to ensure persistence of species. The chemostat is used for the continuous culture of microorganisms. It was first studied in [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF] and [START_REF] Novick | Description of the chemostat[END_REF]. It is regarded in biotechnology, ecology, and microbiology as an ideal way to represent cell or microorganism growth, wastewater treatment, or natural environ-ments like lakes; see [START_REF] Beauthier | Input/state invariant LQ-optimal control: application to competitive coexistence in a chemostat[END_REF]; [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]; [START_REF] Fritsch | A modeling approach of the chemostat[END_REF]; [START_REF] Gouzé | Feedback control for nonmonotone competition models in the chemostat[END_REF]; [START_REF] Lemesle | A simple unforced oscillatory growth model in the chemostat[END_REF], and [START_REF] Robledo | Global stability for a model of competition in the chemostat with microbial inputs[END_REF]. The variables are the microorganism and substrate concentrations, whose dynamics are based on mathematical models, e.g., mass-balance equations; see [START_REF] Mazenc | Further results on stabilization of periodic trajectories for a chemostat with two species[END_REF] and [START_REF] Smith | The Theory of the Chemostat[END_REF]. Two challenges in designing controls for chemostats are their nonlinearity and their lack of online actuators and sensors; see [START_REF] Cougnon | On-line optimization of fedbatch bioreactors by adaptive extremum seeking control[END_REF].

Moreover, when online devices are available to measure biomass and substrate concentrations, they usually only provide delayed discrete measurements. It is common to design controls using continuous time models, which are then discretized before being applied. However, to prove that continuous time controllers ensure that the desired stability objectives are met, one must show robustness with respect to discretization. Chemostats are also subjected to uncertainty in the growth functions, which should also be taken into account in the control design. To the best of our knowledge, no rigorous theoretical analysis in the literature has addressed the delay, robustness, and sampling problems that we consider here. The work [START_REF] Robledo | Feedback stabilization for a chemostat with delayed output[END_REF] assumes that the measurements are continuous.

The preceding remarks motivated Mazenc et al. (2013a) and this work, which solves a complementary problem to the ones in Mazenc et al. (2013a). Here we consider the classical chemostat model in [START_REF] Smith | The Theory of the Chemostat[END_REF] that contains one substrate and one species, except here we also include delays, sampling, and uncertainties, which are three features that are not contained in the classical chemostat model. We assume that the input substrate concentration is constant, and that the growth rate is of Haldane type (which has a growth limitation for low substrate concentrations, and inhibition at high concentrations). The dilution rate is the control, and uses delayed and sampled observations. Controlling this system is di cult, for two reasons. First, works such as Mazenc et al. (2013b) that prove global asymptotic stability under delay and sampling use state feedbacks. Since our work has output feedbacks, it is outside the scope of Mazenc et al. (2013b).

Second, chemostats with non-monotonic growth rates generally have multiple equilibria, under constant dilution rates. One is unstable, while another is locally exponentially stable. The work Mazenc et al. (2013a) stabilized points of the second type, but here we stabilize points of the first type in cases where the growth rate is uncertain and not necessarily monotone. Our stabilizing controller only requires measurements of the substrate, which are piecewise constant and delayed. Under suitable bounds on the delay size and on the sampling interval, our control provides global asymptotic stability to a componentwise positive equilibrium when the growth function is known, and input-to-state stability (or ISS) (as defined in [START_REF] Khalil | Nonlinear Systems, Third Edition[END_REF]) with respect to uncertainties in the growth functions. This di↵ers from Mazenc et al. (2013a), where no constraints on the delay and sampling intervals were used. We believe that these extra constraints are needed because under constant dilution rates, the equilibrium that we stabilize in this paper would have been unstable. Mazenc et al. (2013b), the barrier functions that we use here allow us to certify ISS, which was not considered in Mazenc et al. (2013b). The main result of Mazenc et al. (2013b) does not apply here, even in the special case where the growth functions are known. Our proof also di↵ers from [START_REF] Mazenc | Stabilization of a chemostat model with Haldane growth functions and a delay in the measurement[END_REF], which assumes that species measurements are available. When there are no perturbations, our results contrast with [START_REF] Gouzé | Robust control for an uncertain chemostat model[END_REF] and other works that do not include delays or sampling or ISS. Our new work also improves on our conference version (i.e., [START_REF] Mazenc | Stabilization in a chemostat with sampled and delayed measurements[END_REF]), which did not allow uncertainties in the growth functions, because here, we prove ISS with respect to the uncertainties in the growth functions under arbitrarily large uncertainty bounds and positivity constraints on the states. See Section 3 below for our main result, Section 4 for its proof, and Section 5 for an illustration including simulations.

While reminiscent of

Model and Notation

Our basic chemostat model is

( ṡ(t) = D[s in s(t)] µ(s(t))x(t) ẋ(t) = [µ(s(t)) D]x(t) (1) 
(where we used the standard technique of scaling the species level x(t) in order to eliminate the constant yield) but see below for generalizations where the growth function µ can be uncertain. The states x and s are positive valued (and represent the species and substrate levels, respectively), the substrate input concentration s in > 0 is a constant, the dilution rate D is a positive valued control that we will specify, and the growth function µ satisfies:

Assumption 1 The function µ is of class C 1 and µ(0) = 0. Also, there is a constant s M > 0 such that µ 0 (s) > 0 for all s 2 [0, s M ) and µ 0 (s)  0 for all s 2 [s M , 1). Finally, µ(s) > 0 for all s > 0.

⇤

By C 1 , we mean continuously di↵erentiable. Assumption 1 holds for all functions of the form

µ(s) = k1s 1+k2s+k3s 2 , (2) 
for any constants k i > 0 for i = 1 to 3, with s M = 1/ p k 3 . Functions of the form (2) are called Haldane functions. In Fig. 1, we plot the special case of (2) and s in where prove the next lemma, where a function ↵ : [0, 1) ! [0, 1) is defined to be of class K 1 provided ↵(0) = 0 and ↵ is continuous, strictly increasing, and unbounded; and µ 0 1 (0) is the derivative from the right.

µ(s) = 0.
Lemma 1 If Assumption 1 holds, then we can construct a function µ

1 2 C 1 \ K 1 and a nondecreasing C 1 function : R ! [0, 1) such that (m) = 0 for all m  0, µ(s) = µ1(s) 1+ (s) for all s 0, (4) 
µ 0 1 (s) > 0 for all s 0, and 0 (s) > 0 for all s s M . ⇤

Remark 1 If µ 0 (s) < 0 for all s > s M (which holds for (2)), and s in > s M , and the dilution rate D is a constant D 2 (µ(s in ), µ(s M )) ✓ (0, 1), then the system (1) has a locally unstable positive equilibrium point of the form (s ⇤ , s in s ⇤ ) and the locally stable equilibrium (s in , 0), where s ⇤ 2 (s M , s in ) and D = µ(s ⇤ ). Our work Mazenc et al. (2013a) globally stabilized an equilibrium that can be locally exponentially stabilized by a constant dilution rate. ⇤

To explain our sampling control goals, fix any two constants

✏ 1 > 0 and ✏ 2 > 0 such that ✏ 2 > ✏ 1 , and let {t i } be a sequence of real numbers such that 0 < ✏ 1  t i+1 t i  ✏ 2 for all i 2 N [ {0},
where t 0 = 0 and N = {1, 2, . . .}. Given any constant ⌧ f 0, we define the function ⌧ as follows:

⌧ (t) = ( ⌧ f , t2 [0, ⌧ f ) ⌧ f + t t j ,t 2 [t j + ⌧ f , t j+1 + ⌧ f ) and j 0
This is reminiscent of the representation of sampling in [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF]. For all j 0 and t 2

[t j + ⌧ f , t j+1 + ⌧ f ), we have t ⌧ (t) = t (⌧ f + t t j ) = t j ⌧ f , so t ⌧ (t) is piecewise constant.
In the special case where ⌧ f = 0, we also have t ⌧ (t) = t j for all t 2 [t j , t j+1 ) and j 0. Moreover, for all t 0, we have

0  ⌧ (t)  ⌧ M , where ⌧ M = 2⌧ f + ✏ 2 . ( 5 
)
We assume that s(t ⌧ (t)) is the only available measurement. Our control D will be computed in terms of the delayed sampled values s(t ⌧ (t)) of the substrate, so when ⌧ f = 0, the control values will be computed from the sequence of observations {s(t j )} at the sample times; see (12). When µ is known, our goal is asymptotic stabilization of E ⇤ = (s ⇤ , s in s ⇤ ) for any constant s ⇤ 2 (0, s in ), using our positive valued dilution rate feedback. Then the components of E ⇤ are positive, and E ⇤ is an equilibrium of (1) if and only if D takes the value µ(s ⇤ ) when s = s ⇤ .

Main Result

Let Assumption 1 hold with s in s M , and fix any constant s ⇤ 2 (0, s in ) and any functions and µ 1 that satisfy the requirements from Lemma 1. We use the constants

µ a = µ 1 (s ⇤ )s in , (6) 
$ s = inf s2[0,sin] µ 0 1 (s) , $ l = sup s2[0,sin] µ 0 1 (s) , ⇢ l = sup s2[0,sin] 0 (s), (7) 
and

⇢ m = ⇢ 2 l 2$ s max l2[0,sin] µ 2 1 (l + 1.1µ a ⌧ M ) 1 + (l) (8)
where ⌧ M satisfies (5). The preceding constants are all positive, by the properties of µ 1 and . To model uncertainties, we study the more general model

( ṡ(t) = D[s in s(t)] (1 + (t))µ(s(t))x(t) ẋ(t) = [(1 + (t))µ(s(t)) D]x(t) (9) 
where the unknown measurable essentially bounded function : [0, 1) ! [d, 1) admits a known constant lower bound d 2 ( 1, 0]. We also assume that d and ⌧ M satisfy:

Assumption 2 The constants ⌧ M and d are such that (1 + d)µ 1 (s in ) 1 + (s in ) µ 1 (s ⇤ ) 1 + (s in µ a ⌧ M ) > 0 , (10) 
⌧ M < 1 2 p 2⇢ m $ l s in , and ⌧ M < 1 2⇢ l s in µ 1 (s in ) (11)
are all satisfied. ⇤ Note for later use that since is nondecreasing, (10) gives

(1 + d)µ 1 (s in ) µ 1 (s ⇤ ).
In Fig. 2, we illustrate how the 's in (9) appropriately address the uncertainty in the uptake function µ, without imposing any upper bounds on the range of . For simplicity, we took constant 's in Fig. 2, but another valuable feature of ( 9) is that it allows time varying 's, without any monotonicity or nonnegativity requirements on the 's. 

Since µ

1 strictly increases and

s ⇤ < s in , we have µ 1 (s in ) > µ 1 (s ⇤ )
. Therefore, it is usually easy to determine constants d ⇤ 2 ( 1, 0) and ⌧ > 0 such that ( 10)-( 11) hold for all d 2 (d ⇤ , 0] and ⌧ M 2 (0, ⌧ ); see our illustration in Section 5. We say that ( 9) is input-to-state stable (or ISS) with respect to (D, E, S) for sets D ✓ R and S ✓ R 2 and the point E = (s ⇤ , s in s ⇤ ) provided that there are functions ¯ 2 KL and ¯ 2 K 1 such that for all solutions (s(t), x(t)) of ( 9) whose initial functions are valued in S, and for all choices of : [0, 1) ! D, we have

|(s(t), x(t))| E  ¯ (|(s, x)| E,[ ⌧ M ,0] , t)+¯ (| | [0,t] ) for all t 0, where |(s(t), x(t))| E = |(s(t), x(t)) E| is the distance to the equilibrium E, | • | [0,t] is the essential supremum over [0, t], |(s, x)| E,[ ⌧ M ,0] is the essential supremum of |(s(t), x(t))| E over [ ⌧ M , 0]
, K 1 was defined in the preceding section, and KL is the set of all continuous functions ¯ : [0, 1) ⇥ [0, 1) ! [0, 1) such that (i) for each t 0, the function f (s) = ¯ (s, t) is of class K 1 and (ii) for each s 0, the function g(t) = ¯ (s, t) is nonincreasing and satisfies lim t!1 g(t) = 0. In our theorem, we assume that the initial functions are constant valued, but see Remark 3 for more general cases. Our theorem is:

Theorem 1 If Assumption 1 holds, and if s in s M , s ⇤ 2 (0, s in ), and d 2 ( 1, 0] are any constants such that Assumption 2 holds, then for any functions µ 1 and that satisfy the requirements of Lemma 1 and all constants s s in , x > 0, and d 0, the system (9), in closed loop with

D(t) = µ1(s⇤) 1+ (s(t ⌧ (t))) , (12) is ISS with respect to ([ d, d], (s ⇤ , s in s ⇤ ), (0, s) ⇥ (x, 1)). ⇤ Remark 2 When = 0, Theorem 1 implies that lim t!1 (s(t), x(t)) = (s ⇤ , s in s ⇤
) for all initial conditions that are valued in (0, 1) 2 . Our proof in the next section will show that (s(t), x(t)) 2 (0, 1) 2 for all t 0 for all initial states in (0, 1) 2 . The functions ¯ and ¯ in the ISS estimate will depend on d, x, and s. Our proof of Theorem 1 can be used to provide an algorithm for constructing ¯ and ¯ . ⇤ 4 Proof of Theorem 1 Fix any initial state (s(0), x(0)) 2 (0, s) ⇥ (x, 1) and any corresponding solution (s(t), x(t)) for the perturbed system (9), in closed loop with (12).

First

Step. We first prove that the solution (s(t), x(t)) is valued in (0, s) ⇥ (0, 1) for all t 0. To show that s and x stay positive, note that at any possible time t when s(t) = 0, we would have ṡ(t) > 0, since D(t)s in > 0. Hence, (s(t), x(t)) 2 (0, 1) 2 for all t 0. Also, ṡ(t) < 0 for all t such that s(t) s in , so s(t) stays in (0, s). We next compute useful bounds using the new variable

z(t) = s in s(t) x(t). ( 13 
)
By summing the equations in (9), we get ṡ(t) + ẋ(t) = D(s in s(t) x(t)) = Dz(t), so our formula (12) for D and (13) combine to give

ż(t) = D(t)z(t) = µ1(s⇤) 1+ (s(t ⌧ (t))) z(t). (14)
Here and in the sequel, all equalities and inequalities are along all solutions of (9), unless otherwise noted. Hence, the subadditivity of the square root gives 

|(x(t), s(t))|  s(t)+x(t) = z(t)
|z(t)|  |z(0)|exp ⇣ R t 0 µ1(s⇤)d1 + (s(` ⌧ (`))) ⌘  |z(0)|e tµ 1 (s⇤ ) 1+ (s) . (16) 
We also use the error variable X that is defined by

X(t) = (s(t) s ⇤ , x(t) s in + s ⇤ ). (17) 
Then for all t 0, the triangle inequality and (17) give

|z(t)| = |s ⇤ s(t) (x(t) s in + s ⇤ )|  |s ⇤ s(t)| + |x(t) s in + s ⇤ |  2|X(t)|.
(18)

Second

Step. We build a function T a 2 K 1 such that s(t) 2 (0, s in ) for all t T a (|X(0)|) for all possible values of X(0). Fix an unbounded function ⌧ ⇤ : (0, 1) ! [0, 1) such that for each function p : [0, 1) ! (0, 1) that satisfies the di↵erential inequality ṗ(t) (1+d)µ1(sin) µ1(s⇤) 1+ (s) p(t) for all t 0, (

we have p(t) 2(|X(0)| + s in ) for all t ⌧ ⇤ (|X(0)| + p(0)), and such that ⌧ ⇤ is strictly increasing on [(s in s ⇤ )/2, 1). Such a function ⌧ ⇤ exists because (10) implies that the numerator in ( 19) is positive. We next prove the following claim, by arguing by contradiction: Claim 1:

s(t) < s in for some t 2 [0, ⌧ ⇤ (|X(0)| + x(0))]. Suppose that s(t) s in for all t 2 [0, ⌧ ⇤ (|X(0)| + x(0))].
Then for all t in this interval, the first equation in (9) gives ṡ(t)  0, so

(1+ (t))µ1(s(t)) 1+ (s(t)) µ1(s⇤) 1+ (s(t ⌧ (t))) (1+ (t))µ1(sin) 1+ (s(t)) µ1(s⇤) 1+ (s(t ⌧ (t))) (1+ (t))µ1(sin) µ1(s⇤) 1+ (s(t ⌧ (t))) (1+d)µ1(sin) µ1(s⇤) 1+ (s) , (20) 
since µ 1 is nondecreasing and (t) d, where we also used the fact that (s(t))  (s(t ⌧ (t)))  (s), which fol-lows because is nondecreasing and s is nonincreasing. Hence, by our choice (12) of D, the x(t) component of ( 9) is a positive valued solution of (19), so (18) gives x(t)

2(|X(0)| + s in ) |z(0)| + 2s in at t = ⌧ ⇤ (|X(0)| + x(0)), contradicting (15), since s in > 0. Also, if s(t) = s
in , then ṡ(t) < 0, so s(t) cannot increase to above s in , so s(t) < s in for all t ⌧ ⇤ (|X(0

)| + x(0)). If |X(0)|  1 2 (s in s ⇤ ), then |s(0) s ⇤ |  1 2 (s in s ⇤ ), which gives s(0) s in = s(0) s ⇤ (s in s ⇤ )  1 2 (s in s ⇤ ) < 0, so s(t) stays in (0, s in )
. Also, ( 15) and ( 18) give 0 < x(0 , where s 4 will be independent of X(0) and . First, notice that our choice (13) of z implies that

)  |z(0)| + s in  2|X(0)| + s in , which gives ⌧ ⇤ (3|X(0)| + s in ) ⌧ ⇤ (|X(0)| + x(0)) if |X(0)| (s in s ⇤ )/2.
ẋ(t)= h (1+ (t))µ1(sin x(t) z(t)) 1+ (sin x(t) z(t)) µ1(s⇤) 1+ (sin x(t) z(t)+s(t ⌧ (t)) s(t)) i x(t) . (21) 
Also, since the initial functions for s are constant, we can use the Fundamental Theorem of Calculus to get

s(t ⌧ (t)) s(t) = R t t d ṡ(m)dm and (22) R t t d ṡ(m)dm = R t t d n⇣ µ1(s⇤) 1+ (s(m ⌧ (m))) (1+ (m))µ1(s(m)) 1+ (s(m)) ⌘ [s in s(m)] o dm + R t t d (1+ (m))µ1(s(m)) 1+ (s(m)) z(m)dm (23) 
for all t 0, where t d = max{0, t ⌧ (t)}. Since s in s(t) 0 and 1 + (t) 1 + d > 0 hold for all t T a (|X(0)|), we get the following for all t T a (|X(0)|):

s(t ⌧ (t)) s(t) = R t t d ṡ(m)dm µ a ⌧ M n 1 + d µ 1 (s in ) R t t d |z(m)|dm o , (24) 
by combining ( 22)-( 23), where µ a and ⌧ M are from ( 5) and ( 6), since the quantity in curly braces in ( 23) is bounded above by µ 1 (s ⇤ )(s in s(m)) and is nonnegative valued. Since is nondecreasing, we can use (24) to obtain

µ1(s⇤) 1+ (sin x(t) z(t)+s(t ⌧ (t)) s(t)) µ1(s⇤) 1+ (sin x(t) µa⌧ M z(t) (1+ d)µ1(sin) R t t d |z(m)|dm) . (25) 
Using ( 25) to lower bound the second term inside the brackets in (21), and then the nonnegativity of x(t), we get ẋ(t)

[q + (x(t)) + (x(t), z t )] x(t) for all t T a (|X(0)|), where q denotes the left side of (10), (x(t), z t ) = (1+d)µ1(sin x(t) z(t)) 1+ (sin x(t) z(t))

(1+d)µ1(sin x(t)) andz t is defined by z t (`) = z(t + `) for all ` 0, and where we extend the domain of µ 1 so that µ 1 is zero on ( 1, 0). We can also use (15) and our exponential decay estimate (16) on z(t) to find a function T b 2 K 1 such that (x(t), z t ) q/2 and therefore also ẋ(t

1+ (sin x(t)) + µ1(s⇤) 1+ (sin x(t) µa⌧ M ) µ1(s⇤) 1+ ⇣ sin x(t) µa⌧ M z(t) (1+ d)µ1(sin) R t t d |z(m)|dm ⌘ and (x) = (1+d)µ1(sin x) 1+ (sin x) (1+d)µ1(sin) 1+ (sin) + µ1(s⇤) 1+ (sin µa⌧ M ) µ1(s⇤) 1+ (sin x µa⌧ M ) ,
) [0.5q + (x(t))] x(t) (26) 
for all t T b (|X(0)|). Also, since (0) = 0, the continuity of  provides a constant x p 2 (0, (s in s ⇤ )/2) such that for all x 2 [0, x p ], we have (x) 0.25q. By enlarging T b , we can also assume that for all t T b (|X(0)|), we have

x(t) x p . ( 27 
) This follows because if t T b (|X(0)|), then (26) gives ẋ(t) [0.5q+(x(t))] x(t) q 4 x(t) if x(t) 2 (0, x p ]. (28) To enlarge T b , notice that if |X(0)|  1 2 (s in s ⇤ ), then our formula (17) for X gives |x(0) (s in s ⇤ )|  0.5(s in s ⇤ ),
and then the triangle inequality gives x(0) 0.5(s in s ⇤ ) x p , which gives x(t) x p for all t 0, by (28). On the other hand, we can use (28) to find a positive valued function M such that x(t) x p for all t M(x(0)) and all choices of x(0) x and such that M is strictly increasing on [x, 1). Also, the triangle inequality gives where

|X(0)| + s in s ⇤ |x(0) (s in s ⇤ )| + s in s ⇤ x(0). Hence, M(|X(0)| + s in s ⇤ ) M(x(0)) if |X(0)| 0.5(s in s ⇤ ),
I(t) = R t t ⌧ (t)
0 (s(m)) ṡ(m)dm.

We next choose

U 1 (s) = R s s⇤ 0 m sin s⇤ m dm, (35) 
which is C 1 over [0, s in ), and nonnegative valued at s(t) for all times t T c (|X(0)|), by the third step. It follows from (34) that its time derivative along all solutions of the closed loop system for all t T

c (|X(0)|) satisfies U1 (t) = s(t) s⇤ sin s (1 + (t))µ(s(t))z(t) (t)µ(s(t))(s(t) s ⇤ ) [µ1(s⇤) µ1(s(t))][1+ (s(t))]+µ1(s(t))I(t) [1+ (s(t ⌧ (t)))][1+ (s(t))] (s(t) s ⇤ ) , (36) 
where we use U (t) to denote (d/dt)U (s(t)) to make our notation concise. From the third step and the fact that µ(s)  µ(s M ) for all s 0, we deduce that if t T

c (|X(0)|), then U1 (t)  |s(t) s ⇤ | µ1(s(t)) R t t ⌧ (t) 0 (s(m))| ṡ(m)|dm 1+ (s(t ⌧ (t))) + (s(t) s⇤)(µ1(s⇤) µ1(s(t))) 1+ (s(t ⌧ (t))) + c|s(t) s ⇤ |(|z(t)| + | (t)|)
holds, where c = µ(s M ) max{(1 + d)/(s in s 4 ), 1}. From the definition of ⇢ l in (7) and the fact that s(t) < s holds for all t T

c (|X(0)|), we obtain U1 (t)  h (s(t) s⇤)(µ1(s⇤) µ1(s(t))) 1+ (s(t ⌧ (t))) i + ĉ(t) + ⇢ l |s(t) s ⇤ | µ1(s(t)) R t t ⌧ (t) | ṡ(m)|dm 1+ (s(t ⌧ (t)))  (s(t) s⇤)(µ1(s⇤) µ1(s(t))) 2[1+ (s(t ⌧ (t)))] $ s (s(t) s⇤) 2 2[1+ (s(t ⌧ (t)))] + ĉ(t) + {|s(t) s ⇤ |} µ 1 (s(t ⌧ (t))+1.1µ a ⌧ M ) ⇥⇢ l R t t ⌧ (t) | ṡ(m)|dm o 1 1+ (s(t ⌧ (t))) (37) for all t T d (|X(0)|), where ĉ(t) = c|s(t) s ⇤ |(|z(t)| + | (t)|) and T d 2 K 1 is such that T d (r) T c ( 
r) for all r 0 and is such that the term in curly braces in (24) is bounded 5 Example Our theorem ensures asymptotic convergence for all componentwise positive initial states. To illustrate the theorem in an example, we use the growth rate and constant µ(s) = 0.5s 1+0.25s+2s 2 and s in = 1 .

(47)

Then Assumption 1 and the requirements of Lemma 1 hold using s M = 1/ p 2 and µ 1 (s) = 0.5s and (s) = 0.25s + 2s 2 for all s 0. We take s ⇤ = 0.8 2 (s M , s in ). Then the constants from Section 3 are $ s = $ l = 0.5, ⇢ l = 0.25 + 4 = 17/4, µ a = 0.4, and 

⇢ m = ✓ 17 4 ◆ 2 1 4 max `2[0,1] (`+ 0.44⌧ M ) 2 1 + 0.25`+ 2`2 . ( 48 
for di↵erent choices of the perturbation (t), where bac = max{j 2 {0, 1, 2, . . .} : j  a} is the floor function; see Mathematica (2015). In Figs. 34, we plot the components of the state and the control for di↵erent initial states, with our control D(t) from Theorem 1. For Fig. 3, we chose = 0, so (s(t), x(t)) converges to (s ⇤ , s in s ⇤ ) = (0.8, 0.2). In Fig. 4, we simulated our closed loop system with our feedback with the choice (t) = 0.15(1 + sin(t)), and the states instead converge toward an oscillation around the equilibrium, which agrees with our ISS result. Hence, our simulations help validate our theory. Our results also apply if we allow nonzero ⌧ f 's and nonconstant sample rates.

Conclusions

We 

Fig. 1 .

 1 Fig. 1. Uptake Function from (3), Showing Maximizer sM = 1/ p 2 as Blue Dot and sin = 1 as Red Dot.

Fig. 2 .

 2 Fig.2. Plots of (1 + )µ(s) with µ from (3), sM = 1/ p 2 as Blue Dot, and sin = 1 as Red Dot, in Special Cases where = 0.75 (Red), = 0 (Blue), = 1.5 (Purple), and = 4 (Olive).
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	T	a (p) =	2p sin s⇤ ⌧ ⇤ ⌧ ⇤ (3p + s	3(sin s⇤) 2 in ),	+ s	in	, p < sin s⇤ 2 p sin s⇤ 2
	satisfies our requirements. (The formula for the restriction
	of T T a is 0 at 0, strictly increasing on [0, (s a 2 K 1 to [0, (s in s ⇤ )/2) was chosen to ensure that in s ⇤ )/2), and continuous at (s

in s a on [(s in s ⇤ )/2, 1) follows from Claim 1.) Third Step. We build a function T c 2 K 1 and a constant s 4 2 (0, s in ) such that s(t) < s 4 for all t T c (|X(0)|)

  so it su ces to enlarge T , M ⇤ } 2 K 1 . Fourth Step. We construct a functional U 1 , which we later add to a double integral term to prove our ISS property. Using z as defined in (13), and the structure of µ in (4), we get this for all t 0:

								for all t T	c (|X(0)|), where T	c = max{T	a , T
								h	i
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								ṡ(t) =
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								[µ1(s⇤) µ1(s(t))][1+ (s(t))]+µ1(s(t))I(t)	[s	in	s(t)]	(34)
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								+ {(1 + (t))µ(s(t))z(t)	(t)µ(s(t))(s	in	s(t))}
							b so that
				(			
	T	b (r)	2r sin s⇤ M(1.5(s M(r + s in s ⇤ ), in	s ⇤ )), r  sin s⇤ 2 r> sin s⇤ 2	(29)
	b on [0, (s s ⇤ )/2] was chosen for the same reason that we chose the in where the formula for the lower bound for T corresponding part of the formula for T a in the second step.
	Also, our exponential decay condition (16) on z(t) and
	(18) provide a function M ⇤ 2 K 1 such that for all t M ⇤ (|X(0)|), the inequalities
				|z(t)|  0.25x	p  0.25s	in	(30)
	hold. Using the definition of z and (27)-(30), and setting
	s 4 = s	in	0.75x	p , we deduce that s 4 2 (0, s	in ) and
	s(t) = x(t) z(t) + s  x p + 0.25x p + s in = s 4 in  x(t) + 0.25x	p + s	in	(31)

b

   0.23 and d = 0. To illustrate our findings, we ran Mathematica simulations with ⌧ M = 0.23, t j = 0.23j for all j 0, and ⌧ f = 0, using the NDSolve command and the closed loop dynamics

					)
	If we set ⌧	M = 0.5 in (48), then we obtain ⇢ m = 2.371,
	so ⇢ from Assumption 2 hold if ⌧ m  2.371 for all ⌧ M 2 (0, 0.5]. The requirements (11) M 2 (0, 4/17). Also, our con-dition (10) from Assumption 2 reads
		0.5(1+d)	0.5(0.8)
		13/4 = 0.0264 > 0 1+0.25(1 0.4⌧ M )+2(1 0.4⌧ M ) 2	(49)
	when we choose any ⌧ of our assumptions hold if ⌧ M 2 (0, 0.24) and d = 0. Hence, all
	8			
	> > >	ṡ(t) =	0.4(1 s(t)) 1+0.25s(0.23bt/0.23c)+2s 2	(0.23bt/0.23c)
	>			
	> <			0.5(1+ (t))s(t) 1+0.25s(t)+2s 2 (t) x(t)
	> > >	ẋ(t) = 0.5(1+ (t))s(t)x(t) 1+0.25s(t)+2s 2 (t)
	>			
	> :			0.4x(t) 1+0.25s(0.23bt/0.23c)+2s 2	(0.23bt/0.23c)

M

  used a new barrier Lyapunov function approach to prove input-to-state stability with respect to uncertainties in the growth functions in two state chemostats, in closed loop with output feedback controls. Our results are significant because only delayed and sampled measurements of the substrate level are available for use in the control, and because we allow a general class of growth functions that Fig.3. Top: Solution (s(t), x(t)) of (50) for Initial State (1, 1) Converging to (0.8, 0.2) with ⌧M = 0.23, (t) = 0, s(t) in Red, and x(t) in Blue. Bottom: Control D(t) in Green.
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. Top: Solution (s(t), x(t)) of (50) for Initial State (0.25, 1) with ⌧M = 0.23, (t) = 0.15(1 + sin(t)), s(t) in Red, and x(t) in Blue. Bottom: Control D(t) in Green.
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above by 0.1µ a ⌧ M for all t T d (|X(0)|); such a T d can be found using the exponential decay estimate (16) on z(t) and ( 18), and will depend on d. The second inequality in (37) follows from the definition of $ s in (7), which gives (µ 1 (s ⇤ ) µ 1 (s(t))(s ⇤ s(t)) $ s (s ⇤ s(t)) 2 (38)

when we use the Mean Value Theorem (to upper bound the first quantity in square brackets in (37) by the first two terms after the second inequality in (37)).

Hence, our choice of ⇢ m > 0 from (8) gives U1 (t)  (s(t) s⇤)(µ1(s⇤) µ1(s(t)))

where we used Young's inequality ab  $s 2 a 2 + 1 2$s b 2 with a and b chosen to be the first and second terms in curly braces in (37) respectively, and Jensen's inequality to get

(40)

Fifth

Step. We define

along all solutions of our dynamics. Then (39) gives U2 (t)  (s(t) s⇤)(µ1(s⇤) µ1(s(t)))

for all t T d (|X(0)|). Let a and b denote the first and second terms in curly braces in (34) respectively, and let p 0 2 (0, 1) be a constant that we will specify later. Then (34) gives ( ṡ(t)

, where we also used the relation (c

1 and c 2 to bound b 2 . Using our definition of $ l in ( 7), (40), and (ā + b) 2  2ā 2 + 2 b2 for suitable choices of ā 0 and b 0, it follows that for all t T

and so also U2 (t)  (s(t) s⇤)(µ1(s⇤) µ1(s(t)))

since µ 1 is nondecreasing. We conclude from our upper bounds from (11) on ⌧ M , the fact that µ

and the positivity of $ s in (38) that for a small enough constant p 0 2 (0, 1), there is a constant c e > 0 such that along all trajectories of ( 9 Remark 3 The constantness of the initial functions was used to obtain (23). Theorem 1 remains true if instead of assuming that both components s and x of the initial functions are constant, we only assume that the initial function for s is constant (by the same proof ). In fact, we can drop the constantness assumptions on the initial functions entirely, by viewing the calculations in the proof of Theorem 1 as holding for t ⌧ M , instead of all t 0. See [START_REF] Mazenc | Stabilization in a chemostat with sampled and delayed measurements[END_REF], where the case of nonconstant initial functions was handled in the special case where the 's are zero. ⇤ Appendix B: Finishing the Proof of Theorem 1

We convert the decay estimate (46) into the final ISS estimate. Since s(t) 2 (0, s) for all t 0, it follows from the structure of our z(t) dynamics in ( 14) and the fact that is nondecreasing that the time derivative of

g z 2 (t) along all trajectories of the z dynamics. Therefore, the time derivative of U