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Abstract

G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to
hormonal cues. GPCRs’ activation mechanisms have long been considered as a two-state process
connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as
mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms
involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent
transduction mechanisms, those elicited by 3-arrestins upon their recruitment to the active receptors
are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with
remarkable advances made in the field of GPCR structural biology and biophysics, have supported the
notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports
have opened intriguing prospects to the way [3-arrestins control GPCR-mediated signalling in space and
time within the cells. In the present paper, we review the existing evidence linking endocrine-related
GPCRs to B-arrestin recruitement, signalling, pathophysiological implications and selective activation by
biased ligands and/or receptor modifications. Emerging concepts surrounding [3-arrestin-mediated

transduction are discussed in the light of the peculiarities of endocrine systems.



Introduction

Hydrophilic hormones bind to membrane receptors to convey signals in target cells. G protein-coupled
receptors (GPCR) represent the most abundant and diversified class of membrane receptors and, as
such, play major roles in endocrinology. Interestingly, GPCRs are increasingly viewed as multipurpose
signal transducers which can connect to and activate multiple intracelluar pathways. GPCR-triggered
intracellular signalling networks are also subjected to exquisite control of their activity in intensity, time
and space. In addition to transmitting qualitative information, GPCR-mediated signalling pathways also
deliver quantitative information about the strength of the stimulus. For instance, it has been reported
that signalling pathways can take advantage of their nonlinear nature to convert stimulus intensity into
signal duration (Behar et al., 2008). When compared to neurotransmission, which has represented the
dominant paradigm in GPCR biology for decades, endocrine systems encompass much broader time
scales. Indeed, some hormones are released with a pulsatile mode (Bonnefont, 2010,Gan and Quinton,
2010,Thompson and Kaiser, 2014) whereas others are characterized by long-acting actions with their
levels slowly evolving in the span of days, weeks, months or even years. GPCRs’ ability to traffic between
different cell compartments and to transduce distinct signals as a function of their locations is also a
critical facet of their function (Kholodenko et al., 2010,West and Hanyaloglu, 2015). The fact that
different hormones can simultaneously hit a target cell adds yet another dimension to the complexity of

endocrine systems (Noel and Kaiser, 2011).

The intricate nature of GPCR-mediated signalling was fully exemplified by the fact that [3-arrestins,
initially discovered for their role in the desensitization, internalization and recycling processes, were later
shown to operate as signal transducer (Lefkowitz and Shenoy, 2005,Reiter and Lefkowitz, 2006). It is now
clearly established that [3-arrestins operate as scaffolding proteins interacting with many partners and

connecting them to active GPCRs (Xiao et al., 2007). They also control the phosphorylation of a wide



array of intracellular targets (Xiao et al., 2010). Importantly, the balance between G protein and 3-
arrestin-dependent signal transduction at GPCRs has been demonstrated to vary from one ligand to
another, strengthening the concept of ligand-directed signalling also known as pharmacological bias
(Galandrin et al., 2007,Kenakin, 2003,Reiter et al., 2012). This line of thought has gained considerable
momentum on the last few years as some biased compounds have been associated with reduced side-
effects in the clinics (Violin et al., 2014,Whalen et al., 2011). Polymorphisms and mutations occurring at
the receptor level have also been reported, in some cases, to bias signal transduction (Landomiel et al.,
2014,Reiter et al., 2012,Shenoy et al., 2006,Tranchant et al., 2011,Wei et al., 2003). This review is
centred on these novel ideas and how they impact our understanding of endocrine systems and the

associated therapeutic approaches.

[B-arrestin-mediated control of GPCR desensitization, internalization, trafficking and signalling

Over the years, the roles played by B-arrestins have continuously expanded to the point that they are
now indissociably linked with all key aspects of GPCR function (Figure 1). The activation, desensitization
and internalization of the majority of non-retinal GPCRs are critically regulated by the two non-visual
arrestins: [3-arrestin 1 and B-arrestin 2 (also known as arrestin 2 and arrestin 3). Two main driving forces
control B-arrestin recruitment to GPCRs: agonist-induced modification of the receptor conformation and
G protein-coupled receptor kinase (GRK)-mediated phosphorylation of the ligand occupied receptor

(Gurevich and Benovic, 1993,Reiter et al., 2012).

The first step of receptor activation is ligand binding. The allosteric increase of a ligand’s binding affinity
when the receptor is complexed with its cognate G protein was conceptualized more than 35 years ago

III

in the “ternary complex model” (De Lean et al., 1980) and was recently backed by direct structural

evidences (DeVree et al., 2016). Interestingly, 3-arrestin recruitment to a receptor has been reported to



induce a very similar positive allosteric effect on ligand binding, supporting the existence of an

alternative ternary complex involving B-arrestins (Martini et al., 2002,Strachan et al., 2014).

[B-arrestins have long been known to terminate G protein coupling (DeWire et al., 2007). Indeed, it is
classically thought that the agonist-occupied active receptor is phosphorylated in its carboxyl terminus
by GRK and then recruits [3-arrestin with high affinity. This interaction leads to the inhibition of G protein
coupling, presumably by steric hindrance (Reiter and Lefkowitz, 2006). This process generally referred to
as “homologous desensitization”, appears to apply to most GPCRs (Freedman and Lefkowitz, 1996). It
was later demonstrated that [3-arrestins also have the ability to relocate cAMP phosphodiesterases or
diacylglycerol kinases to the active receptor (Nelson et al., 2007,Perry et al., 2002). This remarkable
property implies that B-arrestins dually desensitize GPCRs by inhibiting G protein coupling while

simultaneously enhancing the rate of second messenger degradation locally.

In addition to their role in desensitization, [3-arrestins also play a central role in agonist-induced
internalization of the receptor by interacting with key elements of the endocytic machinery such as
clathrin (Goodman et al., 1996), clathrin adaptor AP2 (Laporte et al., 1999), small G protein ARF6 and its
guanine nucleotide exchange factor, ARNO (Claing et al., 2001), and NSF (N-ethylmelaimide sensitive
fusion protein) (McDonald et al., 1999). In addition, MDM2, an E3 ubiquitin ligase, binds B-arrestins and
mediates their ubiquitination which is essential for clathrin-mediated endocytosis of the receptor
(Shenoy et al., 2001). The presence or absence of serine and threonine clusters in the receptor carboxyl
terminus regulates the affinity of B-arrestin recruitment and the pattern of intracellular trafficking of a

wide number of GPCRs (Oakley et al., 2000,0akley et al., 2001).

Beyond their roles in the control of desensitization and internalization, B-arrestins are now considered to
be G protein-independent signal transducers (Lefkowitz and Shenoy, 2005,Reiter and Lefkowitz, 2006). It

has been widely documented that B-arrestins are multifunctional scaffolds that interact with many



protein partners, including protein kinases, and that they impact the phosphorylation of numerous
intracellular targets (Xiao et al., 2007,Xiao et al., 2010). Over the years, several approaches have been
used to decipher the contributions of G proteins and [3-arrestins to GPCR function. They include GRK or
[B-arrestin knock-outs in mice and the use of their derived MEF cell counterparts as well as selective
blockade of G protein and B-arrestin pathway constituents via RNA silencing, dominant negative and
small-molecule inhibitors. These tools have been successfully used to uncover novel signal transduction
mechanisms and further characterize the pharmacology of specific GPCRs (DeWire et al., 2007,DeWire
and Violin, 2011). The most thoroughly characterized signalling mechanism mediated by B-arrestins is
certainly ERK1/2 MAPKs. It has been shown that B-arrestins scaffold Raf-1, MEK1, and ERK and sequester
phosphorylated ERK1/2 in the cytosol (Luttrell et al., 2001). Interestingly, ERK1/2 are simultaneously
activated by G protein through distinct mechanisms. G protein-dependent ERK1/2 activation is rapid and
generally transient. By contrast, B-arrestin-dependent ERK1/2 activation is slower in onset but
protracted. However, in some cases, G protein-mediated ERK activation can also include a sustained
phase, so kinetics alone cannot always discriminate G protein- and B-arrestin-mediated ERK1/2 signalling
(Luo et al., 2008). In addition, B-arrestins promote the assembly and the activation of ASK1, MKK4/7 and
IJNK3 (McDonald et al., 2000) as well as MKK4, MKK7and JNK1/2 (Kook et al., 2013) MAPK modules, and
have been shown to trigger p38 signalling (Bruchas et al., 2006,Sun et al., 2002). The transactivation of
EGF receptor by GPCRs can be regulated by [B-arrestins through the activation of a transmembrane
matrix metalloprotease that cleaves membrane-bound EGF ligand (Noma et al., 2007). B-arrestin 2 can
inhibit NF-KB signalling through stabilization of IKBO (Gao et al., 2004). B-arrestin 1 can directly influence
epigenetic modifications through nuclear interaction with histone acetylases and deacetylases that
influence chromatin structure (Kang et al., 2005). Other B-arrestin-mediated signalling mechanisms
include, among others, RhoA-dependent stress fiber formation (Barnes et al., 2005); protein

phosphatase 2A (PP2A)-mediated dephosphorylation of Akt (Beaulieu et al., 2005); MNK-dependent



induction of protein translation (DeWire et al., 2008) and p90RSK-dependent anti-apoptotic effects (Ahn
et al., 2009); phosphatidylinositol 3-kinase (PI3K)-mediated phospholipase A2 (PLA2) activation (Walters
et al., 2009) and PTEN activation downstream of RhoA/ROCK (Lima-Fernandes et al., 2011).

At the molecular level, it has been shown, using different experimental approaches, that B-arrestins 1
and 2 undergo conformational changes upon interaction with phosphorylated carboxyl terminus of
receptors (Charest et al., 2005,Nobles et al., 2007,Xiao et al., 2004). Early data also supported the notion
that ligand-induced, functionally specific receptor conformations can be translated to specific B-arrestin
conformations and impact their intracellular activities (Shukla et al., 2008). This view has recently been
further explored using intracellular BRET or FRET probes capable of sensing [3-arrestin conformational
repertoire with better accuracy (Lee et al., 2016,Nuber et al., 2016). These studies concluded that
distinct B-arrestin conformations can be stabilized in a receptor and/or ligand-specific manner.
Interestingly, different GRK subtypes have been reported to play specialized regulatory functions. Second
messenger generation has been shown to be dampened by GRK2 yet unaffected by GRK5 or GRK6
whereas B-arrestin 2-dependent ERK activation required GRK5 and GRK6 action (lwata et al., 2005,Kara
et al., 2006,Kim et al., 2005,Ren et al., 2005,Shenoy et al., 2006,Zidar et al., 2009). In light of these
results, it has been hypothesized that there is a GRK-induced phosphorylation “bar code” at the C
terminus of GPCRs that regulates the nature of B-arrestin intracellular functions (Kim et al., 2005,Reiter
and Lefkowitz, 2006,Shenoy et al., 2006, Tobin et al., 2008). Independent studies demonstrated that
GPCR phosphorylation is indeed preferentially directed to specific sites in a ligand and kinase-dependent
manner (Busillo et al., 2010,Butcher et al., 2011,Heitzler et al., 2012,Nobles et al., 2011,Yang et al.,

2015).

Structural details of GPCR-[3-arrestin interaction have recently started to emerge as crystal structure of
rhodopsin-arrestin complex exhibited an engagement of the receptor core with visual arrestin (Kang et

al., 2015). Importantly, visualization of B2AR-V2R—Barrl complex by negative-stain electron microscopy



and cross-linking has directly demonstrated two interaction modes existing between GPCR-f3-arrestin
(Shukla et al., 2014). Indeed, in addition to B-arrestin engagement with the receptor core, these new
data report the existence of a distinct interaction site between the phosphorylated carboxyl terminus of
GPCRs and the N-domain of [-arrestins. Further, functionality of the receptor-3-arrestin complex formed
with the phosphorylated carboxyl terminus was recently revealed (Kumari et al., 2016). The interaction
of B-arrestin with the phosphorylated carboxyl terminus but not the receptor core could lead to receptor
internalization, ERK MAP kinases binding to [3-arrestin 1 and their subsequent activation. Furthermore,
the same study revealed that the B-arrestin-biased ligand carvedilol does not induce the engagement
between [3-arrestin 1 and the receptor core. A recent model has been built using a docking algorithm and
predicted the assembly of the ERK MAP kinase scaffold on -arrestin (Bourquard et al., 2015). This model

was compatible with B-arrestin interacting with either domain.

[-arrestin and G protein-biased signalling

A recent outburst of structural, biophysical and pharmacological evidences has profoundly transformed
our vision of GPCR activation and therapeutic targeting. Not that long ago, it was thought that one
inactive conformation of a receptor was in equilibrium with a single ligand-bound active conformation.
Accordingly, the strength of an agonist was supposed to directly reflect the proportion of active versus
inactive receptor conformation. The discovery of partial and inverse agonists revealed new levels of
pharmacological properties beyond full agonists and neutral antagonists, but those types of activities
were still consistent with the two-state model. Several examples were found that did not fit this
paradigm: compounds generated different relative potencies in different assays (Watson et al., 2000).
These findings, controversial at first, were repeated with a growing number of GPCRs. In the meantime,

the fact that multiple active and inactive receptor conformations co-exist had been supported by



overwhelming structural and biophysical evidences (Kobilka, 2011,Nygaard et al., 2013,Wacker et al.,
2013). Consequently, pharmacological theory has been revised and efficacy is now considered as being
multi-dimensional and explicitly incorporate the notion that receptors engage distinct subsets of their
full signaling repertoire (Galandrin et al., 2007). This means that different subsets of conformations can
be stabilized by different agonists or mutation/polymorphism at a given GPCR and that each of these
conformational ensembles is connected to distinct transduction mechanisms. This is the concept or
pharmacological bias (Kenakin, 2003,Reiter et al., 2012,Violin and Lefkowitz, 2007). According to these
principles, it is possible to selectively control pathway activation with biased ligands or specific amino-
acid modifications. Orthosteric sites on GPCRs bind endogenous agonists and are also recognized by
classic competitive antagonists and inverse agonists. By contrast, allosteric sites on a receptor are
distinct from the orthosteric site and can affect either positively or negatively receptor activity in
conjunction with orthosteric ligands or alone. Importantly, synthetic allosteric modulators for GPCRs are
now being discovered at a high rate and can also lead to pharmacological bias, providing novel avenues
in drug discovery (Changeux and Christopoulos, 2016). These allosteric ligands can modulate receptor
conformations in the presence of orthosteric ligands and therefore have the potential to fine-tune,
positively or negatively responses elicited by endogenous or synthetic ligands.

The study of pharmacological bias has rapidly become an extremely active field of research and, once
again, -arrestins hold a prominent position since large numbers of ligands displaying bias on [3-arrestin-
mediated functions have been reported. Certain biased ligands favour G protein-dependent transduction
whereas others preferentially trigger B-arrestin-mediated pathways when compared to a reference
ligand. Importantly, biased ligands capable of stabilizing a subset of the receptor conformation
repertoire have been reported to improve the balance between side effects and benefits (Whalen et al.,
2011). The advent of novel non-conventional classes of GPCR-targeting compounds such as pepducins

(Carr and Benovic, 2016), aptamers (Kahsai et al., 2016), intrabodies (Staus et al., 2014) or nanobodies



(Mujic-Delic et al., 2014,Staus et al., 2016) extend even more the range of possibilities for innovative

drug discovery approaches to be developed in the future.

So far, biased ligands have concentrated most of the attention in the field of GPCR pharmacology as they
represent potential leads for the development of new drugs. However, the whole concept of bias equally
applies to modifications occurring at the receptor level (Landomiel et al., 2014). The first examples of
mutations leading to [3-arrestin-bias have been the angiotensin type 2 receptor DRY-AAY (Wei et al.,
2003) and the B2AR-TYY (Shenoy et al., 2006) mutants. This notion of pharmacological bias also plays a
crucial role in medicine as it can materialize in patients through mutations or polymorphisms. Therefore,
the concept of pharmacological bias changes the way to investigate the functional consequences of
mutations and polymorphisms occurring at the receptor level. This type of question was traditionally
assessed by tracking loss or gain of function according to the simple two-state model. Now, the
exploration needs to integrate the multiple dimensions of receptor activity through multiplexed analyses

of the different signalling pathways induced downstream receptor activation.

[B-arrestins’ roles in the control GPCR-mediated signals in time and space

One major conundrum associated with GPCR signalling resides in the fact that the numbers of ligands
and receptors appears to largely overcome the relatively limited number of transduction mechanisms
and downstream signalling pathways available. To circumvent this problem, it has been proposed that
the signalling machinery may use spatial and temporal encoded patterns in order to maintain the full
complement of information and specificity conferred by the receptor/ligand pair (Lohse and Hofmann,
2015). In this view, the signalling events triggered by a GPCR are characterized by their kinetics and
spatial patterns and correspond to a signature specific of the receptor, cellular context and nature of the

ligand. The regimen of exposure to the ligand may also lead to specific signalling signatures, a possibility



that could be of particular relevance in the context of endocrine systems. The kinetic and spatial aspects
of GPCR signalling have only begun to be explored with the elucidation of the dynamics of receptor
activation, G protein coupling and G protein activation for some receptors (Jensen et al., 2009,Lohse et
al., 2008). In the classical model, G protein signalling originates at the cell surface and is followed by
rapid B-arrestin-mediated quenching of G protein signalling. Recent findings have begun to challenge this
paradigm. A number of GPCRs have been reported to elicit sustained G protein signalling, rather than
being desensitized after initial agonist stimulation (Calebiro et al., 2009,Feinstein et al., 2013,Ferrandon
et al., 2009,Irannejad et al., 2013,Mullershausen et al., 2009). For instance, it has been recently proposed
that, for some GPCRs, a series of distinct signalling waves could arise upon activation (Lohse and
Calebiro, 2013). In this model, a first wave is triggered at the cell surface upon G-protein coupling and
results in the classical second messenger release. A second wave follows either from clathrin-coated pits
and or from clathrin-coated vesicles when [-arrestin associated with the receptor induces signals such as
ERK activation. A third wave which has been recently described involves signalling via G proteins from
the endosomal compartment and may have specific physiologic outcomes (Calebiro et al., 2009,Calebiro
et al., 2010,Feinstein et al., 2011,Feinstein et al., 2013,Ferrandon et al., 2009,Irannejad et al., 2013,Ismail
et al., 2016,Mullershausen et al., 2009,Tsvetanova et al., 2015,Vilardaga et al., 2014)(Figure 1). These
findings are in contradiction with the classical view of GPCR signalling in which persistent interaction of
[B-arrestin with the receptor should prevent G protein activation. X-ray crystallography of the 32AR in
complex with Gas has revealed that the interaction involves both the N-terminal and C-terminal domains
of the Gas subunit and the core of the receptor (i.e.: intracellular loop 2, transmembrane domain 5
(TM5), and TM6)(Rasmussen et al., 2011). As discussed above, a recent study revealed that -arrestin
interact with two different sites on the receptor; one is the phosphorylated receptor carboxyl terminus
and a second, within the core of the receptor (Shukla et al., 2014). Importantly, internalized receptor

complexes called “megaplexes” composed of a single GPCR, 3-arrestin, and G protein were recently



discovered and their architecture and functionality described (Thomsen et al., 2016). These
““megaplexes” seem to preferentially form with receptors that interact strongly with (-arrestins via a C-
terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron
microscopy analysis of negative-stained purified megaplexes revealed that a single receptor can
simultaneously bind through its core region with G protein and through its phosphorylated carboxyl
terminus with [3-arrestin. The formation of such megaplexes provides a mechanistic basis for the newly
appreciated sustained G protein signalling from internalized GPCRs. It is remarkable that, with only one
exception, the studies on endosomal G protein signalling reported so far involve hormone-responsive
GPCRs (i.e.: TSHR, PTHR, 32AR, V2R and GIPR). This observation suggests that receptors that are
chronically exposed to their cognate hormone could take advantage of endosomal signalling to remain
active despite being continuously desensitized when at the plasma membrane.

Another very interesting illustration of [3-arrestins’ importance in the control of signals in space, time and
sensitivity recently came from a study of cAMP signalling by the RXFP1 relaxin receptor (Halls and
Cooper, 2010,Halls, 2012). Relaxin is known to circulate at a very low (sub picomolar) concentration and
yet is able to trigger cAMP signalling (Halls, 2012). A molecular mechanism is now provided with the
constitutive assembly of a RXFP1-signalosome made of Gas, GBY, adenylyl cyclase 2 (AC2) functionally
coupled to AKAP79, with the latter bound to helix 8 of RXFP1. Importantly, B-arrestin 2 simultaneously
associates with the carboxyl terminus of RXFP1 and scaffolds protein kinase A (PKA) and PDE4D3. In this
signalosome, the activation of AC2 is thus tonically opposed by protein kinase A (PKA)-activated PDE4D3.
This RXFP1-signalosome enables receptor to respond to attomolar concentration of relaxin and reveals a
concentration-biased agonism as the signalosome is disrupted at nanomolar concentrations of relaxin
and above (Halls and Cooper, 2010). Noticeably, other hormones -gonadotropins for instance- also
activate cAMP signalling at very low circulating concentration (i.e.: EC5q in the picomolar range) which is

hard to explain on the basis of receptor occupancy alone (Ayoub et al., 2015). The existence of RXFP1-



like pre-assembled signalosomes at other hormone-responsive GPCRs is therefore potentially interesting

and deserves investigations in the future.

Pathophysiological implications of B-arrestin bias in endocrine systems

When assessing whether or not a receptor is functionally coupled to B-arrestins, the first step is generally
to measure the ability of the former to recruit the latter. Most of the earlier studies relied on co-
immunoprecipitation between the receptor and [3-arrestins and/or on the visualization of [3-arrestin-GFP
fusion protein colocalisation with the receptor by confocal microscopy. Characteristic patterns of
recruited B-arrestins-GFP were soon identified and allowed classifying receptors according to the
strength of their association with -arrestins (Oakley et al., 2000,0akley et al., 2001). This property also
facilitated the study of B-arrestin recruitment to receptors, often making co-localization with the
receptor unnecessary. However, these approaches were not very sensitive and often required
overexpression of both B-arrestin and receptor to high levels or, in the case of immunoprecipitation with
endogenous B-arrestins, the use of a cross-linking agent. The situation dramatically improved with the
advent of resonance energy transfer technologies (fluorescence resonance energy transfer [FRET] and
bioluminescence energy transfer [BRET]) which are much more sensitive, quantitative and allow higher
throughput. These FRET/BRET approaches generally require the receptor as well as the [B-arrestin to be
expressed as proteins fused to a compatible donor/acceptor pair. An intramolecular BRET sensor,
capable of detecting changes in -arrestin conformation named “double brilliance”, was later reported
(Charest et al., 2005). Interestingly, this double brilliance sensor can be used with endogenously
expressed native receptors as both the donor and the acceptor are attached to the B-arrestin. In parallel,
very sensitive split-TEV reporter assays were developed (Barnea et al., 2008). More recently,
sophisticated quantitative confocal microscopy approaches have been successfully used to study GPCR at

single molecule level (Jonas et al., 2016) and track 3-arrestin recruitment (Eichel et al., 2016).



Interestingly, different combinations of these approaches have been successfully applied to a large
number of hormone-responsive GPCR (Table 1). The one notable exception is the mammalian GnRH
receptor for which no B-arrestin recruitment could be measured. Interestingly, GnRH receptors from
mammals are characterized by their complete lack of carboxyl terminus and their resistance to
desensitization. An important proportion of the hormone-responsive GPCR were also found to be biased
as a consequence of mutations/polymorphisms at the receptor level (receptor bias), activation by
particular ligands (ligand bias) or a combination of both (Table 1). Thus, most hormone-responsive
GPCRs have already been reported to recruit B-arrestins upon agonist stimulation and for the majority of
them functional consequences could be linked with B-arrestins in in vitro settings. The next question
naturally is whether this translates into physiologically or pathologically relevant situations. Literature
survey revealed that B-arrestin-dependent signalling has already been associated with
pathophysiological settings for eleven hormone-responsive GPCRs (Table 2). Some of the studies were
based on genetic mutations leading to signalling bias: V,R (diabetes insipidus and nephrogenic syndrome
of inappropriate antidiuresis [NSIAD]), FSHR (fertility disorders), GPR54 (hypogonadotropic
hypogonadism) and PKR2 (Kallmann syndrome). Other studies reported the effects of biased ligands:
B:AR (memory consolidation), B,AR (heart failure, cardiomyocyte contraction), AT,R (increased cardiac
performance with reduced blood pressure), PTH;R (osteoporosis) and GLP;R (diabetes). Finally, some in
vivo effects were obtained using knockout of -arrestins in mice or in tumour cells: CCKAR, CCK1R
(insulin secretion and protection of 3 cell mass), GPR54 (breast cancer cells invasiveness), ET,R (epithelial
ovarian cancer cell tumorigenesis). Considering the fact that the exploration of [3-arrestin signalling in the
context of endocrine systems, especially in in vivo settings, is still in its infancy, the current state of the
art is very encouraging. Novel tools which will greatly facilitate assessments of [3-arrestin signalling in
vivo are developing very fast. Obviously, as discussed in this review, the whole field of biased ligands has

exploded, including for endocrinology-relevant GPCRs. Exome sequencing has also come to the fore and



will undoubtedly uncover novel genetic mutations and polymorphisms, some of them potentially leading
to bias. More sophisticated genetically-modified mouse models, allowing for instance conditional
knockouts of B-arrestins should be available soon. Therefore, there is little doubt that B-arrestins are
going to be associated with more and more pathophysiological situations in endocrine systems. The
molecular characterisation of these effects should also reach an unprecedented level of detail and

sophistication.

Conclusions

Over the last 15 years, 3-arrestins have evolved from proteins specialized in the desensitization and
internalization of GPCRs to the status of major players affecting all the facets of GPCRs signalling. In the
meantime, the interest in the endocrinology field for 3-arrestins has considerably grown, to reach a
point where most hormone-responsive GPCR classes have been investigated, at minimum for their ability
to recruit them and signal through them. Obviously, the elucidation of B-arrestin-dependent mechanisms
which are specifically associated with hormone-responsive GPCRs still has ways to go. But the challenge
is exciting because the study of endocrine systems may uncover novel aspects of B-arrestin functions,
and also because deciphering B-arrestin-dependent mechanisms will undoubtedly lead to a better
understanding of endocrinology at cellular and molecular levels. The technological toolbox as well as the
conceptual framework available to explore [3-arrestin functions have also dramatically improved, making
sophisticated dissection of signalling mechanisms as well as pharmacological profiling more tractable
than before. Clear physiological and pathological implications of B-arrestins in endocrinology have
already been established for several hormone/receptor pairs. Last but not least, the close connection
between [3-arrestin signalling and biased pharmacology open novel and promising avenues in drug

discovery, with some hormone-responsive GPCR already being at the centre of attention from



pharmaceutical industry. It can be foreseen that a virtuous cycle will form, with these drug discovery
programs delivering basic scientists with invaluable research tools that will in turn help push the

concepts further.
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Ligand bias
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Neuropeptide Y
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polypeptide
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Oxytocin
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FSHR,
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TSHR

TRHR
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GPR54

OX1R, OX;R

SST,R, SST3R,
SSTsR
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FCS
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Constitutive B-arr recruitment
and internalization (R137H);
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Impaired B-arr recruitment and
internalization (A C-term)

Bias towards the ERK (MT1-
G166E, MT1-1212T); bias towards
cAMP (MT2-V124I)

[B-arr-bias (DRY-AAY, D74N)

[B-arr-biased ERK activation
(L148S)

B-arr-independent
internalization
G protein bias

Bias towards or against [3-
arr-dependent
internalization

Bias towards or against 3-
arr-dependent
internalization

[-arr bias; Gs-bias
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pepducins; B-arr bias
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Melano-
cortin

Tachykinin

Prokineticin

Ghrelin
Endothelin

Apelin
Prostanoids

Motilin
Relaxin

Leukotriene

Hormone

VIP,
PACAP

Corticotropin-
releasing factor

PTH

Glucagon,
GLP1, GLP2,
GIP, Secretin
Calcitonin

MC:R, MCR,
MCsR, MC4R,
MCsR

NK1R, NK3R,
NKsR

PKR1, PKR2

GhrelinR
(GHSR1a)
ETAR, ETsR

ApelinR

DP;R, DP3R,
EP4R, EP3R,
EP3R, EP4R, FPR,
IPR, TPR
MotilinR
RXFP;R, RXFP3R,
RXFP3R

BLT:R, BLT,R,
CysLTiR,
CysLT,R, OXER,
FPR,/ALXR
Class B
Receptor
VPACIR,
VPAC,R, PAC;R

CRF.R,
CRF,R

PTH;1R, PTH:R

GHRHR, GIPR,
GLP:R, GLP3R,
SCTR

AMY1R, AMY,R,
AMY;3R, CGRPR,
AM;R, AMR,
CTR, CALRLR

Microscopy; BRET; co-IP;
split-TEV; cell
fractionation
Microscopy; BRET; FRET;
co-IP; cell fractionation

Microscopy; BRET,
dominant negative

Microscopy; BRET

Split-TEV; siRNA-
mediated depletion
Microscopy; BRET
Microscopy; BRET; split-
TEV

Microscopy
Microscopy; BRET; co-IP

Microscopy; FRET; BRET;
slit-TEV

Methodology

Microscopy; co-IP;
siRNA-mediated
depletion and KO MEFs
Microscopy; co-IP; BRET;
FRET; siRNA-mediated
depletion; KO MEFs

Microscopy; co-IP;
siRNA-mediated
depletion; KO mice;
FRET

Co-IP; split-TEV; BRET;
FRET; siRNA-mediated
depletion

Microscopy; BRET; B-arr
dominant negative

Constitutive B-arr recruitment
(E92K); decreased internalization
(T312A, S329A/S330A)

Impaired B-arr recruitment,
internalization and ERK activation
(NK1RA325); G protein and B-arr-
biased mutants

[B-arr-bias (R85C, R85H, R164Q,
V331M); G protein-bias (R80S)
No coupling to Gi/o (R268C)

G protein-bias (P148A)

[B-arr-bias (L149G)

G protein bias (Ser348)
Impaired B-arr recruitment

Receptor bias

Impaired B-arr recruitment
(truncation or Ser/Thr mutation
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dependent bias
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Biased cooperativity

B-arr bias
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Table 1: 3-arrestin recruitment and bias associated with hormone GPCRs.



Hormone

Receptor

Pathophysiological implications of B-arrestin-dependent signalling

References

Cholecystokinin
Vasopressin

Adrenaline
epinephrine

FSH
Angiotensin

Kisspeptin

Prokineticin

Endothelin

PTH
GLP1

CCKAR, CCK1R
V2R

B:AR
B.AR

FSHR
AT:R

GPR54

PKR2

ETAR

PTH.R
GLP:R

B-arrl is a key mediator of CCK-mediated insulin secretion and of its protective effect
against apoptosis in pancreatic beta cells.

Mutations introducing G protein or B-arrestin bias at VR in familial nephrogenic diabetes
insipidus and in nephrogenic syndrome of inappropriate antidiuresis (NSIAD)

B-arr-biased signalling at ;AR mediates memory reconsolidation; carvedilol is a 3-arr-biased
agonist with proven efficacy in the treatment of heart failure; carvedilol and a B-arr-biased
pepducin promote cardiomyocyte contraction

Impaired desensitization and internalization (N431I) and -arrestin bias (A189V) associated
with mutations at the FSHR in patients with fertility disorders

Selectively engaging B-arr reduces blood pressure and increases cardiac performance; B-arr-
biased agonism induced by mechanical stress

[-arr2 signalling promotes invasiveness through invadopodia formation in breast cancer
cells; B-arr-dependent and Gg-independent signalling in GPR54 mutations associated with
hypogonadotropic hypogonadism

Various missense mutations found in PKR2 gene in patients with Kallmann syndrome lead to
G protein or B-arr bias

Epithelian ovarian cancer: 3-arr-dependent activation of oncogenic factor NFKB

[B-arr pathway stimulates trabecular bone growth without inducing bone resorption
Role of B-arrl in insulin secretion and in 3 cell proliferation; G protein-biased agonist P5 has
potent antidiabetic effects
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Table 2: demonstrated implications of B-arrestin-dependent signalling in pathophysiological situations



Abbreviation list

01AR, 02AR : Adrenoreceptors a1 and a2

AC2 : Adenylyl cyclase 2

AKT : Protein kinase B

AMY1R, AMY2R, AMY3R, CGRPR, AM1R, AM2R, CTR, CALRLR : Calcitonin, amylin, calcitonin gene-related
peptide and adrenomedullin receptors

AP2 : Adaptator protein 2

ApelinR : Apelin receptor

ARF6 : ADP-ribosylation factor 6

ARNO : ARF guanine nucleotide exchange factor

ASK1 : Apoptosis signal-regulating kinase 1

AT1R : Angiotensin receptor type 1

B1AR, B2AR, B3AR : Adrenoreceptors 31, 32 and 33

BLT1R, BLT2R, CysLT1R, CysLT2R, OXER, FPR2/ALXR : Leukotriene receptors
BRET : Bioluminescence resonance energy transfert

cAMP : cyclic adenosine monophosphate

CCKAR, CCK1R, CCKBR, CCK2R: Cholecystokinin receptors

CRF1R, CRF2R: Corticotropin-releasing factor receptors

DP1R, DP2R, EP1R, EP2R, EP3R, EP4R, FPR, IPR, TPR : Prostanoid receptors
ECs, : Half maximal effective concentration

EGF : Epidermal growth factor

ERK : Extracellular signal-regulated kinase

ETAR, ETBR : Endothelin receptors

FRET : Fluorescence resonance energy transfer

FSHR : Follicle stimulating hormone receptor

Gas : Alpha subunit of heterotrimeric G protein

Gy : Beta and gamma subunits of heterotrimeric G protein
GhrelinR (GHSR1a) : Ghrelin receptor

GHRHR, GIPR, GLP1R, GLP2R, SCTR : Glucagon family of receptors
GPCR : G protein-coupled receptor

GPR54 : Kisspeptin receptor

GRK : G protein-coupled receptor kinase

IKBQ : nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
JNK : c-Jun N-terminal kinase

LHR : Luteinizing hormone receptor

MAPK : Mitogen-activated protein kinase

MC1R, MC2R, MC3R, MC4R, MC5R : Melanocortin receptors
MDM2 : Mouse double minute 2 homolog

MEF : Mouse embyonic fibroblast cells

MEK1 : Mitogen-activated protein kinase kinase 1

MKK : Mitogen-activated protein kinase kinase

MNK : MAP kinase-interacting kinases

MotilinR : Motilin receptor

MT1R, MT2R : Melatonin receptors

NK1R, NK2R, NK3R : Tachykinin receptors



NSF : N-ethylmelaimide sensitive fusion protein

OX1R, OX2R : Orexin receptors

OXTR : Oxytocin receptor

P38 : P38 mitogen-activated protein kinase

POORSK : MAPK-activated protein kinase-1

PDE4D3 : cAMP-specific phosphodiesterase PDE4D3

PI3K : Phosphatidylinositide 3-kinases

PKA : Protein kinase A

PKR1, PKR2 : Prokineticin receptors

PLA2 : Phospholipase A2

PP2A : Protein phosphatase 2A

PPYR1, NPY1R, NPY2R, NPY4R, NPY5R : Neuropeptide Y receptors
PTEN : Phosphatase and TENsin homolog

PTH1R, PTH2R : Parathyroid hormone receptors

RhoA : Ras homolog gene family, member A

RNA : Ribonucleic acid

ROCK : Rho-associated protein kinase

RXFP1R, RXFP2R, RXFP3R : Relaxin family peptide receptors
SST2R, SST3R, SST5R : Somatostatin receptors

TRHR : Thyrotropin-releasing hormone receptors

TSHR : Thyrotropin receptor

V1AR, V1BR, V2R : Vasopressin receptors

VPACIR, VPAC2R, PACIR : Vasoactive intestinal peptide and pituitary adenylate cyclase-activating
peptide receptors

Figure legend

Figure 1: Schematic representation of a G;-coupled GPCR activation/deactivation dynamics. 3-arrestins
are centrally involved in all key steps.
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Highlights

* B-arrestins affect all the facets of GPCRs signalling, not just desensitization

* [B-arrestins are recruited to most hormone-responsive GPCR classes

*  [B-arrestins control GPCR-mediated signals in intensity, time and space

* There is a close connection between [3-arrestin signalling and biased pharmacology

* The understanding of B-arrestin-dependent mechanisms is rapidly evolving
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Highlights

* B-arrestins affect all the facets of GPCRs signalling, not just desensitization

* [B-arrestins are recruited to most hormone-responsive GPCR classes

*  [B-arrestins control GPCR-mediated signals in intensity, time and space

* There is a close connection between [3-arrestin signalling and biased pharmacology

* The understanding of B-arrestin-dependent mechanisms is rapidly evolving



