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Abstract 

G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to 

hormonal cues. GPCRs’ activation mechanisms have long been considered as a two-state process 

connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as 

mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms 

involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent 

transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors 

are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with 

remarkable advances made in the field of GPCR structural biology and biophysics, have supported the 

notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports 

have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and 

time within the cells. In the present paper, we review the existing evidence linking endocrine-related 

GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by 

biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated 

transduction are discussed in the light of the peculiarities of endocrine systems. 
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Introduction 

Hydrophilic hormones bind to membrane receptors to convey signals in target cells. G protein-coupled 

receptors (GPCR) represent the most abundant and diversified class of membrane receptors and, as 

such, play major roles in endocrinology. Interestingly, GPCRs are increasingly viewed as multipurpose 

signal transducers which can connect to and activate multiple intracelluar pathways. GPCR-triggered 

intracellular signalling networks are also subjected to exquisite control of their activity in intensity, time 

and space. In addition to transmitting qualitative information, GPCR-mediated signalling pathways also 

deliver quantitative information about the strength of the stimulus. For instance, it has been reported 

that signalling pathways can take advantage of their nonlinear nature to convert stimulus intensity into 

signal duration (Behar et al., 2008). When compared to neurotransmission, which has represented the 

dominant paradigm in GPCR biology for decades, endocrine systems encompass much broader time 

scales. Indeed, some hormones are released with a pulsatile mode (Bonnefont, 2010,Gan and Quinton, 

2010,Thompson and Kaiser, 2014) whereas others are characterized by long-acting actions with their 

levels slowly evolving in the span of days, weeks, months or even years. GPCRs’ ability to traffic between 

different cell compartments and to transduce distinct signals as a function of their locations is also a 

critical facet of their function (Kholodenko et al., 2010,West and Hanyaloglu, 2015). The fact that 

different hormones can simultaneously hit a target cell adds yet another dimension to the complexity of 

endocrine systems (Noel and Kaiser, 2011). 

The intricate nature of GPCR-mediated signalling was fully exemplified by the fact that β-arrestins, 

initially discovered for their role in the desensitization, internalization and recycling processes, were later 

shown to operate as signal transducer (Lefkowitz and Shenoy, 2005,Reiter and Lefkowitz, 2006). It is now 

clearly established that β-arrestins operate as scaffolding proteins interacting with many partners and 

connecting them to active GPCRs (Xiao et al., 2007). They also control the phosphorylation of a wide 
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array of intracellular targets (Xiao et al., 2010). Importantly, the balance between G protein and β-

arrestin-dependent signal transduction at GPCRs has been demonstrated to vary from one ligand to 

another, strengthening the concept of ligand-directed signalling also known as pharmacological bias 

(Galandrin et al., 2007,Kenakin, 2003,Reiter et al., 2012). This line of thought has gained considerable 

momentum on the last few years as some biased compounds have been associated with reduced side-

effects in the clinics (Violin et al., 2014,Whalen et al., 2011). Polymorphisms and mutations occurring at 

the receptor level have also been reported, in some cases, to bias signal transduction (Landomiel et al., 

2014,Reiter et al., 2012,Shenoy et al., 2006,Tranchant et al., 2011,Wei et al., 2003). This review is 

centred on these novel ideas and how they impact our understanding of endocrine systems and the 

associated therapeutic approaches. 

 

ββββ-arrestin-mediated control of GPCR desensitization, internalization, trafficking and signalling 

Over the years, the roles played by β-arrestins have continuously expanded to the point that they are 

now indissociably linked with all key aspects of GPCR function (Figure 1). The activation, desensitization 

and internalization of the majority of non-retinal GPCRs are critically regulated by the two non-visual 

arrestins: β-arrestin 1 and β-arrestin 2 (also known as arrestin 2 and arrestin 3). Two main driving forces 

control β-arrestin recruitment to GPCRs: agonist-induced modification of the receptor conformation and 

G protein-coupled receptor kinase (GRK)-mediated phosphorylation of the ligand occupied receptor 

(Gurevich and Benovic, 1993,Reiter et al., 2012). 

The first step of receptor activation is ligand binding. The allosteric increase of a ligand’s binding affinity 

when the receptor is complexed with its cognate G protein was conceptualized more than 35 years ago 

in the “ternary complex model” (De Lean et al., 1980) and was recently backed by direct structural 

evidences (DeVree et al., 2016). Interestingly, β-arrestin recruitment to a receptor has been reported to 
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induce a very similar positive allosteric effect on ligand binding, supporting the existence of an 

alternative ternary complex involving β-arrestins (Martini et al., 2002,Strachan et al., 2014). 

β-arrestins have long been known to terminate G protein coupling (DeWire et al., 2007). Indeed, it is 

classically thought that the agonist-occupied active receptor is phosphorylated in its carboxyl terminus 

by GRK and then recruits β-arrestin with high affinity. This interaction leads to the inhibition of G protein 

coupling, presumably by steric hindrance (Reiter and Lefkowitz, 2006). This process generally referred to 

as “homologous desensitization”, appears to apply to most GPCRs (Freedman and Lefkowitz, 1996). It 

was later demonstrated that β-arrestins also have the ability to relocate cAMP phosphodiesterases or 

diacylglycerol kinases to the active receptor (Nelson et al., 2007,Perry et al., 2002). This remarkable 

property implies that β-arrestins dually desensitize GPCRs by inhibiting G protein coupling while 

simultaneously enhancing the rate of second messenger degradation locally. 

In addition to their role in desensitization, β-arrestins also play a central role in agonist-induced 

internalization of the receptor by interacting with key elements of the endocytic machinery such as 

clathrin (Goodman et al., 1996), clathrin adaptor AP2 (Laporte et al., 1999), small G protein ARF6 and its 

guanine nucleotide exchange factor, ARNO (Claing et al., 2001), and NSF (N-ethylmelaimide sensitive 

fusion protein) (McDonald et al., 1999). In addition, MDM2, an E3 ubiquitin ligase, binds β-arrestins and 

mediates their ubiquitination which is essential for clathrin-mediated endocytosis of the receptor 

(Shenoy et al., 2001). The presence or absence of serine and threonine clusters in the receptor carboxyl 

terminus regulates the affinity of β-arrestin recruitment and the pattern of intracellular trafficking of a 

wide number of GPCRs (Oakley et al., 2000,Oakley et al., 2001). 

Beyond their roles in the control of desensitization and internalization, β-arrestins are now considered to 

be G protein-independent signal transducers (Lefkowitz and Shenoy, 2005,Reiter and Lefkowitz, 2006). It 

has been widely documented that β-arrestins are multifunctional scaffolds that interact with many 
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protein partners, including protein kinases, and that they impact the phosphorylation of numerous 

intracellular targets (Xiao et al., 2007,Xiao et al., 2010). Over the years, several approaches have been 

used to decipher the contributions of G proteins and β-arrestins to GPCR function. They include GRK or 

β-arrestin knock-outs in mice and the use of their derived MEF cell counterparts as well as selective 

blockade of G protein and β-arrestin pathway constituents via RNA silencing, dominant negative and 

small-molecule inhibitors. These tools have been successfully used to uncover novel signal transduction 

mechanisms and further characterize the pharmacology of specific GPCRs (DeWire et al., 2007,DeWire 

and Violin, 2011). The most thoroughly characterized signalling mechanism mediated by β-arrestins is 

certainly ERK1/2 MAPKs. It has been shown that β-arrestins scaffold Raf-1, MEK1, and ERK and sequester 

phosphorylated ERK1/2 in the cytosol (Luttrell et al., 2001). Interestingly, ERK1/2 are simultaneously 

activated by G protein through distinct mechanisms. G protein-dependent ERK1/2 activation is rapid and 

generally transient. By contrast, β-arrestin-dependent ERK1/2 activation is slower in onset but 

protracted. However, in some cases, G protein-mediated ERK activation can also include a sustained 

phase, so kinetics alone cannot always discriminate G protein- and β-arrestin-mediated ERK1/2 signalling 

(Luo et al., 2008). In addition, β-arrestins promote the assembly and the activation of ASK1, MKK4/7 and 

JNK3 (McDonald et al., 2000) as well as MKK4, MKK7and JNK1/2 (Kook et al., 2013) MAPK modules, and 

have been shown to trigger p38 signalling (Bruchas et al., 2006,Sun et al., 2002). The transactivation of 

EGF receptor by GPCRs can be regulated by β-arrestins through the activation of a transmembrane 

matrix metalloprotease that cleaves membrane-bound EGF ligand (Noma et al., 2007). β-arrestin 2 can 

inhibit NF-κB signalling through stabilization of IκBα (Gao et al., 2004). β-arrestin 1 can directly influence 

epigenetic modifications through nuclear interaction with histone acetylases and deacetylases that 

influence chromatin structure (Kang et al., 2005). Other β-arrestin-mediated signalling mechanisms 

include, among others, RhoA-dependent stress fiber formation (Barnes et al., 2005); protein 

phosphatase 2A (PP2A)-mediated dephosphorylation of Akt (Beaulieu et al., 2005); MNK-dependent 
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induction of protein translation (DeWire et al., 2008) and p90RSK-dependent anti-apoptotic effects (Ahn 

et al., 2009); phosphatidylinositol 3-kinase (PI3K)-mediated phospholipase A2 (PLA2) activation (Walters 

et al., 2009) and PTEN activation downstream of RhoA/ROCK (Lima-Fernandes et al., 2011). 

At the molecular level, it has been shown, using different experimental approaches, that β-arrestins 1 

and 2 undergo conformational changes upon interaction with phosphorylated carboxyl terminus of 

receptors (Charest et al., 2005,Nobles et al., 2007,Xiao et al., 2004). Early data also supported the notion 

that ligand-induced, functionally specific receptor conformations can be translated to specific β-arrestin 

conformations and impact their intracellular activities (Shukla et al., 2008). This view has recently been 

further explored using intracellular BRET or FRET probes capable of sensing β-arrestin conformational 

repertoire with better accuracy (Lee et al., 2016,Nuber et al., 2016). These studies concluded that 

distinct β-arrestin conformations can be stabilized in a receptor and/or ligand-specific manner. 

Interestingly, different GRK subtypes have been reported to play specialized regulatory functions. Second 

messenger generation has been shown to be dampened by GRK2 yet unaffected by GRK5 or GRK6 

whereas β-arrestin 2-dependent ERK activation required GRK5 and GRK6 action (Iwata et al., 2005,Kara 

et al., 2006,Kim et al., 2005,Ren et al., 2005,Shenoy et al., 2006,Zidar et al., 2009). In light of these 

results, it has been hypothesized that there is a GRK-induced phosphorylation “bar code” at the C 

terminus of GPCRs that regulates the nature of β-arrestin intracellular functions (Kim et al., 2005,Reiter 

and Lefkowitz, 2006,Shenoy et al., 2006,Tobin et al., 2008). Independent studies demonstrated that 

GPCR phosphorylation is indeed preferentially directed to specific sites in a ligand and kinase-dependent 

manner (Busillo et al., 2010,Butcher et al., 2011,Heitzler et al., 2012,Nobles et al., 2011,Yang et al., 

2015).  

Structural details of GPCR-β-arrestin interaction have recently started to emerge as crystal structure of 

rhodopsin-arrestin complex exhibited an engagement of the receptor core with visual arrestin (Kang et 

al., 2015). Importantly, visualization of β2AR-V2R–βarr1 complex by negative-stain electron microscopy 
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and cross-linking has directly demonstrated two interaction modes existing between GPCR-β-arrestin 

(Shukla et al., 2014). Indeed, in addition to β-arrestin engagement with the receptor core, these new 

data report the existence of a distinct interaction site between the phosphorylated carboxyl terminus of 

GPCRs and the N-domain of β-arrestins. Further, functionality of the receptor-β-arrestin complex formed 

with the phosphorylated carboxyl terminus was recently revealed (Kumari et al., 2016). The interaction 

of β-arrestin with the phosphorylated carboxyl terminus but not the receptor core could lead to receptor 

internalization, ERK MAP kinases binding to β-arrestin 1 and their subsequent activation. Furthermore, 

the same study revealed that the β-arrestin-biased ligand carvedilol does not induce the engagement 

between β-arrestin 1 and the receptor core. A recent model has been built using a docking algorithm and 

predicted the assembly of the ERK MAP kinase scaffold on β-arrestin (Bourquard et al., 2015). This model 

was compatible with β-arrestin interacting with either domain. 

 

ββββ-arrestin and G protein-biased signalling 

A recent outburst of structural, biophysical and pharmacological evidences has profoundly transformed 

our vision of GPCR activation and therapeutic targeting. Not that long ago, it was thought that one 

inactive conformation of a receptor was in equilibrium with a single ligand-bound active conformation. 

Accordingly, the strength of an agonist was supposed to directly reflect the proportion of active versus 

inactive receptor conformation. The discovery of partial and inverse agonists revealed new levels of 

pharmacological properties beyond full agonists and neutral antagonists, but those types of activities 

were still consistent with the two-state model. Several examples were found that did not fit this 

paradigm: compounds generated different relative potencies in different assays (Watson et al., 2000). 

These findings, controversial at first, were repeated with a growing number of GPCRs. In the meantime, 

the fact that multiple active and inactive receptor conformations co-exist had been supported by 
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overwhelming structural and biophysical evidences (Kobilka, 2011,Nygaard et al., 2013,Wacker et al., 

2013). Consequently, pharmacological theory has been revised and efficacy is now considered as being 

multi-dimensional and explicitly incorporate the notion that receptors engage distinct subsets of their 

full signaling repertoire (Galandrin et al., 2007). This means that different subsets of conformations can 

be stabilized by different agonists or mutation/polymorphism at a given GPCR and that each of these 

conformational ensembles is connected to distinct transduction mechanisms. This is the concept or 

pharmacological bias (Kenakin, 2003,Reiter et al., 2012,Violin and Lefkowitz, 2007). According to these 

principles, it is possible to selectively control pathway activation with biased ligands or specific amino-

acid modifications. Orthosteric sites on GPCRs bind endogenous agonists and are also recognized by 

classic competitive antagonists and inverse agonists. By contrast, allosteric sites on a receptor are 

distinct from the orthosteric site and can affect either positively or negatively receptor activity in 

conjunction with orthosteric ligands or alone. Importantly, synthetic allosteric modulators for GPCRs are 

now being discovered at a high rate and can also lead to pharmacological bias, providing novel avenues 

in drug discovery (Changeux and Christopoulos, 2016). These allosteric ligands can modulate receptor 

conformations in the presence of orthosteric ligands and therefore have the potential to fine-tune, 

positively or negatively responses elicited by endogenous or synthetic ligands. 

The study of pharmacological bias has rapidly become an extremely active field of research and, once 

again, β-arrestins hold a prominent position since large numbers of ligands displaying bias on β-arrestin-

mediated functions have been reported. Certain biased ligands favour G protein-dependent transduction 

whereas others preferentially trigger β-arrestin-mediated pathways when compared to a reference 

ligand. Importantly, biased ligands capable of stabilizing a subset of the receptor conformation 

repertoire have been reported to improve the balance between side effects and benefits (Whalen et al., 

2011). The advent of novel non-conventional classes of GPCR-targeting compounds such as pepducins 

(Carr and Benovic, 2016), aptamers (Kahsai et al., 2016), intrabodies (Staus et al., 2014) or nanobodies 
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(Mujic-Delic et al., 2014,Staus et al., 2016) extend even more the range of possibilities for innovative 

drug discovery approaches to be developed in the future. 

So far, biased ligands have concentrated most of the attention in the field of GPCR pharmacology as they 

represent potential leads for the development of new drugs. However, the whole concept of bias equally 

applies to modifications occurring at the receptor level (Landomiel et al., 2014). The first examples of 

mutations leading to β-arrestin-bias have been the angiotensin type 2 receptor DRY-AAY (Wei et al., 

2003) and the β2AR-TYY (Shenoy et al., 2006) mutants. This notion of pharmacological bias also plays a 

crucial role in medicine as it can materialize in patients through mutations or polymorphisms. Therefore, 

the concept of pharmacological bias changes the way to investigate the functional consequences of 

mutations and polymorphisms occurring at the receptor level. This type of question was traditionally 

assessed by tracking loss or gain of function according to the simple two-state model. Now, the 

exploration needs to integrate the multiple dimensions of receptor activity through multiplexed analyses 

of the different signalling pathways induced downstream receptor activation.  

 

ββββ-arrestins’ roles in the control GPCR-mediated signals in time and space 

One major conundrum associated with GPCR signalling resides in the fact that the numbers of ligands 

and receptors appears to largely overcome the relatively limited number of transduction mechanisms 

and downstream signalling pathways available. To circumvent this problem, it has been proposed that 

the signalling machinery may use spatial and temporal encoded patterns in order to maintain the full 

complement of information and specificity conferred by the receptor/ligand pair (Lohse and Hofmann, 

2015). In this view, the signalling events triggered by a GPCR are characterized by their kinetics and 

spatial patterns and correspond to a signature specific of the receptor, cellular context and nature of the 

ligand. The regimen of exposure to the ligand may also lead to specific signalling signatures, a possibility 
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that could be of particular relevance in the context of endocrine systems. The kinetic and spatial aspects 

of GPCR signalling have only begun to be explored with the elucidation of the dynamics of receptor 

activation, G protein coupling and G protein activation for some receptors (Jensen et al., 2009,Lohse et 

al., 2008). In the classical model, G protein signalling originates at the cell surface and is followed by 

rapid β-arrestin-mediated quenching of G protein signalling. Recent findings have begun to challenge this 

paradigm. A number of GPCRs have been reported to elicit sustained G protein signalling, rather than 

being desensitized after initial agonist stimulation (Calebiro et al., 2009,Feinstein et al., 2013,Ferrandon 

et al., 2009,Irannejad et al., 2013,Mullershausen et al., 2009). For instance, it has been recently proposed 

that, for some GPCRs, a series of distinct signalling waves could arise upon activation (Lohse and 

Calebiro, 2013). In this model, a first wave is triggered at the cell surface upon G-protein coupling and 

results in the classical second messenger release. A second wave follows either from clathrin-coated pits 

and or from clathrin-coated vesicles when β-arrestin associated with the receptor induces signals such as 

ERK activation. A third wave which has been recently described involves signalling via G proteins from 

the endosomal compartment and may have specific physiologic outcomes (Calebiro et al., 2009,Calebiro 

et al., 2010,Feinstein et al., 2011,Feinstein et al., 2013,Ferrandon et al., 2009,Irannejad et al., 2013,Ismail 

et al., 2016,Mullershausen et al., 2009,Tsvetanova et al., 2015,Vilardaga et al., 2014)(Figure 1). These 

findings are in contradiction with the classical view of GPCR signalling in which persistent interaction of 

β-arrestin with the receptor should prevent G protein activation. X-ray crystallography of the β2AR in 

complex with Gαs has revealed that the interaction involves both the N-terminal and C-terminal domains 

of the Gαs subunit and the core of the receptor (i.e.: intracellular loop 2, transmembrane domain 5 

(TM5), and TM6)(Rasmussen et al., 2011). As discussed above, a recent study revealed that β-arrestin 

interact with two different sites on the receptor; one is the phosphorylated receptor carboxyl terminus 

and a second, within the core of the receptor (Shukla et al., 2014). Importantly, internalized receptor 

complexes called “megaplexes” composed of a single GPCR, β-arrestin, and G protein were recently 
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discovered and their architecture and functionality described (Thomsen et al., 2016). These 

‘‘megaplexes’’ seem to preferentially form with receptors that interact strongly with β-arrestins via a C-

terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron 

microscopy analysis of negative-stained purified megaplexes revealed that a single receptor can 

simultaneously bind through its core region with G protein and through its phosphorylated carboxyl 

terminus with β-arrestin. The formation of such megaplexes provides a mechanistic basis for the newly 

appreciated sustained G protein signalling from internalized GPCRs. It is remarkable that, with only one 

exception, the studies on endosomal G protein signalling reported so far involve hormone-responsive 

GPCRs (i.e.: TSHR, PTHR, β2AR, V2R and GIPR). This observation suggests that receptors that are 

chronically exposed to their cognate hormone could take advantage of endosomal signalling to remain 

active despite being continuously desensitized when at the plasma membrane.  

Another very interesting illustration of β-arrestins’ importance in the control of signals in space, time and 

sensitivity recently came from a study of cAMP signalling by the RXFP1 relaxin receptor (Halls and 

Cooper, 2010,Halls, 2012). Relaxin is known to circulate at a very low (sub picomolar) concentration and 

yet is able to trigger cAMP signalling (Halls, 2012). A molecular mechanism is now provided with the 

constitutive assembly of a RXFP1-signalosome made of Gαs, Gβγ, adenylyl cyclase 2 (AC2) functionally 

coupled to AKAP79, with the latter bound to helix 8 of RXFP1. Importantly, β-arrestin 2 simultaneously 

associates with the carboxyl terminus of RXFP1 and scaffolds protein kinase A (PKA) and PDE4D3. In this 

signalosome, the activation of AC2 is thus tonically opposed by protein kinase A (PKA)-activated PDE4D3. 

This RXFP1-signalosome enables receptor to respond to attomolar concentration of relaxin and reveals a 

concentration-biased agonism as the signalosome is disrupted at nanomolar concentrations of relaxin 

and above (Halls and Cooper, 2010). Noticeably, other hormones -gonadotropins for instance- also 

activate cAMP signalling at very low circulating concentration (i.e.: EC50 in the picomolar range) which is 

hard to explain on the basis of receptor occupancy alone (Ayoub et al., 2015). The existence of RXFP1-



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Reiter, E., Ayoub, M. A., Pellissier, L., Landomiel, F., Musnier, A., Trefier, A., Gandia, J.,

De Pascali, F., Tahir, S., Yvinec, R., Bruneau, G., Poupon, A., Crépieux, P. (2017). -arrestin
signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology, 449,

28-41. , DOI : 10.1016/j.mce.2017.01.052

M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

like pre-assembled signalosomes at other hormone-responsive GPCRs is therefore potentially interesting 

and deserves investigations in the future. 

 

Pathophysiological implications of ββββ-arrestin bias in endocrine systems 

When assessing whether or not a receptor is functionally coupled to β-arrestins, the first step is generally 

to measure the ability of the former to recruit the latter. Most of the earlier studies relied on co-

immunoprecipitation between the receptor and β-arrestins and/or on the visualization of β-arrestin-GFP 

fusion protein colocalisation with the receptor by confocal microscopy. Characteristic patterns of 

recruited β-arrestins-GFP were soon identified and allowed classifying receptors according to the 

strength of their association with β-arrestins (Oakley et al., 2000,Oakley et al., 2001). This property also 

facilitated the study of β-arrestin recruitment to receptors, often making co-localization with the 

receptor unnecessary. However, these approaches were not very sensitive and often required 

overexpression of both β-arrestin and receptor to high levels or, in the case of immunoprecipitation with 

endogenous β-arrestins, the use of a cross-linking agent. The situation dramatically improved with the 

advent of resonance energy transfer technologies (fluorescence resonance energy transfer [FRET] and 

bioluminescence energy transfer [BRET]) which are much more sensitive, quantitative and allow higher 

throughput. These FRET/BRET approaches generally require the receptor as well as the β-arrestin to be 

expressed as proteins fused to a compatible donor/acceptor pair. An intramolecular BRET sensor, 

capable of detecting changes in β-arrestin conformation named “double brilliance”, was later reported 

(Charest et al., 2005). Interestingly, this double brilliance sensor can be used with endogenously 

expressed native receptors as both the donor and the acceptor are attached to the β-arrestin. In parallel, 

very sensitive split-TEV reporter assays were developed (Barnea et al., 2008). More recently, 

sophisticated quantitative confocal microscopy approaches have been successfully used to study GPCR at 

single molecule level (Jonas et al., 2016) and track β-arrestin recruitment (Eichel et al., 2016). 
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Interestingly, different combinations of these approaches have been successfully applied to a large 

number of hormone-responsive GPCR (Table 1). The one notable exception is the mammalian GnRH 

receptor for which no β-arrestin recruitment could be measured. Interestingly, GnRH receptors from 

mammals are characterized by their complete lack of carboxyl terminus and their resistance to 

desensitization. An important proportion of the hormone-responsive GPCR were also found to be biased 

as a consequence of mutations/polymorphisms at the receptor level (receptor bias), activation by 

particular ligands (ligand bias) or a combination of both (Table 1). Thus, most hormone-responsive 

GPCRs have already been reported to recruit β-arrestins upon agonist stimulation and for the majority of 

them functional consequences could be linked with β-arrestins in in vitro settings. The next question 

naturally is whether this translates into physiologically or pathologically relevant situations. Literature 

survey revealed that β-arrestin-dependent signalling has already been associated with 

pathophysiological settings for eleven hormone-responsive GPCRs (Table 2). Some of the studies were 

based on genetic mutations leading to signalling bias: V2R (diabetes insipidus and nephrogenic syndrome 

of inappropriate antidiuresis [NSIAD]), FSHR (fertility disorders), GPR54 (hypogonadotropic 

hypogonadism) and PKR2 (Kallmann syndrome). Other studies reported the effects of biased ligands: 

β1AR (memory consolidation), β2AR (heart failure, cardiomyocyte contraction), AT1R (increased cardiac 

performance with reduced blood pressure), PTH1R (osteoporosis) and GLP1R (diabetes). Finally, some in 

vivo effects were obtained using knockout of β-arrestins in mice or in tumour cells: CCKAR, CCK1R 

(insulin secretion and protection of β cell mass), GPR54 (breast cancer cells invasiveness), ETAR (epithelial 

ovarian cancer cell tumorigenesis). Considering the fact that the exploration of β-arrestin signalling in the 

context of endocrine systems, especially in in vivo settings, is still in its infancy, the current state of the 

art is very encouraging. Novel tools which will greatly facilitate assessments of β-arrestin signalling in 

vivo are developing very fast. Obviously, as discussed in this review, the whole field of biased ligands has 

exploded, including for endocrinology-relevant GPCRs. Exome sequencing has also come to the fore and 
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will undoubtedly uncover novel genetic mutations and polymorphisms, some of them potentially leading 

to bias. More sophisticated genetically-modified mouse models, allowing for instance conditional 

knockouts of β-arrestins should be available soon. Therefore, there is little doubt that β-arrestins are 

going to be associated with more and more pathophysiological situations in endocrine systems. The 

molecular characterisation of these effects should also reach an unprecedented level of detail and 

sophistication. 

 

Conclusions 

Over the last 15 years, β-arrestins have evolved from proteins specialized in the desensitization and 

internalization of GPCRs to the status of major players affecting all the facets of GPCRs signalling. In the 

meantime, the interest in the endocrinology field for β-arrestins has considerably grown, to reach a 

point where most hormone-responsive GPCR classes have been investigated, at minimum for their ability 

to recruit them and signal through them. Obviously, the elucidation of β-arrestin-dependent mechanisms 

which are specifically associated with hormone-responsive GPCRs still has ways to go. But the challenge 

is exciting because the study of endocrine systems may uncover novel aspects of β-arrestin functions, 

and also because deciphering β-arrestin-dependent mechanisms will undoubtedly lead to a better 

understanding of endocrinology at cellular and molecular levels. The technological toolbox as well as the 

conceptual framework available to explore β-arrestin functions have also dramatically improved, making 

sophisticated dissection of signalling mechanisms as well as pharmacological profiling more tractable 

than before. Clear physiological and pathological implications of β-arrestins in endocrinology have 

already been established for several hormone/receptor pairs. Last but not least, the close connection 

between β-arrestin signalling and biased pharmacology open novel and promising avenues in drug 

discovery, with some hormone-responsive GPCR already being at the centre of attention from 
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pharmaceutical industry. It can be foreseen that a virtuous cycle will form, with these drug discovery 

programs delivering basic scientists with invaluable research tools that will in turn help push the 

concepts further. 
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Hormone Class A 

Receptor 

Methodology Receptor bias Ligand bias References 

Cholecystokinin CCKAR, CCK1R Microscopy   β-arr-independent 

internalization  

(Cawston et al., 2012,Ning et al., 2015) 

Gastrin CCKBR, CCK2R Microscopy; BRET Reduced β-arr affinity (S/T in C-

term; M134A; Y380A) 

G protein bias (Barak et al., 2003,Magnan et al., 2011,Magnan et al., 2013) 

Neuropeptide Y NPY1R, NPY2R Microscopy; BRET; BiFC; 

FCS 

Reduced β-arr affinity at NPY1R: 

truncation/substitutions in C-

term; increased β-arr affinity at 

NPY2R: H155P  

Bias towards or against β-

arr-dependent 

internalization 

(Berglund et al., 2003,Gimenez et al., 2014,Holliday et al., 2005,Kilpatrick et 

al., 2012,Made et al., 2014,Ouedraogo et al., 2008) 

Pancreatic 

polypeptide 

PPYR1, NPY4R, 

NPY5R 

Microscopy; BRET   Bias towards or against β-

arr-dependent 

internalization 

(Berglund et al., 2003,Made et al., 2014) 

Vasopressin V1AR, V1BR, V2R Microscopy; BRET; split-

TEV; LRET; lumines- 

cence emission decay 

Constitutive β-arr recruitment 

and internalization (R137H); 

increased Gs and β-arr 

recruitment (R137C, R137L); Gs-

bias (R181C, N181C); Constitutive 

Gs activation with no β-arr 

recruitment (I130N) 

β-arr bias; Gs-bias  (Barak et al., 2001,Coulon et al., 2008,Djannatian et al., 2011,Erdelyi et al., 

2014,Erdelyi et al., 2015,Jean-Alphonse et al., 2009,Kashiwazaki et al., 

2015,Khoury et al., 2014,Martini et al., 2002,Oakley et al., 2000,Rahmeh et 

al., 2012,Tenenbaum et al., 2009,Terrillon et al., 2003,Terrillon et al., 2004) 

Oxytocin OXTR Microscopy; BRET Reduced β-arr affinity and 

internalization: S/T in C-term  

Gi1/Gi3 bias; β-arr bias; Gq 

bias 

(Azzi et al., 2003,Busnelli et al., 2012,Busnelli et al., 2013,Di Benedetto et al., 

2014,Hasbi et al., 2004,Oakley et al., 2001,Passoni et al., 2016,Terrillon and 

Bar-Sagi, 2008) 

Adrenaline, 

epinephrine 

α1AR, α2AR, 

β1AR, β2AR, 

β3AR 

Microscopy, co_IP; split-

TEV 

β-arr bias (T68F,Y132G,Y219A) Gs biased ligands and 

pepducins; β-arr bias 

(Drake et al., 2008,Littmann et al., 2015,Oakley et al., 2000,Shenoy et al., 

2006,Small et al., 2006,Stanasila et al., 2008,Wisler et al., 2007) 

Gonadotropins FSHR, 

LHR 

Microscopy; co-IP; BRET Reduced β-arr affinity: S/T in C-

term; β-arr bias (A189V) 

Diverse G and β-arr bias  (Ayoub et al., 2015,Ayoub et al., 2016,Casarini et al., 2016,Kara et al., 

2006,Tranchant et al., 2011,Wehbi et al., 2010,Wehbi et al., 2010) 

TSH TSHR Microscopy    (Frenzel et al., 2006) 

TRH TRHR Microscopy; co-IP; BRET Impaired β-arr recruitment and 

internalization (∆ C-term) 

  (Groarke et al., 2001,Hanyaloglu et al., 2002,Jones and Hinkle, 2008,Kocan et 

al., 2008,Oakley et al., 2000,Scott et al., 2002) 

Melatonin MT1R, MT2R BRET; FRET; co-IP; split-

TEV 

Bias towards the ERK (MT1-

G166E, MT1-I212T); bias towards 

cAMP (MT2-V124I) 

  (Bondi et al., 2008,Cheng et al., 2006,Hong et al., 2016,Kamal et al., 

2009,Sakurai et al., 2014,Sethi et al., 2010) 

Angiotensin AT1R, 

 

Microscopy; co-IP; BRET; 

double brilliance β-arr 

 β-arr-bias (DRY-AAY, D74N)  β-arr-bias (Ahn et al., 2004,Cabana et al., 2015,DeWire and Violin, 2011,Lee et al., 

2016,Namkung et al., 2016,Porrello et al., 2011,Rakesh et al., 2010,Santos et 

al., 2015,Sauliere et al., 2012,Tang et al., 2014,Valero et al., 2016,Violin et al., 

2010,Wei et al., 2003) 

Kisspeptin GPR54  Microscopy; 

co-IP 

 β-arr-biased ERK activation 

(L148S) 

  (Ahow et al., 2014,Goertzen et al., 2016,Harms et al., 2003,Millar and 

Babwah, 2015,Navenot et al., 2009,Pampillo et al., 2009,Szereszewski et al., 

2010,Zajac et al., 2011) 

Orexin OX1R, OX2R  Microscopy; co-IP; BRET     (Dalrymple et al., 2011,Jaeger et al., 2014,Milasta et al., 2005,Navarro et al., 

2015,Robinson and McDonald, 2015) 

Somato- 

statin 

SST2R, SST3R, 

SST5R 

 Microscopy; co-IP; BRET   β-arr and G protein bias (Grant et al., 2008,Lehmann et al., 2016,Lesche et al., 2009,Liu et al., 

2005,Peverelli et al., 2008,Poll et al., 2010,Tulipano et al., 2004,Zhao et al., 

2013) 
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Melano- 

cortin 

MC1R, MC2R, 

MC3R, MC4R, 

MC5R 

Microscopy; BRET; co-IP; 

split-TEV; cell 

fractionation 

Constitutive β-arr recruitment 

(E92K); decreased internalization 

(T312A, S329A/S330A) 

 (Abrisqueta et al., 2013,Benned-Jensen et al., 2011,Breit et al., 2006,Cai et 

al., 2004,Kilianova et al., 2006,Nyan et al., 2008,Rodrigues et al., 2012,Roy et 

al., 2011,Shinyama et al., 2003) 

Tachykinin NK1R, NK2R, 

NK3R 

Microscopy; BRET; FRET; 

co-IP; cell fractionation 

Impaired β-arr recruitment, 

internalization and ERK activation 

(NK1R∆325); G protein and β-arr-

biased mutants 

 (Cézanne et al., 2004,DeFea et al., 2000,Grasso et al., 2013,Jafri et al., 

2006,Martini et al., 2002,McConalogue et al., 1998,Pal et al., 2013,Poole et 

al., 2015,Richardson et al., 2003,Schmidlin et al., 2002,Schmidlin et al., 

2003,Yamaguchi et al., 2016,Zimmer et al., 2003) 

Prokineticin PKR1, PKR2 Microscopy; BRET, 

dominant negative 

β-arr-bias (R85C, R85H, R164Q, 

V331M); G protein-bias (R80S) 

No coupling to Gi/o (R268C) 

 (Sbai et al., 2014,Yin et al., 2014) 

Ghrelin GhrelinR 

(GHSR1a) 

Microscopy; BRET G protein-bias (P148A) 

β-arr-bias (L149G) 

 (Chebani et al., 2016,Lodeiro et al., 2009) 

Endothelin ETAR, ETBR Split-TEV; siRNA-

mediated depletion 

 G protein bias (Cianfrocca et al., 2010,Maguire et al., 2012) 

Apelin ApelinR Microscopy; BRET G protein bias (Ser348) Gi bias (Apelin-K16P) (Ceraudo et al., 2014,Chen et al., 2014,Lee et al., 2010) 

Prostanoids DP1R, DP2R, 

EP1R, EP2R, 

EP3R, EP4R, FPR, 

IPR, TPR 

Microscopy; BRET; split-

TEV 

Impaired β-arr recruitment G protein and β-arr bias (Erdelyi et al., 2015,Gallant et al., 2007,Jiang and Dingledine, 2013,Leduc et 

al., 2009,Reid and Kinsella, 2007,Rochdi and Parent, 2003) 

Motilin MotilinR Microscopy   (Mitselos et al., 2008) 

Relaxin RXFP1R, RXFP2R, 

RXFP3R 

Microscopy; BRET; co-IP  G protein bias; dose-

dependent bias 

(Halls and Cooper, 2010,Halls, 2012,Kocan et al., 2014) 

Leukotriene BLT1R, BLT2R, 

CysLT1R, 

CysLT2R, OXER, 

FPR2/ALXR 

Microscopy; FRET; BRET; 

slit-TEV 

 β-arr bias (Foster et al., 2013,Jala et al., 2005,Jala and Haribabu, 2010,Konya et al., 

2014,Yan et al., 2011) 

Hormone Class B 

Receptor 

Methodology Receptor bias Ligand bias References 

VIP, 

PACAP 

VPAC1R, 

VPAC2R, PAC1R 

Microscopy; co-IP; 

siRNA-mediated 

depletion and KO MEFs 

  (Broca et al., 2009,Shetzline et al., 2002) 

Corticotropin-

releasing factor 

CRF1R, 

CRF2R 

Microscopy; co-IP; BRET; 

FRET; siRNA-mediated 

depletion; KO MEFs 

Impaired β-arr recruitment 

(truncation or Ser/Thr mutation 

in ICL3 and C-term 

 (Bangasser et al., 2010,Bonfiglio et al., 2013,Dunn et al., 2016,Hauger et al., 

2013,Holmes et al., 2006,Markovic et al., 2008,Milan-Lobo et al., 

2009,Navarro et al., 2015,Oakley et al., 2007,Rasmussen et al., 2004,Teli et 

al., 2005) 

PTH PTH1R, PTH2R Microscopy; co-IP; 

siRNA-mediated 

depletion; KO mice; 

FRET 

Impaired β-arr recruitment 

(truncation of C-term; Ser/Thr 

mutation C-term; N289A; K382A) 

β-arr bias (Bianchi and Ferrari, 2009,Feinstein et al., 2011,Ferrari et al., 2005,Gesty-

Palmer et al., 2006,Gesty-Palmer et al., 2009,Vilardaga et al., 2001,Vilardaga 

et al., 2002,Wehbi et al., 2013) 

Glucagon, 

GLP1, GLP2, 

GIP, Secretin 

GHRHR, GIPR, 

GLP1R, GLP2R, 

SCTR 

Co-IP; split-TEV; BRET; 

FRET; siRNA-mediated 

depletion 

 G protein and β-arr-bias 

Biased cooperativity 

(Al-Sabah et al., 2014,Jorgensen et al., 2005,Jorgensen et al., 2007,Quoyer et 

al., 2010,Sonoda et al., 2008,Talbot et al., 2012,Wootten et al., 

2013,Wootten et al., 2016,Zhang et al., 2015) 

Calcitonin AMY1R, AMY2R, 

AMY3R, CGRPR, 

AM1R, AM2R, 

CTR, CALRLR  

Microscopy; BRET; β-arr 

dominant negative 

  β-arr bias (Hay et al., 2014,Héroux et al., 2007,Hilairet et al., 2001,Padilla et al., 2007) 

Table 1:    β-arrestin recruitment and bias associated with hormone GPCRs.  



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Reiter, E., Ayoub, M. A., Pellissier, L., Landomiel, F., Musnier, A., Trefier, A., Gandia, J.,

De Pascali, F., Tahir, S., Yvinec, R., Bruneau, G., Poupon, A., Crépieux, P. (2017). -arrestin
signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology, 449,

28-41. , DOI : 10.1016/j.mce.2017.01.052

M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Hormone Receptor Pathophysiological implications of ββββ-arrestin-dependent signalling References 

Cholecystokinin CCKAR, CCK1R β-arr1 is a key mediator of CCK-mediated insulin secretion and of its protective effect 

against apoptosis in pancreatic beta cells. 

(Ning et al., 2015) 

Vasopressin V2R Mutations introducing G protein or β-arrestin bias at V2R in familial nephrogenic diabetes 

insipidus and in nephrogenic syndrome of inappropriate antidiuresis (NSIAD) 

(Barak et al., 2001,Erdelyi et al., 2015,Jean-Alphonse et al., 

2009,Tenenbaum et al., 2009) 

Adrenaline 

epinephrine 

β1AR 

β2AR 

β-arr-biased signalling at β1AR mediates memory reconsolidation; carvedilol is a β-arr-biased 

agonist with proven efficacy in the treatment of heart failure; carvedilol and a β-arr-biased 

pepducin promote cardiomyocyte contraction 

(Carr et al., 2016,Liu et al., 2015,Wisler et al., 2007) 

FSH FSHR Impaired desensitization and internalization (N431I) and β-arrestin bias (A189V) associated 

with mutations at the FSHR in patients with fertility disorders 

(Casas-Gonzalez et al., 2012,Tranchant et al., 2011) 

Angiotensin AT1R Selectively engaging β-arr reduces blood pressure and increases cardiac performance; β-arr-

biased agonism induced by mechanical stress 

(Felker et al., 2015,Monasky et al., 2013,Rakesh et al., 2010,Violin et 

al., 2010) 

Kisspeptin GPR54 β-arr2 signalling promotes invasiveness through invadopodia formation in breast cancer 

cells; β-arr-dependent and Gq-independent signalling in GPR54 mutations associated with 

hypogonadotropic hypogonadism 

(Goertzen et al., 2016,Szereszewski et al., 2010,Zajac et al., 2011) 

Prokineticin PKR2 Various missense mutations found in PKR2 gene in patients with Kallmann syndrome lead to 

G protein or β-arr bias 

(Sbai et al., 2014) 

Endothelin ETAR Epithelian ovarian cancer: β-arr-dependent activation of oncogenic factor NFκB (Maguire et al., 2012) 

PTH PTH1R β-arr pathway stimulates trabecular bone growth without inducing bone resorption (Gesty-Palmer et al., 2006,Gesty-Palmer et al., 2009) 

GLP1 GLP1R Role of β-arr1 in insulin secretion and in β cell proliferation; G protein-biased agonist P5 has 

potent antidiabetic effects 

(Quoyer et al., 2010,Ravier et al., 2014,Sonoda et al., 2008,Talbot et 

al., 2012,Zhang et al., 2015) 

Table 2: demonstrated implications of β-arrestin-dependent signalling in pathophysiological situations 
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Abbreviation list 

 

α1AR, α2AR : Adrenoreceptors α1 and α2 

AC2 : Adenylyl cyclase 2 

AKT : Protein kinase B 

AMY1R, AMY2R, AMY3R, CGRPR, AM1R, AM2R, CTR, CALRLR : Calcitonin, amylin, calcitonin gene-related 

peptide and adrenomedullin receptors 

AP2 : Adaptator protein 2 

ApelinR : Apelin receptor 

ARF6 : ADP-ribosylation factor 6 

ARNO : ARF guanine nucleotide exchange factor 

ASK1 : Apoptosis signal-regulating kinase 1 

AT1R : Angiotensin receptor type 1 

β1AR, β2AR, β3AR : Adrenoreceptors β1, β2 and β3 

BLT1R, BLT2R, CysLT1R, CysLT2R, OXER, FPR2/ALXR : Leukotriene receptors 

BRET : Bioluminescence resonance energy transfert 

cAMP : cyclic adenosine monophosphate 

CCKAR, CCK1R, CCKBR, CCK2R: Cholecystokinin receptors 

CRF1R, CRF2R: Corticotropin-releasing factor receptors 

DP1R, DP2R, EP1R, EP2R, EP3R, EP4R, FPR, IPR, TPR : Prostanoid receptors 

EC50 : Half maximal effective concentration 

EGF : Epidermal growth factor 

ERK : Extracellular signal-regulated kinase 

ETAR, ETBR : Endothelin receptors 

FRET : Fluorescence resonance energy transfer 

FSHR : Follicle stimulating hormone receptor 

Gαs : Alpha subunit of heterotrimeric G protein 

Gβγ : Beta and gamma subunits of heterotrimeric G protein 

GhrelinR (GHSR1a) : Ghrelin receptor 

GHRHR, GIPR, GLP1R, GLP2R, SCTR : Glucagon family of receptors 

GPCR : G protein-coupled receptor 

GPR54 : Kisspeptin receptor 

GRK : G protein-coupled receptor kinase 

IκBα : nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 

JNK : c-Jun N-terminal kinase 

LHR : Luteinizing hormone receptor 

MAPK : Mitogen-activated protein kinase 

MC1R, MC2R, MC3R, MC4R, MC5R : Melanocortin receptors 

MDM2 : Mouse double minute 2 homolog 

MEF : Mouse embyonic fibroblast cells 

MEK1 : Mitogen-activated protein kinase kinase 1 

MKK : Mitogen-activated protein kinase kinase 

MNK : MAP kinase-interacting kinases 

MotilinR : Motilin receptor 

MT1R, MT2R : Melatonin receptors 

NK1R, NK2R, NK3R : Tachykinin receptors 
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NSF : N-ethylmelaimide sensitive fusion protein 

OX1R, OX2R : Orexin receptors 

OXTR : Oxytocin receptor 

P38 : P38 mitogen-activated protein kinase 

P90RSK : MAPK-activated protein kinase-1 

PDE4D3 : cAMP-specific phosphodiesterase PDE4D3 

PI3K : Phosphatidylinositide 3-kinases 

PKA : Protein kinase A 

PKR1, PKR2 : Prokineticin receptors 

PLA2 : Phospholipase A2 

PP2A : Protein phosphatase 2A 

PPYR1, NPY1R, NPY2R, NPY4R, NPY5R : Neuropeptide Y receptors 

PTEN : Phosphatase and TENsin homolog 

PTH1R, PTH2R : Parathyroid hormone receptors 

RhoA : Ras homolog gene family, member A 

RNA : Ribonucleic acid 

ROCK : Rho-associated protein kinase 

RXFP1R, RXFP2R, RXFP3R : Relaxin family peptide receptors 

SST2R, SST3R, SST5R : Somatostatin receptors 

TRHR : Thyrotropin-releasing hormone receptors 

TSHR : Thyrotropin receptor 

V1AR, V1BR, V2R : Vasopressin receptors 

VPAC1R, VPAC2R, PAC1R : Vasoactive intestinal peptide and pituitary adenylate cyclase-activating 

peptide receptors 

 

Figure legend 

 

Figure 1: Schematic representation of a Gs-coupled GPCR activation/deactivation dynamics. β-arrestins 

are centrally involved in all key steps.  
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Highlights 

• β-arrestins affect all the facets of GPCRs signalling, not just desensitization 

• β-arrestins are recruited to most hormone-responsive GPCR classes 

• β-arrestins control GPCR-mediated signals in intensity, time and space 

• There is a close connection between β-arrestin signalling and biased pharmacology 

• The understanding of β-arrestin-dependent mechanisms is rapidly evolving 
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Highlights 

• β-arrestins affect all the facets of GPCRs signalling, not just desensitization 

• β-arrestins are recruited to most hormone-responsive GPCR classes 

• β-arrestins control GPCR-mediated signals in intensity, time and space 

• There is a close connection between β-arrestin signalling and biased pharmacology 

• The understanding of β-arrestin-dependent mechanisms is rapidly evolving 

 


