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Abstract
Since 2012, clinical trials dedicated to proprotein convertase subtilisin kexin type 9 (PCSK9) inhibition with
monoclonal antibodies (mAbs) have unambiguously demonstrated robust reductions not only in low-density
lipoprotein (LDL) cholesterol (LDL-C) but also in lipoprotein (a) [Lp(a)] levels. The scientific literature published prior
to those studies did not provide any evidence for a link between PCSK9 and Lp(a) metabolism. More recent
investigations, either in vitro or in vivo, have attempted to unravel the mechanism(s) by which PCSK9 mAbs reduce
circulating Lp(a) levels, with some showing a specific implication of the LDL receptor (LDLR) in Lp(a) clearance
whereas others found no significant role for the LDLR in that process. This elusive pathway appears clearly distinct
from that of the widely prescribed statins that also enhance LDLR function but do not lower circulating Lp (a) levels
in humans. So how does PCSK9 inhibition with mAbs reduce Lp(a)? This still remains to be established.
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INTRODUCTION

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibition
with monoclonal antibodies (mAbs), either as monotherapy or
in combination with statins, recently emerged as a very prom-
ising strategy to lower circulating low-density lipoprotein (LDL)
cholesterol (LDL-C) in patients with dyslipidaemia and cardi-
ovascular disease (CVD) risk. PCSK9 is a natural circulating
inhibitor of the LDL receptor (LDLR). It binds to the LDLR
and after endocytosis targets the LDLR that would otherwise re-
cycle back to the cell surface, towards lysosomal degradation.
Like statins, anti-PCSK9 mAbs increase the abundance of the
LDLR at the surface of hepatocytes and thereby promote an ac-
celerated clearance of circulating LDL particles, thus lowering
LDL-C levels.

But in contrast with statins, inhibiting PCSK9 with mAbs
also promotes a reduction in lipoprotein (a) [Lp(a)] plasma
levels. Lp(a) consists of a unique protein structurally similar

Abbreviations: apo(a), apolipoprotein (a); apoB, apolipoprotein B; apoB100, apolipoprotein B100; CVD, cardiovascular disease; FH, familial hypercholesterolaemia; Ho/He-FH,
homozygote/heterozygote FH; LDL, low-density lipoprotein; LDL-C, LDL cholesterol; LDLR, LDL receptor; Lp(a), lipoprotein (a); mAbs, monoclonal antibodies; PCSK9, proprotein
convertase subtilisin kexin type 9; Q2W, every 2 weeks; VLDL, very low-density lipoprotein.
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to plasminogen, apolipoprotein (a) [apo(a)], covalently tethered
to the apolipoprotein B100 (apoB100) moiety of an LDL-like
particle by a unique disulfide bond. Apo(a) is a high molecu-
lar mass glycoprotein (approximately 300–800 kDa), expressed
exclusively by the liver. It contains 3 to more than 40 identical
kringle IV2 domains, and a strong inverse relationship exists
between apo(a) isoform size and Lp(a) plasma concentration in
humans.

Lp(a) is considered to be a highly atherogenic lipoprotein spe-
cies, as elevated Lp(a) levels are independently and significantly
associated with CVD. It is widely accepted that circulating Lp(a)
concentrations are primarily controlled by synthesis rather than
catabolism, but the molecular and cellular mechanisms govern-
ing apo(a)/Lp(a) hepatic production as well as Lp(a) catabolism
are poorly understood. For instance, the potential physiological
role for the LDLR in Lp(a) clearance remains extremely con-
troversial. So how do anti-PCSK9 mAbs, unlike statins, reduce
circulating Lp(a) levels in humans?
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PCSK9 AND Lp(a) IN OBSERVATIONAL AND
EPIDEMIOLOGICAL STUDIES

Prior to reports of the initial phase I/II clinical trials in 2012 show-
ing that PCSK9 inhibition with two fully human mAbs, namely
alirocumab (Sanofi–Regeneron) and evolocumab (Amgen), yiel-
ded robust reductions in LDL-C as well as in Lp(a) levels, it had
not been anticipated that this new class of drugs would signific-
antly lower Lp(a) levels in humans. Indeed, the widely prescribed
statins, that also increase LDLR expression, do not reduce cir-
culating Lp(a) levels. Statins even appear to promote a small
increase in plasma Lp(a) levels in clinical trials.

Furthermore, carriers of the PCSK9 loss-of-function muta-
tions Y142X and C679X (all African Americans) display
similar Lp(a) levels to non-carriers [99 +− 53 compared with
98 +− 78 mg/dl respectively] [1], and patients with familial hyper-
cholesterolaemia (FH) also carrying the PCSK9 loss-of-function
mutation R46L had non-significantly increased Lp(a) levels com-
pared with non-carriers [25 (6–36) compared with 16 (6–35)
mg/dl] [2]. In the Danish population, however, the PCSK9–R46L
mutation was associated with slightly reduced Lp(a) levels [8 (4–
42) mg/dl for homozygous carriers, 9 (4–32) mg/dl for hetero-
zygous carriers compared with 10 (5–30) mg/dl for non-carriers;
P = 0.02] [3]. The dominant negative loss-of-function PCSK9
V114A–R104C mutation carrier had no detectable plasma Lp(a)
[4]. In addition, there was no difference in lipid profiles between
carriers and non-carriers of the InsLeu PCSK9 genetic variant
associated with reduced CVD, with Lp(a) levels of 19 (5.5–39.5)
and 16 (7–38) mg/dl respectively [5].

In contrast, Lp(a) levels were increased among PCSK9–E32K
gain-of-function mutation carriers (n = 42) compared with 4015
normolipidemic controls [21.1 (11.7–34.9) compared with 11.8
(6.5–29.4) mg/dl respectively, P = 0.0011] [6] and in two small
groups of FH patients carrying PCSK9 gain-of-function muta-
tions, Lp(a) levels were also slightly elevated [7]. Among four
PCSK9–S127R gain-of-function mutation carriers followed in
our institution [8], only one had strikingly elevated Lp(a) levels
that was associated with a very small apo(a) isoform encom-
passing only three kringle IV2 repeats (M. Krempf, M. Croyal
and G. Lambert unpublished observation).

Interestingly, no positive association was found between circu-
lating PCSK9 and Lp(a) levels in epidemiological studies. Thus,
in the Dallas Heart Study (3138 persons), PCSK9 levels, that pos-
itively correlated with LDL-C (r = 0.24, P < 10−4) and several
other biomarkers of lipid and glucose metabolism, did not cor-
relate with Lp(a) (r = 0.02, P = 0.33) [9]. In a study performed
in 295 asymptomatic Australians, serum PCSK9 concentrations
were not correlated with Lp(a) (r = −0.0138) [10]. A study con-
ducted in more than 4000 Stockholm inhabitants did not show
higher plasma Lp(a) in individuals with higher PCSK9 levels,
when analysed by quartiles [11]. Likewise, PCSK9 did not cor-
relate with Lp(a) levels in 716 American women (r = −0.02,
P = 0.63) [12]. In line with those studies, we recently reported
a lack of association between plasma Lp(a) and PCSK9 levels in
161 statin-treated asymptomatic FH patients [13].

Together, the combined observations of gain- or loss-of-
function PCSK9 mutation carriers as well as the lack of cor-

relation between PCSK9 and Lp(a) levels reported in several
epidemiological studies do not provide any evidence of an asso-
ciation between PCSK9 and Lp(a) in humans.

PCSK9 AND Lp(a) IN CLINICAL TRIALS

The link between PCSK9 and Lp(a) came from the first phase
I/II clinical trials showing unambiguously that PCSK9 inhibition
with alirocumab consistently reduced circulating Lp(a) levels by
up to 30%, in monotherapy as well as on top of statins both in
normolipaemic volunteers and in dyslipidaemic individuals in-
cluding heterozygous FH patients [14–17]. Similar observations
were made in the initial phase I/II clinical trials of evolocumab,
also published in 2012 [18–22]. Comprehensive assessment of
Lp(a) lowering after 12 weeks of treatment with 140 mg evolocu-
mab every 2 weeks (Q2W) showed mean reductions in Lp(a)
of 32%, 2-fold lower than those observed for LDL-C (−65.5%)
and apoB (−55.6%). There were significant associations between
percent changes in Lp(a) and percent changes in LDL-C (r =
0.33) or apoB (r = 0.36) (P < 0.001, all) [23,24]. When LDL-C
levels were corrected for the contribution of Lp(a)-cholesterol,
the Spearman’s correlation coefficient between changes in Lp(a)
and changes in LDL-C after 12 weeks of evolocumab treatment
was r = 0.49, and r = 0.36 after 1 year of treatment (P < 10−4)
[25]. Similar observations were made for alirocumab, also with
positive correlations between changes in Lp(a) and changes in
LDL-C (r = 0.23, P < 0.05) [26].

Interestingly, significant reductions in Lp(a) were not seen in
the single phase I trial of ALN-PCS, a RNAi that reduces en-
dogenous PCSK9 production, despite a 40% reduction in LDL-
C [27,28]. Reductions in Lp(a) observed with mAbs targeting
PCSK9 were sustained over time, regardless of baseline Lp(a) or
LDL-C levels [29–32]. These reductions were of similar mag-
nitudes in diverse patient populations, including heterozygous
FH and Type 2 diabetics [32–41], as well as on top of various
background lipid-lowering treatments [42]. Noteworthy, LDL-
C and Lp(a) reductions appeared stronger in Japanese patients,
at −68.6% and −50.6% with 140 mg evolocumab Q2W, and at
−69.1% and −34.1% with 150 mg alirocumab Q2W respectively
[43–45]. Encouraging interim reports published simultaneously
in 2015 showed (i) a sustained reduction in LDL-C (−52%) as-
sociated with a cumulated incidence of cardiovascular events
of 0.95% in the evolocumab arm compared with 2.18% in the
placebo arm of the OSLER phase III study (Amgen) after 1 year
[46] and (ii) a sustained reduction in LDL-C (−56%) and Lp(a)
(−25.6%) associated with a cumulated incidence of cardiovas-
cular events of 1.7% in the alirocumab arm compared with 3.3%
in the placebo arm of the ODYSSEY phase III study (Sanofi–
Regeneron) after 1.5 years [47]. Whether Lp(a) reductions in-
duced by PCSK9 mAbs will per se translate into a decrease in
CVD will be difficult to tease out from the anticipated beneficial
effects of concomitant sharp reductions in LDL-C levels.

In addition to alirocumab and evolocumab, the clinical safety
and efficacy of bococizumab (Pfizer) and of LY3015014 (Eli
Lilly), two humanized mAbs targeting PCSK9, were reported in
2015. Treatment with 150 mg of bococizumab Q2W promoted
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a 54.2% decrease in LDL-C but changes in Lp(a) were unfortu-
nately not reported [48]. Treatment with 300 mg LY3015014 ad-
ministered every 4 weeks promoted a 58.2% decrease in LDL-C
and a 37.3% decrease in Lp(a) levels [49], in line with those repor-
ted with the fully human mAbs alirocumab and evolocumab [50].

Together, the results of clinical trials showing sustained ef-
fects of PCSK9 inhibition with mAbs on circulating Lp(a) levels
provide strong evidence that PCSK9 plays a key role in Lp(a)
metabolism. Since the mean reduction in Lp(a) with these new
drugs is 2-fold lower than what is observed for LDL-C, and that
changes in Lp(a) correlate modestly with changes in LDL-C,
the mechanism(s) by which PCSK9 inhibition with mAbs lower
Lp(a) levels appear(s) more complex than anticipated.

PCSK9 AND Lp(a) IN THE PLASMA

PCSK9 is a secreted protein mainly expressed by the liver. PCSK9
circulates in the plasma either as a full-length 62 + 12 kDa form
or as a furin-cleaved 55 + 12 kDa inactive form and can eventu-
ally generate dimers or trimers [51,52]. A significant proportion
(up to 40%) of PCSK9 appears to be associated with LDL but
not with VLDL or chylomicrons in human plasma [51,53,54].
In patients presenting with severe FH, LDL apheresis with dex-
tran sulfate columns lowered circulating PCSK9 levels by 52%
[both LDL bound (−81%) and apoB-free forms (−48%)] [55].
In Japanese homozygous and heterozygous FH patients, LDL
apheresis similarly reduced full-length PCSK9 and furin-cleaved
PCSK9 forms by 56% and 55% respectively [56].

We recently reported that PCSK9 is also bound to Lp(a) in
the plasma, likely through direct interactions with apoB100 but
not with apo(a). In individuals with elevated Lp(a) levels, PCSK9
showed a preferential association with Lp(a) than with LDL [57].
The physiological significance of PCSK9 binding to LDL and
Lp(a) remains however to be established: it is a common event
for PCSK9 (up to 40% is bound to lipoproteins) but a rare event
for lipoproteins (less than 1% carry PCSK9). Nevertheless, the
association between PCSK9 and Lp(a) underpins a specific role
for PCSK9 in Lp(a) metabolism.

A ROLE FOR THE LDL RECEPTOR

Given that (i) PCSK9 primarily targets the LDLR, and that (ii)
inhibiting PCSK9 with mAbs lowers LDL and Lp(a) that both
contain apoB100, a major ligand for the LDLR, it can be reas-
onably be hypothesized that the LDLR mediates the removal of
Lp(a) from the circulation. In addition, among patients with hy-
percholesterolaemia, those presenting with LDLR defects appear
to have higher Lp(a) levels [58,59], although this has not been
unanimously observed [60–62]. In that respect, FH patients in
whom the presence of mutations in the LDLR, apoB and PCSK9
has been excluded also display higher Lp(a) levels [63]. Fur-
thermore, in the Copenhagen General Population Study, after
adjusting LDL-C for Lp(a)-cholesterol levels (i.e. using correc-
ted LDL-C values), the levels of Lp(a) were similar between

individuals unlikely to have FH (24 mg/dl, n = 43699), those
with possible FH (22 mg/dl, n = 2360) and those with probable
or definite FH (21 mg/dl, n = 141, Ptrend = 0.46), suggesting that
the LDLR is unlikely to remove Lp(a) from the circulation [64].

Initial reports trying to unravel the mechanism of Lp(a) cata-
bolism using dermal fibroblasts isolated from homozygote FH
(Ho-FH) patients and control individuals are contradictory. One
study showed that the LDLR is of minor importance, if any, for
Lp(a) binding to and internalization in human fibroblasts [65],
whereas Lp(a) was shown by others to bind to fibroblasts only
with a slightly reduced affinity compared with LDL, presumably
via the LDLR [66–68]. An Lp(a)-like complex, consisting of a re-
combinant form of apo(a) encompassing 17 kringle IV2 domains
associated on to an LDL particle, was also found to undergo cel-
lular binding and uptake via the LDLR in fibroblasts and HepG2
hepatoma cells [69]. In that study, the plasminogen receptor was
proposed to represent a significant pathway for removal of free
apo(a).

In vivo Lp(a) turnover studies conducted in humans also yiel-
ded conflicting results. Thus, the fractional catabolic rate of Lp(a)
appeared reduced in one homozygous FH patient totally lacking
the LDLR [68], whereas the Lp(a) fractional catabolic rates of
five Ho-FH, four heterozygote FH (He-FH) and eight non-FH
controls were similar in another study [70]. In both studies, LDL
fractional catabolic rates were sharply reduced in FH patients.

In 2015, PCSK9 was shown to inhibit Lp(a) uptake in the
HepG2 hepatoma cell line and in dermal fibroblasts via a mech-
anism involving mainly the clathrin machinery and the LDLR
[62]. In contrast with Lp(a), the catabolism of apo(a) alone did
not appear to occur via the LDLR in that study. The authors
proposed that PCSK9 inhibition with mAbs promotes a supra-
physiological increase in LDLR expression at the hepatic surface
thereby allowing Lp(a) uptake. In another study, Lp(a) cell asso-
ciation with HepG2 was shown to parallel the levels of LDLR
expression modulated either by PCSK9, anti-LDLR antibodies
or by the amount of serum in the culture medium [25].

In sharp contrast with those studies, we recently reported that
Lp(a) cellular uptake is not mediated by the LDLR in dermal
fibroblasts isolated from non-FH, heterozygous and homozygous
FH patients [71–73], as well as in human primary hepatocytes
isolated from two unrelated donors [74]. Figure 1 illustrates one
of the major conclusions of our study: lowering LDLR expression
with PCSK9 sharply reduces the cellular uptake of fluorescent
LDL but not that of fluorescent Lp(a) in human hepatocytes. We
also showed that alirocumab did not modulate Lp(a) uptake in
fibroblasts and hepatocytes [74]. We are uncertain how to explain
the discrepancies between our study and that of Romagnuolo et
al. [62] beyond the different methodologies used [e.g. hepatoma
cell line compared with primary hepatocytes; different isola-
tion/purification procedures for Lp(a); Lp(a) containing apo(a) of
variable lengths; flow cytometry/confocal microscopy compared
with Western blots; variable concentrations of PCSK9; apoE
genotype of Lp(a) donors]. Our results are however concordant
with the observations that up-regulating LDLR expression even
with the most potent statins does not reduce Lp(a) levels in vivo
[75], and that PCSK9 inhibition with evolocumab reduces Lp(a)
in two out of three homozygous FH totally lacking the LDLR,
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Figure 1 Inhibiting LDLR expression with PCSK9 does not significantly affect Lp(a) uptake in human primary hepatocytes
Human primary hepatocytes grown in Millicell EZ slides were treated with or without recombinant PCSK9 (50 nM) for 24 h.
Fluorescent LDL-bodipy (yellow) or fluoresent Lp(a)-bodipy (red-hot) was added to the culture medium for 3 h. Cells were
washed extensively with ice-cold PBS containing 1% BSA, fixed in PBS containing 4% paraformaldehyde for 10 min, and
rinsed twice with PBS. Nuclei were stained with Hoechst 33258 (blue) and cells were visualized on a confocal fluorescent
microscope.

despite no reduction in LDL-C [76,77]. We also showed that
PCSK9 enhances the secretion of apo(a)/Lp(a) from primary
hepatocytes, an effect totally blunted by alirocumab [74]. This
observation is in line with several in vitro and animal studies
showing that PCSK9 modulates the synthesis and secretion
of other apoB containing lipoproteins from the liver [78–80]
and the intestine [81,82]. We therefore propose that PCSK9
inhibition with mAbs lowers Lp(a) at least in part by acting on
Lp(a) hepatic synthesis, secretion and/or assembly.

CONCLUSION

All together, the studies reviewed above do not provide a defin-
itive answer to the following question: by which pathway(s) or
mechanism(s) does PCSK9 inhibition with mAbs consistently
lower circulating Lp(a) in clinical trials? More frustrating were
the opposite conclusions communicated in May 2016 at the Lp(a)
satellite meeting held in Innsbruck (Austria) from in vivo Lp(a)
turnover studies conducted in humans. One study showed that
PCSK9 inhibition with alirocumab increased Lp(a) fractional
catabolic rates, thus Lp(a) catabolism, although this was not sig-

nificant, whereas the other showed that PCSK9 inhibition with
evolocumab in normolipaemic individuals decreased Lp(a) pro-
duction rates, thus Lp(a) synthesis.

One can only conclude with certainty that combined research
efforts from our various labs are needed to better understand the
intriguing and complex metabolism of the fascinating Lp(a).
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