• A set of discrete variables X, each with a domain D

• We define a joint function on all variables f : D X → S

• By decomposing the joint function to a set C of functions of small arity (factors)

• Concise way of describing complicated functions

Function Aggregation -WCSP

S ≡ R + ∪ {0, ∞} f (x) = c∈C c(x)
• f represents a cost or energy or potential

• Each c is a cost function Function Aggregation -MRF S ≡ R + ∪ {0} f (x) = c∈C c(x)
• Each c is a probability table

P(x) = f (x) Z Z = 1 x c∈C c(x )
WCSP/MRF Equivalence

• Given MRF P, a WCSP P has

c (x) = -log c(x)
Then exp(-f (x)) ∝ P(x) Z = 1

x c∈C exp(-c(x ))

• So we deal with costs only

MAP

• Maximum a posteriori estimation • Compute assignment with maximum probability in MRF

• By equivalence to WCSP, same problem as cost minimization

• Optimization of an NP-hard set, hence FP NP

• Generalizes Boolean satisfiability, constraint satisfaction

Partition Function

• Compute Z, the normalization constant (probability mass of the function)

• P PP -complete

• By Toda's theorem, this is Beyond PH

• Partition X into variable sets A, B

• Compute assignment x A that maximizes probability mass of f | x A

• NP PP Aside: WCSP as COP

• WCSP combines crisp CSP with arbitrary polynomial objective

• Clever dual bounds

• Small arity is not necessary • Can use the machinery developed in CSP for more expressiveness

• Higher level language • Propagators

• Global Cost Functions an underexplored area

• New scenarios 

∀x c∈S c(x) = c∈S c (x)
• Dates back to at least the Held-Karp lower bound for TSP

WCSP reparameterization

Move(c 1 , c 2 , x, α)

• Shifts α units of cost between c 1 and c 2 on the common assignment x

• Shift direction: sign of α.

• α constrained: no negative costs!

• Commonly restricted to scope(c 1 ) ⊂ scope(c 2 ) and in particular |scope(c 1 )| = 1: 

Project({i}, {i, j}, a, α) Example Example Project({1, 2}, {2}, a, 1) → Example Project({1, 2}, {2}, a, 1) → ← Project({1, 2}, {2}, a, -1)

Conclusions

• Reparameterization is a universal tool

• Maintains cost/probability of all assignments, so always applicable • Non-trivial improvement of trivial bounds

• Precise connection to linear programming in cost minimization

• Hierarchies of strengthening reparameterizations which change network

• Linear programming cuts Q?

•

  Prune subtree as soon as upper bound for Z (f x A ) is lower than incumbent 1 Start with root node, corresponding to initial problem 2 Pick an open node 3 Compute Z (f | x A ) upper bound u 1 If u < εU, close node; else 2 If all A variables have been assigned, compute Z (f x A ), replacing incumbent if needed; else 3 Make a binary choice on variables in A, replace by two new nodes

4 Go to step 2

Min Sum Diffusion

1 Choose overlapping factors c 1 , c 2 2 For every x in the intersection, choose α so that c 1 (x) = c 2 (x)

3 Repeat until convergence

• Averages factors

• Will converge as number of iterations goes to infinity, as long as each pair of factors is chosen infinitely often Upper bound for Partition Function

• Product of mass of all factors

• Proof: by distributing the product over the sum Approximate Z

• Branch and bound