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Abstract 

The biofilm ubiquitously exists on most wet surfaces. It is a protective shield of the bacteria and causes the difficulty in the
disinfection. The irrigation of the biofilm by the specific swimmer bacteria can exacerbate killing of biofilm bacteria. Therefore, 
we precisely investigate the tunneling of swimmers bacteria within biofilms.  These bacterial stealth swimmers create transient
opened spaces in the biofilm. We found that these opened spaced in the biofilm is the obvious indication of the motion of the 
swimmers. We exploit both detected swimmer in one swimmer channel and the opened space in the other biofilm channel of 
confocal microscope video, in order to interactively improve the tracking of the swimmer’s motion in the biofilm, which is 
implemented by improving a successful algorithm of single particle tracking. Moreover, we quantitatively study the swimmer 
trajectory, the opened space and their relation in the large-scale microscope video when the biofilm is separately irrigated by
many different species of bacteria. We try to discover the influence of the irrigated bacteria on the biofilm. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of Spatial Statistics 2015: Emerging Patterns committee. 
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1. Introduction 

Along the food chain, most wet surfaces are covered by biological pellicles called biofilms. Biofilms are 
composed of spatially organized micro-organisms embedded in an extracellular matrix [1][8]. This organic cement 
can act as a protective shield against the action of antimicrobials, thus raising serious problems of pathogens 
persistence and extra-use of chemical biocides in industrial settings. Houry et al. [3] discovered that planktonic 
bacilli propelled by flagella are able to tunnel deep within the biofilms structures. These bacterial stealth swimmers 
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create transient opened spaces that increase macromolecular transfer within the biofilm. It has been proved [2][3] 
that the irrigation of the biofilm by swimmer bacteria can exacerbate killing of biofilm bacteria by facilitating 
penetration and action of disinfectants from the environment. So the researchers become interested in studying more 
precisely the tunneling of swimmers bacteria within biofilms. The time-lapse confocal microscopy 2D+Time 
multichannel videos show the dynamic interaction of swimmers and biofilm may exist.  In the present study, 
dynamics are studied in the vicinity of the adherence surface where the biofilm sticks. Nevertheless bacteria can 
enter or leave this region so occlusions of trajectories occur. Depending on bacteria strains, swimmers bacteria may 
adopt separated dynamics or aggregate in chains of several bacteria. Herein we will consider strains which do not 
aggregate or divide.  

In this paper we will explain how we process such video data in order to extract and analyze quantitative 
information with respect to the interaction of the swimmers within the biofilm. First, swimmers are localized in each 
frame and then linked across the frames. Transient opened spaces or pores created by swimmers within the biofilm 
are correlated with swimmers tracks. So we decide to exploit the image information between the channel of 
swimmer bacteria and the channel of biofilm background from the microscope video to achieve the better quality of 
the swimmer and pore tracking. Once swimmers and pores are localized and tracked several features (e.g. speed, 
persistence, pore area …) are computed. So the comparison and the classification of swimmers dynamics within the 
biofilm itself can be addressed with classical statistical tools. Moreover questions related to the interactions between 
swimmers and between swimmers and biofilm can be considered. Hereafter on one hand we question if the 
swimmers reuse preferentially space within the biofilm already visited and propose a simple statistical test. On the 
other hand we also show preliminary results related to mixtures of swimmers within the biofilm. 

2. Swimmer tracking by the features of two channels 

Since the biofilm video from the microscope is composed of two channels – the swimmer channel (S-channel) 
and biofilm channel (B-channel), as shown in Fig. 1, we will explore features in both channels to improve the 
tracking of the bacteria’s motion behavior in the biofilm. 

                
(a) Swimmer channel.           (b) Biofilm channel.                                   Fig. 2. The detection of  

Fig. 1. Both channels in the biofilm video.                               the swimmer in S-channel. 

2.1. The detection of swimmers in the swimmer channel 

Since the images from the microscopy as Fig. 1 are extremely noisy, we will first denoise both kinds of images 
by ND-SAFIR toolkit [4]. Then, depending on the difficulty in the segmentation of S-channel either a simple 
threshold method or a specific segmentation approach based on the detection of elliptic points was used. The elliptic 
point is defined as the point on a regular surface, whose Gaussian curvature or equivalently, the principal curvatures 
have the same sign. And the elliptic point is detected by the Gaussian filtered Hessian matrix of the image. Once 
detected  we filter the elliptic points by several criteria related to intensity, including the intensity inside ellipses, the 
distance between elliptic points, and the intercepted areas between ellipses. This step is followed by a classical 
watershed segmentation method.  An example of swimmer detection is shown in Fig. 2.  
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2.2. The detection of the pore in the biofilm channel 

We detect the pore in biofilm frames by the superpixel [5] because there is not pixel-level segmentation in 
biofilm frames. We partition the frame image into superpixels shown in Fig. 3. In the collaboration of two channels 
of the biofilm, the superpixels around the swimmer are of high intensity in swimmer channel, while low intensity in 
biofilm channel. We use this property as the criterion to decide the pore together with the Euclidean distance to the 
swimmer. An example result is in Fig. 4. Each detected pore is assigned to its closest swimmer by Euclidean 
distance.

          Fig. 3 The partition by the superpixel.            Fig. 4 The detection of the pore around the swimmer.

2.3. The swimmer tracking by both channels 

In the past many different approaches of particles tracking have been proposed by researchers, but most 
approaches are proposed to track the particles in a data set. Here we are meeting with two or more collections of 
particles (one or two swimmers species, bacteria from the biofilm) moving in the same space and observed in more 
or less specific channels images. There are correlations between the images from these two channels. For instance a 
portion of space occupied by a swimmer is not occupied by the bacteria from the biofilm. Also as soon as a swimmer 
moves within the biofilm it opens a portion of space which stays free of bacteria from the biofilm for some time.  
Therefore, more accurate tracking by both sets of particles than by one set of particles should be possible. In this 
paper we propose an algorithm to consider the tracking by using two sets of correlated particles. The approach in [6], 
as well its toolkit U-Track, has been a successful approach in tracking the particle objects. U-Track includes two 
steps. In the first step, the Kalman filter is exploited to estimate the propagation of particles, compute the linking 
cost between particles in the consecutive frames and construct the cost matrix of consecutive frames. Then the linear 
assignment problem (LAP) [7] globally minimizes the linking cost defined by the cost matrix of particles between 
consecutive frames to find the linking of the particles. Similarly the track segments from the first step are linked to 
form the complete trajectories.  

Inspired by U-Track we propose DU-Track suitable for two sets of related particles. The framework of DU-Track 
is illustrated in the following figure: 

We regard each set of data as the individual data and implement the Kalman filter on each data to get its cost 
matrix. Then two cost matrices are fused according to the relation of two sets of data. The fusion of two cost matrix 
is formulated as Eq. 1: 

                                                     (1) 
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where  is the element of cost matrix for the data  and j in set , while   is the element of cost matrix for the 
data  and j in the other set P.  is the new element of cost matrix for the data  in the set S, together with its 
related data at  in the other set  at frame t, and the data , together with its related data  in the other set at
frame . The weight  is decided according to the correlation between two sets S and P. In the proposed DU-
Track, we take into account the histogram and shape of the swimmer, and sum up shape and intensity into the 
normalized n-bins histogram [9]. In addition, we implement the same procedure for gap closing after linking. We 
have used real biofilm videos to prove that DU-Track is better than U-Track, especially when swimmers meets with 
each other. We can see that DU-Track tracks better for swimmers in crowd and create the simpler trajectory. 
However, it is hard to get the ground truth even with the help from the expert. So we also create the simulation video 
with the swimmer number of 40, 80, 120, 160 and 200, each with 5 repetitions. It is easy in Fig. 6 to find that DU-
Track achieves the higher recall rates together with the lower wrong tracking in the simulation videos. And IU-Track, 
which is the cost matrix of the pore by using the motion propagation from Kalman filter of the swimmer, is normally 
better than U-Track. 
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(a) U-Track           (b) IU-Track                (c) DU-Track                         Fig. 6. The correct and  
Fig. 5. The trajectory of real biofilm videos.                        wrong rates in the simulation. 

We have applied DU-TRACK on the large-scale biofilm videos from the confocal microscope. The tested videos 
contain the following bacteria species: Bacillus cereus, Bacillus licheniformis, Bacillus megaterium, Bacillus 
mycoides, Bacillus polymyxa, Bacillus pumilus, Bacillus sphaericus, and Bacillus subtilis and the mixture of 2 
species. Because of the limited page, we only show several groups of data about swimmer speed, the pore and the 
number of the swimmer in Table 1. And we display the maximal projection of S-channel in each video of B.
licheniformis in Fig. 7. We will analyze Table 1 in detail in this section. 

Table 1. 12 kinds of data about speed and pore in several species.
Species  Lichenifor

mis 
Megaterium Mixture of 2 species Polymyxa Pumilus Sphaericus Subtilis 

Video/strain Name 7B1.lif-
Series007-
C_1 

11A5.lif-
Series011-
Z0C_1 

cere11B15+sph11G3
.lif-Series015-C_1 

11B1.lif-
Series003-
Z0C_1 

11B16.lif-
Series002-
C_1 

10C3.lif-
Series008-
C_1 

20B9.lif-
Series004-
C_1 

Mean speed 3.065358 8.823769 13.629228 10.136891 6.483279 9.223361 9.960491 

Maximum speed 7.52994 19.105562 31.555106 19.464718 14.795022 20.409907 29.634086 

Mean of max speeds of 
frames 

13.94485 28.812816 64.768949 17.822918 20.845176 25.009459 32.070953 

Mean persistence 0.258692 0.514866 0.498213 0.619235 0.454129 0.600873 0.373457 

Maximum persistence 0.827319 0.990321 0.982525 0.983908 0.932129 0.994437 0.836825 

Pore area 8220.399 3644.096675 11520.92651 3084.904678 5072.765021 4109.57631
3

2079.52176
7

Pore area excluding eDNA 7172.127 3606.011099 9586.329589 52.925336 4229.369963 NaN 318.815566 

Pore area per swimmer 170.2346 66.841019 50.811605 219.656099 148.932873 48.903859 84.796033 

Pore area per swimmer 
excluding eDNA 

148.5261 66.142443 42.279307 3.768471 124.171378 NaN 13.000246 

Mean number of swimmers 48.28866 54.518868 226.738095 14.044248 34.060748 84.033784 24.52381 
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Swimmer number in and 
around eDNA 

0.088204 0.034219 0.190118 0.306985 0.253886 0.495888 0.48097 

Swimmer number in and 
around eDNA per eDNA 
size 

0.000084 0.000898 0.000098 0.000101 0.000301 0.000117 0.000273 

Fig. 7. The maximal projection of each video of B. Licheniformis.
Light regions are associated to visited space by swimmers. 

2.4. The discussion about the speed and pore features  

2.4.1. speeds 
In Table 1, we have shown 3 kinds of data about the motion speed of the swimmer: mean speed, maximum 

speed, and mean of max speeds of frames. For better understanding, we separately describe the definition of the 
mean speed of swimmer tracks in a video, maximum speed of swimmer tracks in a video, and the mean of max 
speeds in each frame as following equations: 

; ;             (2) 

where the set (species; strain; sample) means a video belonging to a sample k of a strain s of a species e. T is the set 
of tracks in the trajectories. denotes the speed of the track i. t is the time of the frame in a video (species; strain; 
sample).
       In Fig. 8 and 9, we separately show the notched box plots and p-value from one-way Anova analysis of each 
species of the mean speed of swimmer tracks in a video and the mean of max speeds in each frame for different 
species. From this global analysis speeds are different for this collection of species. However considering multiple 
test B. licheniformis is different from B. sphaericus at a 5% significance level, B. Polymyxa is significantly different 
from B. sphaericus,  and B. pumilus species and  B. subtilis is not significantly distinctive from others. 

2.4.2. persistence 
      For a particle denoted i, the persistence at time t is defined as the ratio of the distance between the positions at 
time  and t of the particle to the covered distance by the particle during this time:                (3)        

with . In Fig. 10 we display the mean persistence in the whole video of each video in all 
the species.  The persistence of B. cereus and B. polymyxa are higher than others. 

2.4.3. pores size 
     We want to check if the swimmer reuses the pore opened by other swimmers in the biofilm. So we have tested 
the pore size with only 1 species or 2 kinds of species. But we did not find the obvious difference. The distribution is 
tested as similar in two cases and different in two other cases. However, we have shown the box plot of the pore size 
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of all the species in Fig. 11. We can found that their properties are distinct. 
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   Fig. 8. the mean speed of swimmer                               Fig. 9. The mean of max speeds in each frame 
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Fig. 10. The mean persistence                              Fig. 11. The pore size at different frame 
 in the whole video.                                             time in a video with mixture of species 

We have the bag of swimmer features of 12 values, however 12 dimensions are too high to get the inner 
property of swimming characteristics of different species. Partial least squares Discriminant Analysis (PLS-DA) [10] 
is a classical PLS regression [11] but its response variables are classes. PLS-DA is popularly used in the 
classification and discrimination problems. In PLS-DA, we use the variables of motion properties as the predictor 
variables and swimmer species as the response variable. The PLS-DA of our data is shown in Fig. 12. It is obvious 
that PLS-DA can discriminate the strain species. 

Fig. 12. The PLS-DA analysis of the bag of swimmer motion features in different strains. Several species are well 
separated on the two first axes. 

2.5. The further discussion of the biofilm 
We can conclude that the mean speeds of each swimmer species are not so different in Fig. 8, however, the 

variance of the speed in different species are obviously different in Fig. 9. Through the large-scale experiments, we 
also found that most swimmers stay in one focal plane only for 3-10 frames (large swimmers like B. sphaericus
could stay longer), and then randomly move up or down to the other focal planes of the 3d structure of the biofilm. 
Swimmers and eDNA 

Some of the variability in the speed could be explained by the existence of e-DNA pockets inside the extra-
cellular matrix from the biofilm. The eDNA is one of natural extracellular environment of biofilm, which can be 
stained by the cell permeant SYTO 61 red fluorescent nucleic acid. SYTO 61 red fluorescent nucleic acid cannot 
immerse and penetrate into the biofilm in a short time, but it can color eDNA. So if the eDNA exists in the biofilm, 
the eDNA can be always visible in S-channel and sometime in B-channel. The swimmers may stick to eDNA. 
Do the swimmers reuse paths already visited? 
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 First of all, we can see the proportion of space visited by swimmers grow regularly along time in Fig. 13. 
However to address in more details this question we proceed in several steps. First we have built the progressive 
projections of space visited by swimmers along time. In Fig. 14 we show (in gray) the space visited from time step 
t=0 (frame 1) to a couple of time steps. The second step consists in considering swimmers at time t+Delay and 
comparing their locations to the space visited up to time t. The parameter Delay is fixed in such a way that the 
bacteria observed at time t+Delay has no chance to be present at time t except if they were more or less static or 
they have been leaving the focal plane in between time t=0 and time t and come back. Bacteria that are more or less 
static are filtered out (red points). They are present in more or less fixed locations from time t to time t+Delay. For 
the number N(t+Delay) moving swimmers at time t+Delay (blue points) the distances from their centroid position to 
the visited  space at time t are computed. At the same time we generate N(t+Delay) uniformly random locations in 
the image plane and compute their distances to the visited space. In Fig. 14 we also show the distributions of 
distances to the visited space for the swimmers on the one hand and random locations on the other hand. As the 
visited space is more and more filled the distances to the visited space are more and more short. The high proportion 
of swimmers close to the visited space may suggest swimmers reuse the paths already visited. In Fig.14, we consider 
two samples, one from B. licheniformis (left panel), and one from B. sphaericus (right panel). Applying the 
Kolmogorov-Smirnov test of distributions comparison we accept null hypothesis most of the times for B.
licheniformis and reject most of the times for B. sphaericus. In the first case it seems that swimmers bacteria 
preferentially do not reuse visited space at contrary to the second case. In the first case the bacteria are much smaller 
than in the second case. 
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Fig.13. The proportion of visited space                                             Fig. 15. The distributions of mean speed 
along time for a sample from B. Licheniformis                                  for the mixture of swimmers from
 (resp. B. sphaericus) on the left (resp. right).                                     B. megaterium and B. Pumilus. 

Fig. 14. Distribution of distances of swimmers (centers in blue on images) detected at different time steps to 
previously visited space (in gray on images) of biofilm (in green). Also we show distributions of distances for 
randomly distributed points. The panel on the left (resp. right) side is from a sample of B. licheniformis (resp. B. 
sphaericus) swimmers. 
Does mixture of swimmers from different species result in interaction effects? 
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We compare the mixture of B. pumilus (strain 3F3) and B. megaterium (strain 10C3) to the pure strains. In Fig. 
15 we can found the mixture of 3F3 and 10C3 is similar to 10C3. From left to right they are the mixture, the 
individual strains and the distribution created from the random sampling of individual strains in equal proportions. 
At least from this mixture, we can found that one species in the mixture dominates the swimming behavior of both 
in the mixture, while the impact from the other species is little. In Fig.16 it seems the two strains taken individually 
may reuse the previously visited space. Taken together it is not so clear. 

Fig.16.  Distribution of distances of swimmers to visited space. From left to right a sample from a mixture of B.
pumilus and B. megaterium, B. pumilus, B. megaterium.

3.  Conclusions 

In this paper we have firstly proposed an algorithm to achieve better performance of tracking two correlated sets of 
particles by exploiting their correlation and the Kalman filter of each set, especially for the crossing or close particles, 
based on the successful single particle tracking algorithm, U-Track. We have proved that the proposed DU-Track 
can better track two correlated sets of data in the biofilm, which are the detected swimmers and the pores in the 
biofilm. Then we have analyzed in detail the features of biofilm from detecting and tracking the swimmer and the 
pore in order to reveal the behavior of the swimmer and its influence on the biofilm. The swimmer speeds of various 
species are different but the sizes of the created pores are not significantly different.  However according the large-
scale data of swimmer species it is possible to classify the swimmer species if we have the features of the swimmer, 
the pore and the corresponding trajectory. It seems that swimmers do not reuse visited space but this may depend on 
their size, and further investigation is needed. Detailed study of mixture of swimmers from different species is 
undergoing and can benefit from the tools already developed for single species tracking studies. Above results can 
promote the knowledge of the best swimmer species in destroying the biofilm. 
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