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Abstract

Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss.

Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying

mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in

Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a

stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this

system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest

streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and produc-

tion of trout all increased with stream temperature. We identified two mechanisms that contributed to these

responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food

web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the war-

mer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a

more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified

through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results

highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge

of warming impacts on natural communities and ecosystem functioning.
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Introduction

Recent predictions suggest that Earth’s surface will

warm on average by at least 1.5 °C over the next cen-

tury, with temperature increases of up to 9 °C at higher

latitudes (IPCC 2013). These changes will have signifi-

cant impacts on biological communities because tem-

perature determines the metabolic demand of

individual organisms (Brown et al., 2004). Warming is

expected to disproportionately affect higher trophic

levels (Petchey et al., 1999; Arim et al., 2007), with

experimental evidence that metabolic rates rise more

rapidly than ingestion rates in warmer environments,

leading to energetic inefficiency and predator starva-

tion (Rall et al., 2010; Vucic-Pestic et al., 2011). Changes

in top-down control are likely to have major implica-

tions for community structure (Jochum et al., 2012;

Shurin et al., 2012) and so the indirect effects of warm-

ing through the food web may be even greater than

direct physiological effects.

Warming impacts are likely to be especially strong in

freshwaters, whose relatively discrete ecosystem

boundaries constrain the potential for species range

shifts to track thermal optima, unlike many terrestrial

and marine taxa (Perry et al., 2005; Chen et al., 2011).

This is particularly true for organisms with an entirely

freshwater life cycle which must either exploit thermal

refugia, adapt to the warmer conditions, or perish

(Cunjak, 1996; Kaeding, 1996; Ebersole et al., 2001; Hoff-

mann & Sgr�o, 2011). As ectotherms, fish cannot regulate
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their body temperature and so warming will directly

alter physiological functions such as thermal tolerance,

growth, metabolism, food consumption, and reproduc-

tive success (Fry, 1971; Ficke et al., 2007; P€ortner & Far-

rell, 2008). If increases in metabolic demand are not

matched by increasing food availability or strategies to

maximize energy intake, populations are likely to

decline or go extinct (McDonald et al., 1996).

Individual-level responses to warming will be deter-

mined by their position within the thermal performance

curve (P€ortner & Farrell, 2008), as well as the magnitude

and rate of temperature change (Ficke et al., 2007). Popu-

lations inhabiting the lowest latitudes of their geo-

graphic range are likely to approach their critical

temperature with warming, resulting in reduced physio-

logical performance, declining abundance, or extinction

(Almod�ovar et al., 2012). Conversely, populations at the

highest latitudes of their range may experience increased

production with warming, particularly if resource pro-

duction also increases (Blanchard et al., 2012).

We investigated the potential for apex predators to

experience increased performance at high latitudes of

their geographic range using brown trout, Salmo trutta,

as a model apex predator across a natural stream tem-

perature gradient in Iceland, which is the northern limit

of the species (Elliott, 1994). Brown trout are ideal can-

didates as a model species because their ecophysiology

is well-known, they are widespread across the northern

hemisphere, and they have the potential to influence

ecosystem processes through top-down effects in the

food web (Elliott, 1994; Jonsson & Jonsson, 2009; Elliott

& Elliott, 2010). Previous research in naturally heated

streams indicates an increased growth rate, mean body

mass, and population biomass of trout in warmer

waters (Kaeding & Kaya, 1978; Woodward et al., 2010;

O’Gorman et al., 2012). This may be due to adaptive

strategies employed by trout to overcome the metabolic

demands of the warmer environment, e.g. altered diet

(Kaeding & Kaya, 1978; Woodward et al., 2010), or indi-

rect effects of temperature on resource quantity or qual-

ity, e.g. both primary and secondary production

increase with stream temperature in our study system

(Gudmundsdottir et al., 2011; Hannesd�ottir et al., 2013),

while macroinvertebrate community composition also

changes considerably (Friberg et al., 2009; Woodward

et al., 2010). Thus, we hypothesize that mean body

mass, population abundance and biomass, individual

growth rates, and fish production will increase with

stream temperature via three possible mechanisms: (1)

more selective feeding behaviour; (2) greater impor-

tance of external subsidy in the diet; and (3) more effi-

cient transfer of energy through the food web (see

Fig. 1). We articulate the logic behind these proposed

mechanisms below.

Selective feeding

One potential mechanism to deal with the increased

metabolic demand of a warmer environment is for con-

sumers to actively choose higher quality resources. This

strategy is comparable to the need for smaller herbi-

vores to consume the most nutritious resources because

they are limited by high metabolism and digestive con-

straints (Hopcraft et al., 2010). Thus, when energy

requirements are low, a reasonable strategy for a gener-

alist predator may be to have a lower search rate and

consume a broad selection of mixed quality, but readily

encountered prey. In warmer environments, however,

it may be more beneficial to select for the most energeti-

cally valuable resources to lower the intake of resource

biomass and overcome ingestion inefficiency (Rall et al.,

2010; Vucic-Pestic et al., 2011).

Warming is also likely to alter the composition and

abundance of food resources available to higher trophic

level consumers. Aquatic micro- and mesocosm experi-

ments suggest an increase in the biomass of lower

trophic level organisms with warming (Petchey et al.,

1999; Yvon-Durocher et al., 2011), although this may be

Fig. 1 Overview of hypotheses and suggested mechanisms con-

tributing to them, around which the paper is structured. Trout

in our system are at the northern limit of their distribution, lead-

ing us to hypothesize that: (1) body mass, abundance and bio-

mass; (2) growth rate; and (3) production will increase with

temperature. We expect increases in: (1) feeding selectivity; (2)

importance of external subsidy in the diet; and (3) trophic trans-

fer efficiency at higher temperatures to facilitate our hypothe-

sized effects on trout. Methodological approaches and timing of

sampling are listed in smaller print beneath each metric.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220
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dependent on top-down control (O’Gorman et al., 2012;

Shurin et al., 2012). Changes in community composition

are also likely, with loss of species beyond their thermal

limits and invasions of warm-adapted taxa via range

expansion (Lejeusne et al., 2010; Somero, 2010; Walther,

2010). Since fewer species will be closer to their opti-

mum, a reduced subset of the community is likely to

dominate under warming, leading to reduced evenness

(Walker et al., 2006; Friberg et al., 2009; Pelini et al.,

2011). Thus, even if the same number of prey species

are available to predators, they are likely to encounter

the dominant prey resources more regularly due to

their elevated abundance, resulting in a narrower diet-

ary niche breadth.

External subsidy

Allochthonous inputs play a major role in freshwater

ecosystems (Nakano & Murakami, 2001; Kawaguchi

et al., 2003) and could potentially subsidise shortfalls in

the energetic demand of aquatic consumers under

warming (Cloe & Garman, 1996). For example, adult

flies are a major dietary component of many freshwater

fishes (Elliott, 1973; Cada et al., 1987; Fochetti et al.,

2003; Kawaguchi et al., 2003) and altered larval emer-

gence under warming may affect the timing, amount,

and quality of this subsidy. For example, earlier emer-

gence in warmer environments (Hogg & Williams,

1996; Greig et al., 2012) may lead to more generations

within one year (Hannesd�ottir et al., 2013) and thus a

greater biomass of available subsidy. Alternatively, an

increase in mean body size or the proportion of preda-

tory flies with warming (Wesner, 2012; Jonsson et al.,

2015) may provide a more energetically valuable

resource (per capita) to drift-feeding fish. These impacts

may occur on true terrestrial subsidies due to warmer

soil temperatures, or on the terrestrial adult phase of

returning aquatic insects due to increased water tem-

peratures. Greater input of falling arthropods as a result

of warming in the terrestrial environment, e.g. through

higher activity levels (Dell et al., 2011), could provide

an additional subsidy which may help to alleviate the

pressure of top-down control on aquatic ecosystems

(Nakano et al., 1999). Thus, greater availability of sub-

sidy and the increasing inability to meet energy

demands from in-stream production may place greater

importance on terrestrial invertebrates in the diet of

drift feeding fish in warmer environments. While we

predict that external subsidies will be more important

in the diet of trout as stream temperature increases, we

do not anticipate an increased biomass of subsidy to the

warmer streams because air is not heated in the same

way as the streams in our system and so this subsidy is

likely to disperse evenly across the landscape.

Trophic transfer efficiency

Biomass production at higher trophic levels is limited

by the efficiency at which energy is transferred through

the food web, with only about 10% of energy resource

production being converted into consumer production

(Pauly & Christensen, 1995; Ware, 2000; but see Slobod-

kin, 2001). Energy losses occur both within a trophic

level (e.g. due to respiration and heat production) and

between trophic levels (e.g. digestion efficiency and the

energy required to encounter, capture, and handle a

resource; Brown et al., 2004). A predator is likely to

expend more energy searching for and handling its

prey in a warmer environment, unless its preferred

prey are sedentary (Vucic-Pestic et al., 2011) or increase

in abundance and thus availability with warming (Win-

field et al., 2008). Trophic transfer efficiency is also

related to the slope of the community size spectrum

(Jennings & Mackinson, 2003), which is likely to change

with increasing temperature (Yvon-Durocher et al.,

2011; O’Gorman et al., 2012). Shallower size spectra in

the warmer streams of our study system are driven by

fewer resources supporting more consumers (O’Gor-

man et al., 2012). Thus, we predict that energy is used

more efficiently throughout the food web as stream

temperature increases, mitigating the energetic

demands of fish as apex predators in the warmer

streams. We can make this prediction about trophic

transfer efficiency quantitative with activation energies

derived from the metabolic theory of ecology (Brown

et al., 2004; Anderson-Teixeira et al., 2008; Cross et al.,

2015). We therefore expect the combination of all three

drivers (selectivity, subsidy, and trophic transfer

efficiency) to increase fish production at higher stream

temperatures.

Materials and methods

Field site

All fieldwork was carried out in the Hengill geothermal valley

of SW Iceland (N 64°03; W 21°18), which has numerous small

tributaries that join the River Hengladals�a. Fourteen streams

occur within 1.5 km of each other and span a temperature gra-

dient of 4–25 °C (see Fig. S1; Friberg et al., 2009; Woodward

et al., 2010; Demars et al., 2011; O’Gorman et al., 2012). Above-

ambient stream temperatures are due to groundwater that

absorbs heat from the underlying rock rather than direct

upwelling of geothermal water and gases (Arnason et al.,

1969). Thus, while we cannot be certain that temperature is

the only environmental factor leading to biotic differences

between the streams, they are very similar in many other

physical and chemical features (see Friberg et al., 2009; Adams

et al., 2013 for detailed explorations). Trees are absent and

shrubs are sparse in the region, so there is little or no particu-

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220
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late allochthonous input to the system; adult flies landing on

the water surface are the major external subsidy (Friberg et al.,

2009; Woodward et al., 2010). We carried out a number of

studies in Hengill during the period 2004–2012 to assess how

temperature affects the biomass, growth, and production of

brown trout, the only fish species found in the system. Logisti-

cal and financial constraints meant that sampling these differ-

ent components was often staggered over this period. We

acknowledge that this requires some inferences across multi-

ple years of data, but contend that this drawback is offset by

studying temperature effects on trout populations under real

world conditions. Sampling dates are summarized in Fig. 1

and mean stream temperatures for each study period are pro-

vided in Table 1.

Mark-recapture study

We carried out a mark-recapture study between May and

October of 2006 to quantify body mass, abundance, biomass,

growth rate and production of brown trout (testing H1, H2,

and H3 in Fig. 1). Fish were captured by electrofishing and

subsequently anesthetized with 2-phenoxyethanol (roughly

1 ml per 3 l of stream water). Fork length and wet weight of

every individual were measured before implanting Passive

Integrated Transponders (PIT tags, supplied by Biomark Inc.,

Boise, ID, USA) in the abdominal cavity. The animals were

allowed to recover briefly before being released back into the

stream at the site where they were caught. A total of 394 trout

(all ≥75 mm fork length) were tagged in this manner in six

streams from 16–30th May 2006. Each PIT tag has a unique

code, which is transmitted via a Biomark FS-2001 field scanner,

allowing each individual and its location to be recorded with-

out physical disturbance by scanning the length of each

stream every two weeks until 22nd October 2006, when the

fork length and wet weight of the recaptured fish were mea-

sured once again. We determined a length–weight relation-

ship for trout in the system from these data (see Fig. S2).

The population abundance (N) of trout in a stream was cal-

culated using Chapman’s estimator, a modification to the Lin-

coln-Petersen mark-recapture method to account for bias at

small sample sizes (Chapman, 1951):

N ¼ mþ 1ð Þ cþ 1ð Þ
rþ 1

� 1

� �
=a

where m is the number of fish marked on the first sampling

occasion, c is the number of fish captured on the last sampling

occasion, r is the number of marked fish that were recaptured,

and a is the surface area that was fished. Population biomass

(B) was calculated as M * N, where M is the mean body mass

of trout in the stream during the study period. Growth rate

(G) was calculated as (M2 – M1)/t, where M1 and M2 are the

initial and final weight of the recaptured trout, respectively,

and t is the duration of the mark-recapture study. Note that

we did not recapture any fish in the coldest stream, so we only

have growth measurements for five streams. Trout produc-

tion, Ptrout, was calculated as G * B * t, where M is the geomet-

ric mean growth rate of trout in each stream (after Elliott,

1994). The effects of stream temperature on the mean body

mass, abundance, biomass, growth rate, and production of

trout were analysed using linear regressions.

Scale analysis

As a longer term measure of growth rate, we estimated the

body mass of trout after one year of growth from 5 to 10 scales

collected from each fish during electrofishing for trout in

August 2004 (four streams), October 2006 (four streams), and

in August 2012 (five streams). We focused only on the first

year of growth to standardize observations due to different

ages at the time of capture. The scales were cleaned with 5%

potassium hydroxide, treated by ultrasound in a water bath

for 30 s, placed on a drop of water on a glass slide, and sealed

with a cover slide. High resolution photos were taken using a

Nikon Digital Sight DSFi1 (Nikon UK Ltd, Kingston, Surrey,

UK) connected to a Leitz Labovert FS microscope and exam-

ined for annuli, i.e. the theoretical boundary between two

annual zones of growth. One annual zone consists of a band

of narrow spaced circuli (rings on a fish scale) and a band of

more widely spaced circuli, which indicate periods of slow

(winter) and fast (summer) growth, respectively (Shearer,

1992). The distance from the scale centre to the newest ring on

the first winter band corresponds to one year of growth. Rela-

Table 1 Stream codes and their corresponding daily mean

temperatures during the sampling periods from the current

study (note that 2008trout refers to the mean for 27th July–16th
August, while 2008GPP are means during the 24-h periods

when PAR and GPP were measured from 6 to 16th August).

Stream numbers correspond to those used in previous publi-

cations from Hengill (e.g. O’Gorman et al., 2012), with 16upper

and 16lower corresponding to stretches of the River

Hengladals�a that are upstream and downstream of a waterfall

barrier, respectively. Note that we also refer to these river

reaches as ‘streams’ throughout the paper for simplicity. See

Fig. S1 for a photographic representation of all streams in the

system

Stream

Temperature (°C)

2004 2006 2007 2008trout 2008GPP 2012

1 19.9 21.8 13.5 22.7 18.9 16.7

2 – – – – 19.9 18.4

3 – – – 23.7 22.6 19.0

4 13.3 – – – 10.1 13.1

5 19.8 19.8 16.1 21.3 20.6 17.6

6 19.1 – 13.3 21.0 19.6 19.0

7 – – 5.4 – 7.2 5.8

8 23.4 21.6 21.3 – 25.0 20.3

9 – – 9.7 – 18.2 14.0

10 – – – – 4.9 5.1

11 – – 5.3 – 12.8 8.1

12 14.3 – – 15.5 13.5 –
13 – 7.9 – – – 6.9

14 – – – – 9.0 9.6

16upper – 11.8 – – – –
16lower – 15.0 – 14.5 – 13.7

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220
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tionships between scale radius and fish length were estab-

lished for each stream (see Fig. S3) and used to calculate fish

length after one year of growth. Fish mass was then estimated

from the length-weight relationship shown in Fig. S2. We used

a generalized linear mixed model (GLMM) to analyse the

effect of stream temperature (a fixed effect) on the geometric

mean growth of trout after one year, with year of sampling

included in the model as a random effect.

Stomach content analysis

We quantified the selectivity of trout feeding in the system in

August 2004 and 2008 (six streams in both years) to explore

M1 and M2 in Fig. 1. Here, we compared the proportional rep-

resentation of various prey items (by biomass) in the stomach

contents of trout with the prevalence of the same taxa in the

stream benthos. Fish were captured by electrofishing and

euthanized, with the stomach dissected out and stored in 70%

ethanol. The benthos of the corresponding streams were quan-

tified using five Surber samples (25 9 20 cm quadrat, 200 lm
mesh size), also stored in 70% ethanol. Stomach contents and

stream benthos samples were identified to the highest possible

taxonomic level and linear body size dimensions (i.e. head

width, body length, or shell width) were measured under

1009 magnification. Body masses of all individuals were esti-

mated from length–weight relationships (see O’Gorman et al.,

2012 for details). The biomass of each species was calculated

as mean body mass multiplied by abundance in either the

stomach or the stream (although see the Pan trapping study

below for terrestrial invertebrates).

Prey were pooled into six taxonomic groupings in line with

previous stomach content explorations from the system

(O’Gorman et al., 2012): snails (comprising only the freshwater

snail, Radix balthica); blackfly larvae (Simuliidae); nonbiting

midge larvae (Chironomidae); predatory aquatic dipteran lar-

vae (Empididae, Ephydridae, Muscidae, and Tipulidae); mis-

cellaneous aquatic taxa (including Plecoptera, Trichoptera,

Acari, Heteroptera, and Oligochaeta); and terrestrial inverte-

brates (mainly adult Diptera). The selectivity of trout feeding

on each group (S) was quantified as:

S ¼ di=biPn
j¼1

dj=bj

; i ¼ 1; . . .; n;

where d and b are the proportional biomass of each prey

group in the diet and in the stream benthos, respectively

(Chesson, 1983). The effect of stream temperature and year of

sampling on the selectivity of trout for each prey group was

analysed using permutational multivariate analysis of vari-

ance (PERMANOVA), which can include both categorical and con-

tinuous variables (Anderson, 2001). We used a combination of

Principle Coordinates Analysis (PCoA) and linear regression

analyses to determine the effect of the same explanatory vari-

ables on the selectivity of trout for each of the six prey groups.

The PERMANOVA and PCoA were based on a Euclidean resem-

blance matrix, which is appropriate in situations where a

zero-value (no selectivity in this case) is relevant to the

hypothesis being tested (Clarke et al., 2006).

Stable isotope analysis

We collected carbon and nitrogen (d13C and d15N) stable iso-

tope data in 2004, 2006, and 2007 for trout and macroinverte-

brates to assess the trophic position and dietary niche width

of trout (exploring M1 in Fig. 1). Between 3 and 27 individual

trout were collected from each stream, with dorsal muscle

removed and subsequently frozen in the laboratory. Note that

trout can undergo marked ontogenetic diet shifts (Grey, 2001)

and the diets of small trout in the Hengill streams differ from

those of their larger conspecifics (O’Gorman et al., 2012). As a

result, only trout larger than 10 cm in fork length were used

in this analysis and no individuals larger than 29 cm were

found. Macroinvertebrates were collected using a hand net

and kept cool until individual taxa could be separated back in

the laboratory, placed in Petri dishes filled with tap water,

and kept over night at 5 °C to allow gut evacuation before

being frozen individually. All material was freeze-dried and

homogenized before it was analysed using a continuous flow

isotope ratio mass spectrometer (Europe Hydra 20/20, PDZ

Europe) coupled with an elemental analyser (see Friberg et al.,

2009 for more details).

To determine the average trophic position of trout, the dif-

ference in the mean d15N signature of Simuliidae and trout

was calculated from five streams in 2004, three streams in

2006, and five streams in 2007 (note, this was the maximum

number of streams where both taxa were found). As primary

consumers, Simuliidae represent a baseline signature against

which the relative trophic position of the trout can be mea-

sured, accounting for the possibility of a shift in the d15N sig-

nature of the basal resources in each stream (after Post, 2002;

see also Woodward et al., 2010). A fractionation of 3.4 d15N &
was assumed to represent a full trophic level difference

between consumer and resource (Post, 2002). We also quanti-

fied the dietary niche width of trout in each stream and year

(see Table S1 for sample sizes) using Bayesian standard ellipse

areas (SEAB), a bivariate estimate of a population’s core iso-

topic niche in d13C and d15N space, calculated using Markov

Chain Monte Carlo simulation with 104 iterations for each

group (Jackson et al., 2011). Since SEAB can be influenced by

spatial and temporal differences in isotopic baselines (Jackson

et al., 2011), we also calculated SEAB for each macroinverte-

brate community (see Table S1 for sample sizes). We used a

GLMM to analyse the effect of stream temperature (a fixed

effect) on the relative trophic position and dietary niche of

trout, with year of sampling included in the model as a ran-

dom effect. SEA estimates (and SEAB in particular) are robust

to variations in sample size (Jackson et al., 2011), but we also

carried out linear regression analyses to confirm this.

Pan trapping study

To explore M2 in Fig. 1, we carried out pan trapping in 14

streams in August 2012 to quantify the daily input of adult

flies, the major subsidy to the system from the terrestrial envi-

ronment and a component of the trout diet (O’Gorman et al.,

2012). Pan traps consisted of white plastic trays measuring

33.5 9 21.5 9 10 cm, filled to a depth of 5 cm with stream

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220
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water and a few drops of surfactant to reduce surface tension.

Three pan traps were positioned on flat rocks protruding just

above the surface of every stream in the Hengill system for a

24 h period on three consecutive days. The contents of the pan

traps were stored in 70% ethanol for identification and count-

ing back in the laboratory. All individuals were weighed after

drying at 80 °C for 48 h in a drying oven. In addition to quan-

tifying the total biomass of subsidy to each stream, Psub, we

quantified the percentage biomass with terrestrial origin and

the percentage originating from in-stream production. The

effect of stream temperature on Psub was analysed using linear

regression.

Trophic transfer efficiency exploration

To assess trophic transfer efficiency through the food web (M3

in Fig. 1), our production estimates were all standardized to g

C m�2 day�1 (note that we also present our estimates of body

mass, biomass, and growth rate of trout in carbon units). We

derived a conversion factor for photosynthetically active radi-

ation (PAR; 1 mol photon m�2 day�1 = 6.13 g C m�2 day�1)

by relating the Q/W ratio (2.5 9 1021 photon s�1 kJ�1 =
4.15 9 10�3 mol photon kJ�1; Morel & Smith, 1974) with the

reciprocal of the energy content of glucose expressed in car-

bon units (15.7 kJ g�1 glucose = 25.4 9 10�3 g C kJ�1; South-

gate & Durnin, 1970). We used atomic weights to convert

gross primary production (GPP; 32 g O2 = 12 g C) and con-

versions derived from the carbon element analysis that we

performed prior to the stable isotope analysis for the higher

trophic levels: CT = 0.439 * DW and CI = 0.452 * DW, where

CT and CI are grams of carbon for trout and invertebrates,

respectively, and DW is dry weight in grams. Invertebrate

production, Pinv, was previously reported (from six streams)

for the period 30th September 2006 to 23rd August 2007 (Han-

nesd�ottir et al., 2013). Here, we recalculated Pinv for 18th May

to 23rd August 2007 to align it more closely with the time per-

iod for trout production. PAR and GPP were measured in 13

streams between 6–16th August 2008 (see Demars et al., 2011

for details). We present average PAR during this study period

here because day to day differences in light availability had

no impact on GPP (Demars et al., 2011). The effect of stream

temperature on GPP and Pinv were analysed using linear

regressions.

Trophic transfer efficiency was quantified as: (1) GPP/PAR;

(2) Pinv/GPP; (3) Ptrout/(Pinv + Psub). We have empirical esti-

mates of transfer efficiency across all the trophic levels present

for just three cold streams (IS7, 9, and 11, which do not contain

fish) and three warm streams (IS1, 5, and 8, which do contain

fish). We used a GLMM to analyse the effect of stream temper-

ature (a fixed effect) on trophic transfer efficiency, with

trophic level included in the model as a random effect.

Quantitative predictions

We tested whether our empirical estimates of production and

trophic transfer efficiency agreed with predictions based on

the metabolic theory of ecology (Brown et al., 2004; Cross

et al., 2015). Here, production, P, is proportional to body mass,

M, and dependent on resource supply, [R], and temperature,

T, with activation energy, E, and Boltzmann constant,

k = 8.62 9 10�5 eV °K�1:

P / ½R�M0e�
E
kT

The intrinsic activation energy of photosynthesis derived

for terrestrial C3 plants (E � 0.32 eV; Allen et al., 2005) is

inadequate for aquatic photosynthesizers due to their carbon-

concentrating mechanisms, which suppress photorespiration

(Williams & Del Giorgio, 2005; Raven et al., 2012). The activa-

tion energy of whole stream GPP should therefore be similar

to that of RUBISCO carboxylase activity, so we predict EGPP �
0.6 eV (Raven & Geider, 1988; Bernacchi et al., 2001; Galm�es

et al., 2015). We assume steady-state conditions during the

summer (Demars et al., 2011) and that previous observations

of higher nutrient cycling and N2 fixation with increasing tem-

perature will offset any nutrient limitation in the system (Ras-

mussen et al., 2011; Welter et al., 2015). Our prediction is likely

to exceed the net value, however, as the model does not

include the negative effect of grazing.

Pinv will be proportional to changes in resource supply (i.e.

GPP) and its own temperature dependence, Einv � 0.6 eV,

reflecting the average activation energy of enzymatic reactions

(Elias et al., 2014) and a previous global synthesis (Golubkov,

2000). Thus, we predict that Pinv will increase with tempera-

ture with an activation energy of 1.2 eV (i.e. EGPP + Einv; see

Anderson-Teixeira et al., 2008). Again, the predicted response

to temperature will likely reflect the maximum because preda-

tion is not included in the model.

If Ptrout relies solely on in-stream invertebrate supply and its

own temperature dependence, Etrout � 0.6 eV (Golubkov,

2000; Elias et al., 2014), we would predict that Ptrout will

increase with temperature with an activation energy of 1.8 eV

(i.e. EGPP + Einv + Etrout). At the other extreme, if trout produc-

tion relies solely on external subsidies (i.e. drift feeding as the

sole feeding mechanism), then Ptrout will not be related to in-

stream production. Assuming that Psub is not related to stream

temperature (because air temperatures are not heated in Hen-

gill as for the streams), we would then expect Ptrout to increase

with temperature with an activation energy of 0.6 eV. Hence,

the Ptrout response to temperature is predicted to be 0.6 < Etrout

< 1.8 eV, depending on the relative proportion of external sub-

sidies to trout diet and assuming no resource limitation and

no cannibalism.

The trophic transfer efficiency from PAR to GPP will have

the same activation energy and slope as the temperature

dependence of GPP because PAR is constant for all streams

and due to our assumption of a nutrient-replete system

(Demars et al., 2011; Rasmussen et al., 2011; Welter et al.,

2015), i.e. only the intercept of the relationship will change.

All other trophic transfer efficiencies were hypothesized to

have ETTE � 0.6 eV, based on the cellular activation energy of

enzymatic reactions.

To test our predictions, we measured EGPP, Einv, Esub and Etr-

out by extracting the intercept, a, and slope, b, of the observed

empirical relationships between production and temperature

according to the general regression equation log Pi = log ai +
biTi, where i corresponds to GPP, invertebrates, external sub-
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sidy, or trout. The proportional increase in temperature over

10 °C is Q10 ¼ ebi�10, and activation energy (in eV) over the

range 5–25 °C is Ei = RT2ln(Q10/(c 9 10)), where R is a gas

constant (8.3 mol�1 K�1), T is the mean absolute temperature

for the range over which Q10 was measured (288.15 K), and c

is a constant to convert J mol�1 to eV (9.64 9 105). The uncer-

tainty in Ei was calculated as EiSEi/bi, where SEi is the stan-

dard error of bi. We can assume that our results do not follow

the metabolic theory of ecology if the predicted Ei falls outside

the observed Ei � 1.96 SEi, i.e. the 95% confidence intervals.

The activation energy of the trophic transfer efficiencies were

simply ETTE = Ej – Ei, where i and j are the lower and higher

trophic levels, respectively. Note that we only quantify the

efficiency of trout feeding solely on invertebrates (Ptrout/Pinv)

or subsidy (Ptrout/Psub). The uncertainties were estimated as

SETTE ¼ ETTE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEj

2 þ SEi
2

q .
bj � bi
� �

. All analyses were carried

out in R 3.1.0 using the ‘NLME’ package for GLMMs and the

‘SIAR’ package for stable isotope analysis (R Development Core

Team 2014), with conditional r2 values for GLMMs calculated

after Nakagawa & Schielzeth (2013). Abundance, biomass,

growth rate, and production data were ln-transformed to meet

the assumptions of linear regression and GLMM analyses.

Results

A total of 59 trout were recaptured of the 394 tagged in

our study (see Table S2 for PIT tag scanning details at

10 different sampling points). Of the recaptured trout,

55 were located within 10 metres of the position where

they were originally released, while just four had

migrated to new streams in the system (see Table S2 for

more details). There was no relationship between the

mean body mass of trout and stream temperature (Lin-

ear regression: F1,4 = 0.76, P = 0.433; Fig. 2a), but both

the population abundance (Linear regression:

F1,4 = 194.4, P < 0.001; Fig. 2b) and biomass (Linear

regression: F1,4 = 28.02, P = 0.006; Fig. 2c) of trout

increased with temperature in May 2006. Mean growth

rate during the mark-recapture study increased signifi-

cantly as stream temperature increased (Linear regres-

sion: F1,4 = 28.00, P = 0.0132; Fig. 3a). The body mass of

trout after one year of growth also increased signifi-

cantly with increasing stream temperature (GLMM:

t9 = 3.817, P = 0.004; Fig. 3b) as did production (Linear

regression: F1,3 = 15.11, P = 0.030; Fig. 4a).

Stable isotope analysis showed that the trophic posi-

tion of trout increased (GLMM: t9 = 3.615, P = 0.006;

Fig. 5a) and dietary niche width decreased (GLMM:

Fig. 2 Relationships between stream temperature and: (a) mean

body mass (Linear regression: F1,4 = 0.76, P = 0.433); (b) popula-

tion abundance (Linear regression: log y = log 0.0075 + 0.1578x,

F1,4 = 194.4, P < 0.001, r2 = 0.97); (c) biomass (Linear regression:

log y = log 0.0154 + 0.1844x, F1,4 = 28.02, P = 0.006, r2 = 0.84) of

trout.
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t9 = �5.326, P < 0.001; Fig. 5b and Fig. S4) with stream

temperature. The decline in dietary niche width signi-

fies more selective feeding by trout in the warmer

streams and occurred even though there was no signifi-

cant change in the niche width of their macroinverte-

brate prey (GLMM: t7 = 0.854, P = 0.421; see Fig. S4).

Note that there was no significant relationship between

sample size and either trout (Linear regression:

F1,11 = 2.53, P = 0.14) or macroinvertebrate (Linear

regression: F1,9 = 0.38, P = 0.55) niche width. Stomach

Fig. 3 Relationships between stream temperature and: (a) geometric mean growth rate of trout in grams of carbon per day (Linear

regression: log y = log 0.0041 + 0.0817x, F1,4 = 28.00, P = 0.0132, r2 = 0.87); (b) geometric mean grams of carbon after the first year of

growth (GLMM: log y = log 0.1730 + 0.1195x, t9 = 3.817, P = 0.004, r2 = 0.63). Since growth rates are calculated from individual trout

measurements, standard error bars are displayed for each stream.

Fig. 4 Relationships between stream temperature and: (a) trout production (Linear regression: log y = log 0.00016 + 0.2192x,

F1,3 = 15.11, P = 0.030, r2 = 0.78); (b) subsidy of adult Diptera to the streams (Linear regression: log y = log 0.1171 + 0.0435x,

F1,12 = 4.85, P = 0.048, r2 = 0.23); (c) benthic invertebrate production (Linear regression: log y = log 0.00098 + 0.2282x, F1,4 = 7.79,

P = 0.049, r2 = 0.58); and (d) gross primary production (GPP) (Linear regression: log y = log 0.9857 + 0.0756x, F1,11 = 5.52, P = 0.039,

r2 = 0.27).
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content analysis also revealed a main effect of tempera-

ture on the selectivity of trout feeding (PERMANOVA:

MS = 4.431, pseudo-F = 11.37, P < 0.001), with PCoA

analysis indicating greater selectivity for aquatic preda-

tory Diptera and Simuliidae and lower selectivity for

all other prey groups as temperature increased

(Fig. 5c). There was a significant interaction between

temperature and year (PERMANOVA: MS = 1.162, pseudo-

F = 2.98, P = 0.036), with linear regression analysis

indicating that this may be driven by the absence of a

relationship between selectivity and stream tempera-

ture for Simuliidae and miscellaneous aquatic larvae in

2008 (see Fig. S5 and Table S3).

The amount of external subsidy to the streams (Lin-

ear regression: F1,12 = 4.85, P = 0.048; Fig. 4b), inverte-

brate production (Linear regression: F1,4 = 7.79,

P = 0.049; Fig. 4c), and GPP (Linear regression:

F1,11 = 5.52, P = 0.039; Fig. 4d) all increased with

stream temperature. Note that 83 � 5.8% of the external

subsidy consisted of adult Diptera with a larval stage in

terrestrial habitats: i.e., they were not derived from

aquatic larvae. There was also a significant increase in

trophic transfer efficiency with stream temperature

(GLMM: y = 0.0398x + 0.0088; t14 = 2.731, P = 0.016,

r2 = 0.38; Fig. 6). Note that the Ptrout/(Pinv + Psub)

trophic transfer efficiency here was 8.7%, while it

would need to be 32.3% to sustain the same Ptrout from

Pinv alone.

The observed activation energies of GPP, Pinv, and

Ptrout were all within the 95% confidence intervals of

our theoretical predictions (Table 2). The activation

energy of Psub was greater than our prediction of zero,

indicating a greater availability of external subsidy as

stream temperature increased (Table 2). The change in

trophic transfer efficiency with increasing temperature

followed metabolic theory of ecology predictions for all

trophic levels, although there was a large amount of

uncertainty surrounding the observed activation ener-

gies (Table 2).

Fig. 5 Relationships between stream temperature and the (a)

average trophic position of trout relative to filter feeding Simuli-

idae (GLMM: y = 0.2350x – 0.1742; t9 = 3.615, P = 0.006;

r2 = 0.56); and (b) dietary niche width of trout (GLMM:

y = �0.2979x + 7.6689; t9 = �5.326, P < 0.001; r2 = 0.77). (c)

Euclidean ordination based on the resemblance matrix created

from trout selectivity for six prey groups. The plot facilitates

comparison of trout selectivity for the six prey groups (black

arrows) with the predictor variables temperature and year (grey

arrows) in multivariate space. Longer vectors indicate a stron-

ger correlation. Darker symbols indicate one or more points

overlaying each other.
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Discussion

Warming is often predicted to have negative impacts

on top predators (Petchey et al., 1999; Rosa & Seibel,

2008; Daufresne et al., 2009), but this study demon-

strates that biomass, growth, and production of fish

may increase with warming at high latitudes of their

geographic range. These effects were driven by at least

two mechanisms in the warmer streams of our study

site: (1) fish selectively fed on highly abundant blackfly

larvae and large predatory invertebrates as stream tem-

perature increased, leading to a narrower dietary niche

and a higher trophic position (Fig. 5); and (2) energy

was converted into higher trophic level production

more efficiently throughout the food web in the war-

mer environment (Fig. 6). Even though more adult Dip-

tera landed on the surface of the warmer streams

(Fig. 4b), there was no evidence for increased impor-

tance in the diet of trout, which actively selected

against this external subsidy (Fig. 5c). Thus, through

knowledge of environmental and biotic conditions and

mechanisms to maximize energy intake, we can better

predict the effects of warming on apex predators in nat-

ural systems.

Thermal limits of the apex predator

The stream temperature gradient at Hengill falls within

the critical temperature range for survival of fry, parr,

and smoult of brown trout (approximately �0.8–30 °C)
(Elliott & Elliott, 2010). The critical upper thermal limit

for development of brown trout embryos is reported to

be between 13–16 °C (Elliott, 1981; Jungwirth & Win-

kler, 1984; Ojanguren & Brana, 2003), however, suggest-

ing that trout cannot reproduce in the warmest Hengill

streams (see Kaya, 1977). Therefore, warm water trout

populations are sustained either through use of colder

waters for reproduction and eventual return of devel-

oped offspring, or recruitment of new individuals from

coldwater populations (e.g. the main river stem). This

is an important point when considering our results in

the context of future climate change, which may

remove the coldwater thermal refugia necessary for fish

populations to be sustainable after warming beyond

the critical temperature range of any part of their life

cycle (e.g. Kaya, 1977; Meisner et al., 1988; Cunjak,

1996; Ebersole et al., 2001).

The optimum temperature for growth in brown trout

fed on maximum rations of pelleted food in the labora-

tory is 11.6–19.1 °C (Ojanguren et al., 2001; Forseth

et al., 2009; Elliott & Elliott, 2010). The coldest streams

in the Hengill system fall below this range and so it is

perhaps unsurprising that trout are rarely found in

them, although the lower critical limit for growth in the

species is 1.2 °C (Ojanguren et al., 2001; Elliott & Elliott,

2010), so they should still be able to survive and grow

there (Table S2). Surprisingly, the three warmest

streams in the system (19.8–21.8 °C) are above the doc-

umented optimum temperature for maximum growth

and well above those studies that focus on invertebrate

food only (13.1–14.1 °C; Elliott et al., 1995; Elliott &

Fig. 6 Mean trophic transfer efficiencies between each trophic

level in the system for three cold (in blue) and three warm (in

red) streams. Error bars represent the standard error around the

mean for the three streams in each category. PAR is the same

for every stream in the system, so no error bars are shown. Pro-

duction estimates are expressed in g C m�2 day�1 at each

trophic level for consistent comparison, with external subsidy of

adult Diptera to the streams highlighted in pale blue and red.

Mean invertebrate production in the cold and warm streams

was 0.0066 and 0.0810 g C m�2 year�1, respectively; mean exter-

nal subsidy in the cold and warm streams was 0.1637 and

0.3011 g C m�2 day�1, respectively.

Table 2 Empirical estimates and theoretical predictions of

the temperature dependence of production and trophic trans-

fer efficiencies. Activation energies, E, are given in eV, along

with the 95% confidence intervals (CI) of the empirically esti-

mated value. Predictions that fall outside the 95% CI are high-

lighted in bold

Metric

Predicted

E (eV)

Observed

E (eV)

95% CI of

observed E (eV)

GPP 0.6 0.54 0.08–1.00

Pinv 1.2 1.63 0.46–2.80
Psub 0 0.31 0.03–0.59
Ptrout 0.6–1.8 1.57 0.76–2.37
GPP/PAR 0.6 0.54 0.08–1.00

Pinv/GPP 0.6 1.09 �0.17–2.35
Ptrout/Pinv 0.6 �0.06 �1.48–1.36
Ptrout/Psub 0.6 1.26 0.40–2.11
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Elliott, 2010). This suggests that we may have expected

to see a hump-shaped response to temperature, with

growth increasing to the optimum before dropping off

at higher temperature (although see Kaeding & Kaya,

1978), rather than the exponential increases described

(Fig. 3). The highly controlled laboratory studies that

growth performance curves are typically based on may

not reflect the actual thermal optima for growth in field

conditions, e.g. due to local environmental conditions

or diversity of resources available. Quality of the

resource is also likely to be important and thus the opti-

mum temperature for growth may change with diet

(Kaeding & Kaya, 1978; Elliott & Elliott, 2010). It should

be noted that the growth performance studies focusing

on invertebrate food were carried out solely with

amphipods (Elliott et al., 1995), which are not found in

our system. Additionally, long-term adaptation to war-

mer temperatures in the Hengill system (Arnason et al.,

1969) may result in higher local thermal optima

(Schulte et al., 2011; Huey et al., 2012). This highlights

the potential for intraspecific variation and the context

dependency of laboratory-based thermal performance

curves for application in real ecosystems. Naturally

occurring thermal gradients, such as at Hengill, could

thus also be useful as natural laboratories for assessing

thermal performance of individual organisms under

more realistic field conditions (O’Gorman et al., 2014).

Selective feeding

Trout clearly changed their feeding behaviour as

stream temperature increased by narrowing their diet

and altering their selectivity (Fig. 5b, c). This may be

partly explained by changes in the community compo-

sition of their prey, with the decreasing preference for

Chironomidae vs. Simuliidae reflecting the switch in

dominance of these two groups in the warmer streams

(Friberg et al., 2009; Woodward et al., 2010). There was

also clear evidence for changes in feeding behaviour of

trout that were not driven by shifts in macroinverte-

brate composition. There was a decline in selectivity for

snails with increasing temperature, even though they

account for the largest prey biomass in the warmest

streams (O’Gorman et al., 2012). This may be a product

of the lower caloric content of snails relative to the simi-

larly abundant blackfly larvae (Cummins, 1967; Grif-

fiths, 1977). Trout also exhibited a distinct preference

for predatory dipteran larvae, despite their relative rar-

ity in the benthos (Woodward et al., 2010), perhaps

because their high caloric and protein diet acts as a

richer food source than primary consumers (Cummins

& Klug, 1979). This increasing selectivity for prey with

a high energetic value in warmer waters may allow the

trout to meet their greater metabolic requirements.

Mean trout body mass was similar across sites along

the temperature gradient during the mark-recapture

study (May–Oct 2006), contradicting our first hypothe-

sis and previous evidence from the Hengill system

(Woodward et al., 2010; O’Gorman et al., 2012),

although this might simply reflect Type II errors associ-

ated with a small sample size. The previously observed

increases in trout body mass with temperature

occurred in 2004 and 2008 (Woodward et al., 2010;

O’Gorman et al., 2012), matching the timing of our diet-

ary analyses (see Fig. 1). These increases in body size in

the warmer streams may have affected the diet of the

trout, with a shift towards larger prey to meet their

optimal foraging requirements (Brose et al., 2008;

Petchey et al., 2008). This may be a contributing factor

in the greater selectivity for predatory Diptera, which

are among the largest macroinvertebrates in the system,

and blackfly larvae, whose body mass increases with

temperature (O’Gorman et al., 2012). Note that this still

did not result in greater selectivity for snails, which

have previously been shown to increase in prevalence

in the diet of larger trout (Steingr�ımsson & G�ıslason,

2002).

External subsidy

Adult flies landing on the surface of rivers and streams

are a major component of salmonid diets (Elliott, 1973;

Cada et al., 1987; Fochetti et al., 2003). In contrast with

our expectations, trout actively selected against this

external subsidy as stream temperature increased

(Fig. 5c). This is particularly surprising given that we

observed a higher external subsidy to the warmer

streams (Fig. 4b), contrary with our quantitative pre-

diction (Table 2). While we can predict a higher rate

and biomass of emerging Diptera in warmer environ-

ments (Hannesd�ottir et al., 2013), we might expect

them to disperse evenly across the Hengill landscape

because there is no gradient in air temperatures as

there is for the streams. Several studies have indicated

that adult Diptera show natal site fidelity when

ovipositing (Rothfels, 1981; Martin et al., 2002; Hilker

& Meiners, 2002; Krosch et al., 2011; but see Hunter &

Jain, 2000), which would increase the likelihood of

them remaining close to the location from which they

emerged. This may be true for aquatic larvae emerging

from the streams or terrestrial larvae emerging from

soils, which also exhibit higher temperatures near the

warm streams in Hengill. Additionally, some adult

Diptera are known to aggregate around warmer waters

for foraging, including two major components of our

pan trapping study: Ephydridae, which feed on

cyanobacteria; and the predatory Dolichopodidae

(Brock et al., 1969).
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External subsidies still play a role in the system, how-

ever, because in-stream production alone is unlikely to

sustain trout populations (Elliott, 1994). Our gut con-

tent analysis revealed that trout fed on terrestrial inver-

tebrates in every stream studied (see also O’Gorman

et al., 2012). Trophic transfer efficiency from the com-

bined production of in-stream invertebrates and exter-

nal subsidy to trout was also close to the value of 10%

reported for many ecosystems (Pauly & Christensen,

1995; Ware, 2000), but if trout relied solely on in-stream

production, this efficiency would have to rise to over

30% to sustain the same level of fish production

(Fig. 6). The large amount of subsidy with a terrestrial

origin (approximately 83%) confirms that this addi-

tional food source for trout is largely independent of in-

stream production, which may also help to alleviate the

higher metabolic demands of the warmer environment.

Future work should look at other terrestrial subsidies,

such as the drift of ground-dwelling terrestrial arthro-

pods (e.g. Coleoptera, Hymenoptera), which also form

part of the diet of trout (Elliott, 1973; Cada et al., 1987).

Given the increased activity of terrestrial invertebrates

in warmer environments (Dell et al., 2011), their contri-

bution to the drift is likely to be greater with warming,

creating an additional external subsidy to support drift-

feeding fish. In reality, any warming-induced subsidies

in the current study will be conservative estimates as

the catchment experiences only localized terrestrial

warming, whereas under a warmer climate this would

span the entire catchment, thus potentially amplifying

the effects even further.

Trophic transfer efficiency

The activation energy of our empirical trophic transfer

estimates conform with our predictions based on the

metabolic theory of ecology (Table 2), highlighting the

merit in making a priori quantitative predictions. This

provides a deterministic approach against which

expected effect size can be compared to observed data

and is more objective than simply applying a posteriori

explanations to the empirical patterns. Nevertheless,

our knowledge of the study system helps to understand

the underlying processes. Nitrogen is the main limiting

nutrient in the Hengill streams (Friberg et al., 2009), but

faster recycling of NH4 and NO3 (Demars et al., 2011)

and a higher N2 fixation rate (Welter et al., 2015) facili-

tate a more efficient conversion of available sunlight to

gross primary production in the warmer streams

(Fig. 6). The standing stock of biofilm, the major basal

resource in the food web, is relatively constant across

the stream temperature gradient at Hengill (Friberg

et al., 2009; Gudmundsdottir et al., 2011), even though

there is a more rapid accumulation as temperature

increases (Welter et al., 2015). This is most likely due to

more intensive grazing pressure in the warmer streams

(O’Gorman et al., 2012), illustrating how rapid replen-

ishment of resources can meet the higher metabolic

demand of heterotrophs in the warmer environment.

Primary production is in turn converted into sec-

ondary production more efficiently as temperature

increases (Fig. 6), most likely due to the shift in func-

tional feeding modes as the dominant macroinverte-

brates switch from Chironomidae in the cold streams to

Simuliidae and freshwater snails in the warm streams

(Friberg et al., 2009; Woodward et al., 2010). Chironomi-

dae selectively gather fine particles from the biofilm,

whereas the freshwater snail is a highly efficient scraper,

rasping biofilm from benthic substrates as it moves

(Cummins & Klug, 1979). Simuliidae are largely seden-

tary organisms, which filter feed small organic particles

from the water column (Wallace & Merritt, 1980). They

have one of the highest growth conversion efficiencies

among freshwater macroinvertebrates and are thus an

important energy source for secondary consumers

(Cummins & Klug, 1979; McCullough et al., 1979), who

are also likely to expend less energy feeding on these

sedentary organisms (Vucic-Pestic et al., 2011). The com-

bination of more efficient feeding by primary consumers

on basal resources and the surprising increase in exter-

nal subsidy to the warmer streams (Fig. 4b) may be a

critical factor in sustaining trout populations relative to

the colder (and less productive) environments (Fig. 6).

A word of caution

It took us many years to collect all the data presented in

this study, thus while each of our hypotheses is tested

from samples collected at the same time, the full dataset

that explores the underlying mechanisms was unavoid-

ably drawn from different years (see Fig. 1). Patterns in

trout diet, trophic group biomass, size spectra, and food

web structure are consistent between years for the sys-

tem (O’Gorman et al., 2012) and our multiple measures

of trout growth rate further support this consistency

(Fig. 3). Nevertheless, we cannot be certain that the tem-

perature dependence of trout production was main-

tained throughout the sampling period of the

underlying mechanisms and the trophic transfer effi-

ciencies we report represent the best approximations we

could achieve from the mix of sites and sampling times.

Finally, trout were only present in six streams, which

inevitably constrained the maximum sample size and

strength of inferences we can draw for some of our anal-

yses (see Figs 2 and 4a). We contend that these con-

straints are offset, however, by the unique advantages of

being able to study the effects of temperature on trout as

members of the wider ecosystem in a natural setting.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220
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Conclusion

Warming is widely predicted to cause reductions in

mean food chain length (Petchey et al., 1999; Arim et al.,

2007) and a shift towards smaller organisms (Daufresne

et al., 2009; Gardner et al., 2011; Forster et al., 2012).

This study demonstrates, however, that warming can

enhance populations of apex predators when ambient

temperatures are suboptimal for overall physiological

performance. This highlights the need to identify the

thermal limits and adaptive capacity of organisms to

improve our predictive abilities of warming impacts on

natural systems (Schulte et al., 2011; Huey et al., 2012).

Knowledge of mechanisms that enable organisms to

extract more energy from the environment are also crit-

ical, whether they are autecological (e.g. the dietary

shifts shown here) or synecological (e.g. allochthonous

subsidies, or more efficient transfer of energy through

the system) in nature. This may allow higher trophic

level organisms to meet the increased metabolic

demands of living in a warmer environment and even

thrive on the associated productivity. Global change is,

of course, a multifaceted issue, with multiple stressors

potentially combining to alter ecosystems in unex-

pected ways (Jackson et al., 2016). Thus, future research

should aim to quantify synergistic or antagonistic

effects of other stressors on warming to improve pre-

dictability even further.

Acknowledgements

We thank Becca Kordas and three anonymous reviewers for
valuable comments on the manuscript. The authors are sup-
ported by grants awarded by NERC (NE/L011840/1 and NE/
I009280/2), the Royal Society (RG140601), the British Ecological
Society (4009-4884), the Fisheries Society of the British Isles, the
Grand Challenges in Ecosystems and the Environment initiative
at Imperial College London, the Scottish Government Rural and
Environment Science and Analytical Services (RESAS), the Sal-
monid Fisheries Management Fund in Reykjavik, and Assis-
tantship and Research Funds from the University of Iceland
(GMG2006, GMG2007).

References

Adams G, Pichler DE, Cox EJ, O’Gorman EJ, Seeney A, Woodward G, Reuman DC

(2013) Diatoms can be an important exception to temperature-size rules at species

and community levels of organization. Global Change Biology, 19, 3540–3552.

Allen A, Gillooly J, Brown J (2005) Linking the global carbon cycle to individual meta-

bolism. Functional Ecology, 19, 202–213.

Almod�ovar A, Nicola GG, Ayll�on D, Elvira B (2012) Global warming threatens the

persistence of Mediterranean brown trout. Global Change Biology, 18, 1549–1560.

Anderson MJ (2001) A new method for non-parametric multivariate analysis of vari-

ance. Austral Ecology, 26, 32–46.

Anderson-Teixeira KJ, Vitousek PM, Brown JH (2008) Amplified temperature depen-

dence in ecosystems developing on the lava flows of Mauna Loa, Hawai’i. Proceed-

ings of the National Academy of Sciences of the United States of America, 105, 228–233.

Arim M, Bozinovic F, Marquet PA (2007) On the relationship between trophic posi-

tion, body mass and temperature: reformulating the energy limitation hypothesis.

Oikos, 116, 1524–1530.

Arnason B, Theodorsson P, Bj€ornsson S, Saemundsson K (1969) Hengill, a high tem-

perature thermal area in Iceland. Bulletin of Volcanology, 33, 245–259.

Bernacchi C, Singsaas E, Pimentel C, Portis A Jr, Long S (2001) Improved temperature

response functions for models of Rubisco-limited photosynthesis. Plant, Cell and

Environment, 24, 253–259.

Blanchard JL, Jennings S, Holmes R et al. (2012) Potential consequences of climate

change for primary production and fish production in large marine ecosystems.

Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2979–

2989.

Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra

(Diptera> Ephydridae) on the microorganisms of hot springs. Ecology, 50, 192–

200.

Brose U, Ehnes R, Rall B, Vucic-Pestic O, Berlow E, Scheu S (2008) Foraging theory

predicts predator–prey energy fluxes. Journal of Animal Ecology, 77, 1072–1078.

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic the-

ory of ecology. Ecology, 85, 1771–1789.

Cada GF, Loar JM, Cox DK (1987) Food and feeding preferences of rainbow and

brown trout in southern Appalachian streams. American Midland Naturalist, 117,

374–385.

Chapman DG (1951) Some Properties of the Hypergeometric Distribution with Applications

to Zoological Sample Censuses. University of California Press, Oakland, CA.

Chen I-C, Hill JK, Ohlem€uller R, Roy DB, Thomas CD (2011) Rapid range shifts of

species associated with high levels of climate warming. Science, 333, 1024–1026.

Chesson J (1983) The estimation and analysis of preference and its relatioship to for-

aging models. Ecology, 64, 1297–1304.

Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecologi-

cal studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis

coefficient for denuded assemblages. Journal of Experimental Marine Biology and

Ecology, 330, 55–80.

Cloe WW III, Garman G (1996) The energetic importance of terrestrial arthropod

inputs to three warm-water streams. Freshwater Biology, 36, 104–114.

Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between

temperature and nutrients across levels of ecological organization. Global Change

Biology, 21, 1025–1040.

Cummins KW (1967) Calorific Equivalents for Studies in Ecological Energetics. University

of Pittsburgh, Pennsylvania.

Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annual

Review of Ecology and Systematics, 10, 147–172.

Cunjak RA (1996) Winter habitat of selected stream fishes and potential impacts from

land-use activity. Canadian Journal of Fisheries and Aquatic Sciences, 53, 267–282.

Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in

aquatic ecosystems. Proceedings of the National Academy of Sciences of the United

States of America, 106, 12788–12793.

Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature depen-

dence of physiological and ecological traits. Proceedings of the National Academy of

Sciences of the United States of America, 108, 10591–10596.

Demars BOL, Manson JR, �Olafsson JS et al. (2011) Temperature and the metabolic bal-

ance of streams. Freshwater Biology, 56, 1106–1121.

Ebersole J, Liss W, Frissell C (2001) Relationship between stream temperature,

thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-

land streams in the northwestern United States. Ecology of Freshwater Fish, 10,

1–10.

Elias M, Wieczorek G, Rosenne S, Tawfik DS (2014) The universality of enzymatic

rate–temperature dependency. Trends in Biochemical Sciences, 39, 1–7.

Elliott J (1973) The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in

relation to the abundance of drifting invertebrates in a mountain stream. Oecologia,

12, 329–347.

Elliott JM (1981) Some aspects of thermal stress on freshwater teleosts. In: Stress and

Fish (ed. Pickering AD), pp. 209–245. Academic Press, London.

Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press,

USA.

Elliott J, Elliott J (2010) Temperature requirements of Atlantic salmon Salmo salar,

brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects

of climate change. Journal of Fish Biology, 77, 1793–1817.

Elliott J, Hurley M, Fryer R (1995) A new, improved growth model for brown trout,

Salmo trutta. Functional Ecology, 92, 290–298.

Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on

freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581–613.

Fochetti R, Amici I, Argano R (2003) Seasonal changes and selectivity in the diet of

brown trout in the River Nera (Central Italy). Journal of Freshwater Ecology, 18, 437–

444.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220

3218 E. J . O’GORMAN et al.



Forseth T, Larsson S, Jensen A, Jonsson B, N€aslund I, Berglund I (2009) Thermal

growth performance of juvenile brown trout Salmo trutta: no support for thermal

adaptation hypotheses. Journal of Fish Biology, 74, 133–149.

Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are

greater in aquatic than terrestrial species. Proceedings of the National Academy of

Sciences of the United States of America, 109, 19310–19314.

Friberg N, Dybkjaer JB, �Olafsson JS, G�ıslason GM, Larsen SE, Lauridsen TL (2009)

Relationships between structure and function in streams contrasting in tempera-

ture. Freshwater Biology, 54, 2051–2068.

Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Fish

Physiology: Environmental Relations and Behavior (eds Hoar WS, Randall DJ), pp. 1–

98. Academic Press, New York.

Galm�es J, Kapralov M, Copolovici L, Hermida-Carrera C, Niinemets €U (2015) Tem-

perature responses of the Rubisco maximum carboxylase activity across domains

of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosyn-

thesis Research, 123, 183–201.

Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size:

a third universal response to warming? Trends in Ecology and Evolution, 26, 285–

291.

Golubkov S (2000) Functional ecology of aquatic insects, St Petersburg, Russian Acad-

emy of Sciences, Proceedings of the Zoological Institute, Vol 284.

Greig HS, Kratina P, Thompson PL, Palen WJ, Richardson JS, Shurin JB (2012) Warm-

ing, eutrophication, and predator loss amplify subsidies between aquatic and ter-

restrial ecosystems. Global Change Biology, 18, 504–514.

Grey J (2001) Ontogeny and dietary specialization in brown trout (Salmo trutta L.)

from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen.

Ecology of Freshwater Fish, 10, 168–176.

Griffiths D (1977) Caloric variation in Crustacea and other animals. The Journal of Ani-

mal Ecology, 46, 593–605.

Gudmundsdottir R, Gislason GM, Palsson S et al. (2011) Effects of temperature

regime on primary producers in Icelandic geothermal streams. Aquatic Botany, 95,

278–286.

Hannesd�ottir ER, G�ıslason GM, �Olafsson JS, �Olafsson �OP, O’Gorman EJ (2013)

Increased stream productivity with warming supports higher trophic levels.

Advances in Ecological Research, 48, 283–340.

Hilker M, Meiners T (2002) Chemoecology of Insect Eggs and Egg Deposition. John Wiley

& Sons, Berlin.

Hoffmann AA, Sgr�o CM (2011) Climate change and evolutionary adaptation. Nature,

470, 479–485.

Hogg ID, Williams DD (1996) Response of stream invertebrates to a global-warming

thermal regime: an ecosystem-level manipulation. Ecology, 77, 395–407.

Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating

regulation along primary environmental gradients in savannas. Trends in Ecology

and Evolution, 25, 119–128.

Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Pre-

dicting organismal vulnerability to climate warming: roles of behaviour, physiol-

ogy and adaptation. Philosophical Transactions of the Royal Society of London B:

Biological Sciences, 367, 1665–1679.

Hunter FF, Jain H (2000) Do gravid black flies (Diptera: Simuliidae) oviposit at their

natal site? Journal of Insect Behavior, 13, 585–595.

IPCC (2013) Working Group I Contribution to the IPCC Fifth Assessment Report. Climate

Change 2013: The Physical Sciences Basis. Cambridge University Press, Cambridge,

UK.

Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths

among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Jour-

nal of Animal Ecology, 80, 595–602.

Jackson M, Loewen C, Vinebrooke R, Chimimba C (2016) Net effects of multiple stres-

sors in freshwater ecosystems: a meta-analysis. Global Change Biology, 22, 180–189.

Jennings S, Mackinson S (2003) Abundance–body mass relationships in size-struc-

tured food webs. Ecology Letters, 6, 971–974.

Jochum M, Schneider FD, Crowe TP, Brose U, O’Gorman EJ (2012) Climate-induced

changes in bottom-up and top-down processes independently alter a marine

ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 367,

2962–2970.

Jonsson B, Jonsson N (2009) A review of the likely effects of climate change on

anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with

particular reference to water temperature and flow. Journal of Fish Biology, 75,

2381–2447.

Jonsson M, Hedstr€om P, Stenroth K, Hotchkiss ER, Vasconcelos FR, Karlsson J,

Bystr€om P (2015) Climate change modifies the size structure of assemblages of

emerging aquatic insects. Freshwater Biology, 60, 78–88.

Jungwirth M, Winkler H (1984) The temperature dependence of embryonic develop-

ment of grayling Thymallus thymallus, Danube salmon Hucho hucho, Arctic char

Salvelinus alpinus and brown trout Salmo trutta fario. Aquaculture, 38, 315–327.

Kaeding LR (1996) Summer use of coolwater tributaries of a geothermally heated

stream by rainbow and brown trout, Oncorhynchus mykiss and Salmo trutta. Ameri-

can Midland Naturalist, 135, 283–292.

Kaeding LR, Kaya CM (1978) Growth and diets of trout from contrasting environ-

ments in a geothermally heated stream: the Firehole River of Yellowstone National

Park. Transactions of the American Fisheries Society, 107, 432–438.

Kawaguchi Y, Taniguchi Y, Nakano S (2003) Terrestrial invertebrate inputs determine

the local abundance of stream fishes in a forested stream. Ecology, 84, 701–708.

Kaya CM (1977) Reproductive biology of rainbow and brown trout in a geothermally

heated stream: the Firehole River of Yellowstone National Park. Transactions of the

American Fisheries Society, 106, 354–361.

Krosch M, Baker A, Mather PB, Cranston P (2011) Spatial population genetic struc-

ture reveals strong natal site fidelity in Echinocladius martini (Diptera: Chironomi-

dae) in northeast Queensland, Australia. Freshwater Biology, 56, 1328–1341.

Lejeusne C, Chevaldonn�e P, Pergent-Martini C, Boudouresque CF, P�erez T (2010) Cli-

mate change effects on a miniature ocean: the highly diverse, highly impacted

Mediterranean Sea. Trends in Ecology and Evolution, 25, 250–260.

Martin J, Guryev V, Blinov A, Edward D (2002) A molecular assessment of the extent

of variation and dispersal between Australian populations of the genus Archaeo-

chlus Brundin (Diptera: Chironomidae). Invertebrate Systematics, 16, 599–603.

McCullough DA, Minshall GW, Cushing CE (1979) Bioenergetics of lotic filter-feeding

insects Simulium spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and

their function in controlling organic transport in streams. Ecology, 60, 585–596.

McDonald ME, Hershey AE, Miller MC (1996) Global warming impacts on lake trout

in arctic lakes. Limnology and Oceanography, 41, 1102–1108.

Meisner J, Rosenfeld J, Regier H (1988) The role of groundwater in the impact of cli-

mate warming on stream salmonines. Fisheries, 13, 2–8.

Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photo-

synthesis, American Society of Limnology and Oceanography.

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from

generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–

142.

Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence

between terrestrial and aquatic food webs. Proceedings of the National Academy of

Sciences of the United States of America, 98, 166–170.

Nakano S, Miyasaka H, Kuhara N (1999) Terrestrial-aquatic linkages: riparian arthro-

pod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435–2441.

O’Gorman EJ, Pichler DE, Adams G et al. (2012) Impacts of warming on the structure

and functioning of aquatic communities: individual- to ecosystem-level responses.

Advances in Ecological Research, 47, 81–176.

O’Gorman EJ, Benstead JP, Cross WF et al. (2014) Climate change and geothermal

ecosystems: natural laboratories, sentinel systems, and future refugia. Global

Change Biology, 20, 3291–3299.

Ojanguren A, Brana F (2003) Thermal dependence of embryonic growth and develop-

ment in brown trout. Journal of Fish Biology, 62, 580–590.

Ojanguren AF, Reyes-Gavil�an FG, Bra~na F (2001) Thermal sensitivity of growth, food

intake and activity of juvenile brown trout. Journal of Thermal Biology, 26, 165–170.

Pauly D, Christensen V (1995) Primary production required to sustain global fish-

eries. Nature, 374, 255–257.

Pelini SL, Boudreau M, McCoy N, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR

(2011) Effects of short-term warming on low and high latitude forest ant communi-

ties. Ecosphere, 2, art62.

Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts

in marine fishes. Science, 308, 1912–1915.

Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming

alters food-web structure and ecosystem function. Nature, 402, 69–72.

Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food

web structure. Proceedings of the National Academy of Sciences of the United States of

America, 105, 4191–4196.

P€ortner H-O, Farrell AP (2008) Physiology and climate change. Science, 322, 690–692.

Post DM (2002) Using stable isotopes to estimate trophic position: models, methods,

and assumptions. Ecology, 83, 703–718.

R Development Core Team (2014) R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-

07-0, URL http://www.R-project.org/.

Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, preda-

tor–prey interaction strength and population stability. Global Change Biology, 16,

2145–2157.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220

TEMPERATURE EFFECTS ON FISH PRODUCTION 3219

http://www.R-project.org/


Rasmussen J, Baattrup-Pedersen A, Riis T, Friberg N (2011) Stream ecosystem proper-

ties and processes along a temperature gradient. Aquatic Ecology, 45, 231–242.

Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytologist, 110, 441–

461.

Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to

atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon

oxidation cycles. Philosophical Transactions of the Royal Society of London B: Biological

Sciences, 367, 493–507.

Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future

physiological impairment in a top oceanic predator. Proceedings of the National

Academy of Sciences, 105, 20776–20780.

Rothfels KH (1981) Cytological approaches to the study of black fly systematics and

evolution. In: Application of Genetics and Cytology in Insect Systematics and Evolution,

Forest, Wildlife, and Range Experiment Station (ed. Stock MW), pp. 67–83. University

of Idaho, Moscow.

Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic

plasticity, and the time scales of temperature exposure. Integrative and Comparative

Biology, 51, 691–702.

Shearer WM (1992) Atlantic salmon scale reading guidelines, International Council for

the Exploration of the Sea Copenhagen.

Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-

down and bottom-up control of pond food web structure and function. Philosophi-

cal Transactions of the Royal Society B: Biological Sciences, 367, 3008–3017.

Slobodkin LB (2001) The good, the bad and the reified. Evolutionary Ecology Research,

3, 1–13.

Somero GN (2010) The physiology of climate change: how potentials for acclimatiza-

tion and genetic adaptation will determine ‘winners’ and ‘losers’. The Journal of

Experimental Biology, 213, 912–920.

Southgate D, Durnin J (1970) Calorie conversion factors. An experimental reassess-

ment of the factors used in the calculation of the energy value of human diets. Bri-

tish Journal of Nutrition, 24, 517–535.

Steingr�ımsson S�O, G�ıslason GM (2002) Body size, diet and growth of landlocked

brown trout, Salmo trutta, in the subarctic River Lax�a, north-east Iceland. Environ-

mental Biology of Fishes, 63, 417–426.

Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher

predator feeding rates but lower energetic efficiencies. Global Change Biology, 17,

1301–1310.

Walker MD, Wahren CH, Hollister RD et al. (2006) Plant community responses to

experimental warming across the tundra biome. Proceedings of the National Academy

of Sciences of the United States of America, 103, 1342–1346.

Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annual Review

of Entomology, 25, 103–132.

Walther G-R (2010) Community and ecosystem responses to recent climate

change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365,

2019–2024.

Ware D (2000) Aquatic ecosystems: properties and models. In: Fisheries Oceanography

and Integrative Approach to Fisheries Ecology and Management (eds Harrison PJ, Par-

sons TR), pp. 161–194. Blackwell Science, Oxford.

Welter JR, Benstead JP, Cross WF, Hood JM, Huryn AD, Johnson PW, Williamson TJ

(2015) Does N2-fixation amplify the temperature dependence of ecosystem meta-

bolism? Ecology, 96, 603–610.

Wesner JS (2012) Emerging aquatic insects as predators in terrestrial systems across a

gradient of stream temperature in North and South America. Freshwater Biology,

57, 2465–2474.

Williams PLB, Del Giorgio PA (2005) Respiration in aquatic ecosystems: history and

background. In: Respiration in Aquatic Ecosystems (eds Williams PLB, Del Giorgio

PA), pp. 1–17. Oxford University Press, Oxford.

Winfield IJ, James JB, Fletcher JM (2008) Northern pike (Esox lucius) in a warming

lake: changes in population size and individual condition in relation to prey abun-

dance. Hydrobiologia, 601, 29–40.

Woodward G, Dybkjaer JB, �Olafsson JS, G�ıslason GM, Hannesd�ottir ER, Friberg N

(2010) Sentinel systems on the razor’s edge: effects of warming on Arctic geother-

mal stream ecosystems. Global Change Biology, 16, 1979–1991.

Yvon-Durocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters

the size spectrum and shifts the distribution of biomass in freshwater ecosystems.

Global Change Biology, 17, 1681–1694.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Map of the Hengill geothermal valley.
Figure S2. Length-weight relationship for brown trout.
Figure S3. Scale radius to fish length relationships.
Figure S4. Dietary niche width of trout and invertebrates.
Figure S5. Selectivity in the feeding of trout on common
prey groups.
Table S1. Sample sizes for estimating dietary niche width of
trout and invertebrates
Table S2. Details of sampling occasions during the trout
mark-recapture study
Table S3. Linear regression statistics for selectivity of trout
feeding

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3206–3220

3220 E. J . O’GORMAN et al.


