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Similar estimates of temperature impacts on global wheat yield by three independent methods

Keywords: Global warming, wheat yield, climate impacts, impact method comparison, food security

scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

assessed with different methods. Here we show that grid-based and point-based simulations 115 and statistical regressions (from historic records), without deliberate adaptation or CO 2 116 fertilization effects, produce similar estimates of temperature impact on wheat yields at global 117 and national scales. With a 1℃ global temperature increase, global wheat yield is projected 118 to decline between 4.1% and 6.4%. Projected relative temperature impacts from different 119 methods were similar for major wheat producing countries China, India, USA and France, but 120 less so for Russia. Point-based and grid-based simulations, and to some extent the statistical 121 regressions, were consistent in projecting that warmer regions are likely to suffer more yield 122 loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it 123 was possible to quantify 'method uncertainty' in addition to model uncertainty. This 124 significantly improves confidence in estimates of climate impacts on global food security. 125

Global demand for food is expected to increase 60% by the middle of the 21st century [START_REF] Alexandratos | World agriculture towards 2030/2050: the 2012 revision[END_REF] . 126

Climate change, and in particular rising temperatures, will impact food production [START_REF] Rosenzweig | Potential impact of climate change on world food supply[END_REF] . For 127 global food security, it is important to understand how climate change will impact crop 128 production at the global scale to develop fact-based mitigation and adaptation strategies. 129

Many studies have shown a wide range of temperature impacts on yields of different crops in 130 different seasons at different locations [START_REF] Challinor | A meta-analysis of 445 crop yield under climate change and adaptation[END_REF] , including Europe 4 , China [START_REF] Lv | Climate change impacts on regional winter wheat production 452 in main wheat production regions of China[END_REF] , India [START_REF] Kumar | Vulnerability of wheat 455 production to climate change in India[END_REF] and Sub-Saharan 131 Africa [START_REF] Thornton | Agriculture and food systems in 458 sub-Saharan Africa in a 4 C+ world[END_REF] . A few studies have considered impacts on the entire globe [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF][START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF][START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF][START_REF] Lobell | Global scale climate-crop yield relationships and the impacts of recent 472 warming[END_REF] . However, the 132 methods used to make these assessments are based on very different premises and use 133 different methodological steps. 134

The uncertainty of estimates of global temperature impact on crop yields was analyzed 135 for the crop model component (i.e. model uncertainty) by using two different multi-model 136 ensemble approaches [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF][START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF] . While both studies used process-based crop simulation models, the 137 scaling approach and input data differed greatly. The first study divided the globe into a 138 geographical grid cells defined by latitude and longitude and used climate and crop 139 management data integrated over each grid as input for seven crop models [START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF] . This grid-based 140 system was used to estimate relative yield changes for rice, maize, wheat and soybean. The 141 second study used data from 30 individual field sites deemed to represent 2/3 of 142 wheat-producing areas worldwide [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] . In this point-based approach estimates from sentinel sites 143 were scaled up and extrapolated to cover geographical areas with similar conditions. 144

In further contrast, statistical regressions based on global and country level data have 145 been used to quantify the impact of increasing temperatures on yields of wheat, maize, barley, 146 soybean, sorghum and rice [START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF][START_REF] Lobell | Global scale climate-crop yield relationships and the impacts of recent 472 warming[END_REF] . An important difference from the simulation models is that 147 statistical models do not directly consider processes inherent to crop growth. However, 148 statistical models may include indirect effects of climatic variability, such as those related to 149 pests and diseases, which are not well captured by simulation models [START_REF] Kristensen | Winter wheat yield response to climate variability in 475 Denmark[END_REF] . When assessing 150 climate effects on crop yields, crop models can take into account autonomous adaptation and 151 an increase in atmospheric CO 2 concentration. Also some statistical regressions include the 152 yield effects associated with autonomous adaptation [START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF] . For the effects of gradual increase in 153 CO 2 concentration in the past, statistical models may inherently include these within yield 154 effects [START_REF] Wing | US major crops' uncertain climate change risks and 478 greenhouse gas mitigation benefits[END_REF] , but for some regression models with a linear time term, effects of steady increase in 155 CO 2 can be removed from yield impacts, just as the effects of technology improvement. In 156 addition, upscaling methods influence the outcomes from regional assessments [START_REF] Ewert | Uncertainties in Scaling Up Crop 481 Models for Large Area Climate Change Impact Assessments[END_REF] . The 157 statistical approach obtained global or regional impacts by aggregating county districts or 158 countries [START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF][START_REF] Lobell | Global scale climate-crop yield relationships and the impacts of recent 472 warming[END_REF] . The grid-based system obtained global or regional impacts by aggregating 0.5 o 159 × 0.5 o grid cells [START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF] , while the point-based approach employed 30 sites to represent global wheat 160 regions [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] . Therefore, differences in upscaling could add uncertainties in the impact estimated 161 in these studies. 162

In this letter, we compared three largely independent assessment methods used to 163 estimate temperature impacts on wheat yields: grid-based simulations, point-based 164 simulations, and statistical regressions. The details of each method are shown in Table S1. 165

The methods used independent different dynamic, statistical, up-scaling and source data 166 approaches. The grid-based simulations used here were from the Agricultural Model 167

Intercomparison and Improvement Project (AgMIP) [START_REF] Rosenzweig | The 485 Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot 486 studies[END_REF] as part of the Inter-Sectoral Impact 168

Model Intercomparison Project (ISI-MIP). Wheat yields were simulated with seven global 169 gridded crop models during 1980-2099 under RCP 8.5, a greenhouse gas emissions scenario 170 (here without CO 2 fertilization effects), over 0.5 o × 0.5 o grid cells [START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF] global level were all between 4.1% and 6.4% (Fig. 1). The average estimated temperature 180 impact from all three methods (and four studies) was a 5.7% reduction in global yield per 181 degree of global temperature increase. The estimated temperature effects on global wheat 182 yield from the three different methods were similar. 183 A meta-analyses of mostly process-based crop model simulations, reported a 3.3 ± 0.8% 184 decline in wheat yields with a 1 o C increase in local temperature [START_REF] Wilcox | A meta-analysis of the predicted effects of climate change on wheat 489 yields using simulation studies[END_REF] . When adjusted to global 185 temperature change (which is usually less than local wheat region temperature changes [START_REF] Collins | Long-term 492 climate change: projections, commitments and irreversibility[END_REF], 186 this impact amounts to respectively 3.9% yield reduction per degree of global temperature 187 increase. Also, a summary of past regression and simulation studies reported an average of 188 5.9% wheat yield decrease with 1 o C warming [START_REF] Fischer | Crop yields and global food security: will yield 496 increase continue to feed the world? Canberra[END_REF] . These values are very similar to the results 189 obtained here for wheat using three different assessment methods. 190

The results here are presented for 1°C of global warming for consistency. However, the 191 estimated impacts do not increase linearly with increasing temperature and the disagreement 192 among method estimates become larger with more temperature change (Fig. S9). 193

Impacts for major wheat-producing countries 194

To understand how the different methods project such similar temperature impacts on 195 global wheat yields, we disaggregated the temperature impacts to the national scale. 196

Point-based and grid-based simulations were compared for 97 countries (Fig. 2a). Generally, 197 projected temperature impacts on wheat yields for most of the large wheat producers were 198 similar between the two simulation methods (with a R 2 of 0.64 for the top 20 producers, 199 Fig. S12), while differences were larger for small wheat-producing countries. Some large 200 differences occurred between point-based and grid-based simulation in irrigated semiarid 201 regions of Africa, which are mostly small wheat producers. The larger differences observed 202 for smaller producers have little weight in the global analysis. However, they are important 203 for regional economies. Method results were compared in more detail for the top five wheat 204 producing countries (Fig. 2b, Fig. 3). For China, India, USA, and France, the different 205 assessment methods resulted in similar values for temperature impacts on country wheat 206 yields. Additional country-level studies relying on other methods and data sources gave 207 similar estimates. For example, for China point-based simulations, grid-based simulations, 208 and two different regressions all concluded that yield reductions of about 3.0% are expected 209 with 1 o C warming (Fig. 3a). For India, country-level statistical regressions, grid-based and 210 point-based simulations all estimated about 8.0% yield declines per °C of global temperature 211 increase (Fig. 3b). For Russia, the two simulation methods agreed well, but yield reductions 212 estimated from statistical regression were markedly higher (Fig. 3c). Another study using 213 statistical regression methods also showed higher negative temperature impacts on wheat 214 yield than the two modeling methods used here for Rostov, a main wheat producing region in 215 Russia [START_REF] Licker | Climatic impacts on winter 500 wheat yields in Picardy, France and Rostov, Russia: 1973-2010[END_REF] . Since wheat producing regions in Russia can experience relatively low 216 temperatures (below optimal growth temperature) during early growing stages, a temperature 217 increase during this stage (tillering), may have a positive yield impact, while at a later stage 218 (booting or grain filling) an increase in temperature often reduces wheat yields [START_REF] Licker | Climatic impacts on winter 500 wheat yields in Picardy, France and Rostov, Russia: 1973-2010[END_REF] temperature increase [START_REF] Tack | Effect of warming temperatures on US wheat yields[END_REF] . This result is similar to the other estimated temperature impacts on 226 wheat yields for the USA (Fig. 3d). For France, yield reduction estimates from grid-based 227 simulations, point-based simulations, and statistical regressions were 4.6%, 5.2%, and 4.2%, 228 respectively (Fig. 3e). In an independent study, a 0.42t.ha -1 reduction in wheat yields, which is 229 a reduction of about 5.5% after correction for global temperature change, was reported in 230

Northern France from 1998-2008 that included the planting of reference varieties in field 231 experiments [START_REF] Gallais | Évolution des rendements de plusieurs plantes de grande culture 507 une réaction différente au réchauffement climatique selon les espèces[END_REF] . This is also in line with simulated impact response surfaces from a 232 26-wheat-model-ensemble across a European transect [START_REF] Pirttioja | Temperature and 511 precipitation effects on wheat yield across a European transect: a crop model ensemble 512 analysis using impact response surfaces[END_REF] . 233

With the different temperature impact methods used, despite some variation, there is a 234 general similarity in the magnitude of negative effects of increasing temperature on wheat 235 yields for major wheat producing countries. As the five largest wheat producing countries 236 have a combined total >50% of total global wheat production [START_REF]Food and Agriculture Organization of the United Nations[END_REF] , the similarity in method 237 estimates of temperature impacts for these countries also dominates the similar negative 238 temperature impacts computed at the global scale. 239

Differences in model inputs 240

At the location scale, the yields from the point-based simulations were highly correlated 241 to the yields from the grid-based simulations for the baseline and baseline+1 o C periods (P < 242 0.001, R 2 > 0.5; Table S2), but simulated yields were generally higher in point-based than in 243 grid-based simulations (Fig. 4 and Fig. S1). The average yields of the 30 locations in the 244 point-based simulations were 3.2 (82%) and 3.0 (82%) t.ha -1 higher than in the corresponding 245 grid-based simulations under baseline and baseline + 1 o C conditions, respectively. In both 246 studies, mean temperatures were similar across sites for the 90 days period prior to maturity, 247 except for three locations (Fig. S2). Seasonal temperature variability in the model input data 248 differed slightly between methods and caused a larger seasonal yield variability in the 249 grid-based simulations compared to the point-based simulations (Fig S7). Solar radiation 250 inputs were 5% to 7% lower in the grid-based than in the point-based simulations (Fig. S3), 251 which might have contributed slightly to the simulated yield difference [START_REF] Li | Effects of shading on morphology[END_REF] . Water stress was 252 not considered in either study for the comparison of these 30 locations and any possible 253 differences in precipitation inputs had no impact on the simulated results (Table S3). No 254 nitrogen stress was assumed in the point-based simulations , but four of the seven crop 255 models in the grid-based simulations did consider country-level average N fertilizer 256 application which could explain why the grid-based model ensemble simulated generally 257 lower yields compared to the point-based simulations (Table S3). 258

Another important factor possibly contributing to yield differences between the 259 grid-based and point-based simulation at the local scale were the models used in the studies. 260 There were 29 crop models and one statistical regression in the point-based simulation 261 ensemble, whereas there were seven crop models in the grid-based simulations. Three models 262 (CERES, EPIC, and LPJmL) were common to both studies. These three models tended to 263 simulate lower yields than the 30-model ensemble average from the point-based study for the 264 30 locations, e.g., about 0.9 t•ha -1 less in the baseline period (Fig. S4). This may have lowered 265 the average simulated yields in grid-based simulations. Differences in the calibration of the 266 crop models would also affect simulations 25 . Some models in the grid-based simulations were 267 calibrated and some were not, and especially growing periods were not harmonized across 268 grid-based models [START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF] , while in point-based simulations all models were calibrated for anthesis 269 and maturity dates with local phenology information [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] . Hence, differences in models, solar 270 radiation and inputs like N fertilizer may explain some of the lower yields found in the 271 grid-based studies. Differences in cultivar calibration, particularly for phenology and growing 272 season, adds another source of differences between these two studies. 273

More yield reduction at warmer regions 274

Interestingly, when comparing the grid-based and point-based simulations, no obvious 275 bias was observed in the simulated relative yield impacts between point-based and grid-based 276 simulations (Fig. 4c and Fig. S1c), even though simulated absolute yields with point-based 277 simulations were much higher than grid-based simulations. This was still true when the 278 outlier location in Fig. 4c was removed from calculations. Temperature impacts at the local 279 scale in grid-based and point-based simulations were highly correlated. With 1 o C global 280 temperature increase, higher yield reductions were observed at locations with higher baseline 281 temperatures than locations with lower baseline temperatures in both point-based and 282 grid-based simulations (Fig. 4c). For example, at Aswan in Egypt, point-based and grid-based 283 simulations showed about 11% and 20% decline in yield with 1 o C temperature increase, while 284 for Krasnodar in Russia, point-based and grid-based simulations estimated about 4% and 7% 285 yield decline with 1 o C global increase. The spatial pattern of temperature impacts at the 286 location scale was also consistent with that at the country scale (Fig. 2a, Fig. 2b, and Fig. S11), 287 which indicated that warmer regions (e.g. India) are likely to suffer more wheat yield 288 reductions than cooler regions (e.g. China). The exception is for statistical regression 289 estimates for Russia, a generally cooler region (Fig. 2b). The effects of temperature on wheat 290 yields are consistent with reports of impacts on other crops, such as maize, soybean, and 291 cotton [START_REF] Schlenker | Nonlinear temperature effects indicate severe damages to U.S. crop 524 yields under climate change[END_REF][START_REF] Lobell | Nonlinear heat effects on African maize 528 as evidenced by historical yield trials[END_REF][START_REF] Bassu | How do various maize 531 crop models vary in their responses to climate change factors?[END_REF] . An increase in extreme temperature events with increasing mean temperatures [START_REF] Battisti | Historical warnings of future food insecurity with unprecedented 535 seasonal heat[END_REF] 292 are likely to further contribute to yield decline in wheat [START_REF] Lobell | Extreme heat effects on wheat senescence in India[END_REF][START_REF] Asseng | The impact of temperature variability on wheat yields[END_REF] . Several crop models used in 293 point-based simulations (tested against warming experiments) and Regression_A (using a 294 nonlinear regression method), also considered the impacts of extreme temperature [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF][START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF] . 295

Effects of up-scaling methods 296

To assess climate impacts on global or country-level crop production, both process-based 297 crop modeling approaches and statistical regressions need to be upscaled from locations to 298 regions and then to the entire globe [START_REF] Ewert | Scale changes 544 and model linking methods for integrated assessment of agri-environmental systems. 545 Agriculture[END_REF] . In the point-based simulations, a range of local 299 information (e.g. local sowing dates, cultivar, anthesis and maturity date) was used for the 30 300 locations selected to represent about 70% of current global wheat production, which was then 301 upscaled via FAO statistics [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] . Much less local information was available for each of the 0.5 o × 302 0.5 o grid cells which were aggregated to country and global scales in the grid-based 303 simulations [START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF] . However, very similar estimated temperature impacts on relative global yield 304 changes were simulated with both approaches. This was surprising as Ewert, van Bussel [START_REF] Ewert | Uncertainties in Scaling Up Crop 481 Models for Large Area Climate Change Impact Assessments[END_REF] 

305

showed that scaling methods can add significant uncertainties to simulated outcomes. 306

Although uncertainties are known to be reduced with multi-model ensembles, these results 307 might also indicate that the selected 30 locations in the point-based study [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] were indeed 308 representative of agro-climatic variability of wheat growing conditions throughout the world. 309

The results also suggest that global grid-based models, despite having limited local 310 information, are on a par with point-based approaches, while providing greater coverage of 311 regional heterogeneity. 312

In the statistical regression methods, yield and weather data from different scales were 313 used to obtain global and country-level temperature impacts. For example, both global [START_REF] Lobell | Global scale climate-crop yield relationships and the impacts of recent 472 warming[END_REF] and 314 country 10 level regressions, observed yield records were used to conduct global assessments, 315 and both country-level yields and county (or similar) level yields were used for country 316 assessments (e.g. for China, India, and USA). Generally, regressions with different spatial 317 scales resulted in similar temperature impacts on yields. 318

Advantage of different assessment methods 319

Compared with process-based crop models, statistical regressions are simpler and require 320 less input information. However, other important growth factors which change with climate 321 change, such as radiation or the combined effects of heat, water and nutrient stresses, vary 322 over the period of a crop growing cycle, but are often not directly considered in statistical 323 regressions. Some of these factors might also be confounded in a statistical regression 324 analysis. While there have been attempts to include more factors in statistical impact methods 325 [START_REF] Urban | The impacts of future climate and carbon dioxide changes 548 on the average and variability of US maize yields under two emission scenarios[END_REF] , detailed process-based, dynamic crop simulation models may be more suitable to simulate 326 the more complex climate change scenarios, beyond the single impact of temperature change. 327 However, process-based models, like statistical methods, often do not account for many other 328 important factors required for holistic climate change impact assessment. Such factors include 329 impacts from frost, pests, weeds, diseases, and floods, and also dissimilar impacts between 330 day and night temperatures [START_REF] Lobell | Analysis of 552 wheat yield and climatic trends in Mexico[END_REF] , or extreme temperature events at different growth stages, 331 which are all likely to change with future climates. However, process-based models are 332 capable of accounting for the effects of elevated CO 2 [START_REF] O'leary | Response of wheat 555 growth, grain yield and water use to elevated CO under a Free-Air CO Enrichment (FACE) 556 experiment and modelling in a semi-arid environment[END_REF] , even though this effect is not 333 considered here, but large uncertainties exist not only with respect to the general effects on 334 crop yields [START_REF] Schimel | Effect of increasing CO2 on the terrestrial carbon cycle[END_REF][START_REF] Ainsworth | FACE-ing the facts: inconsistencies and 563 interdependence among field, chamber and modeling studies of elevated [CO2] impacts on 564 crop yield and food supply[END_REF] but also with respect to model implementation [START_REF] Rosenzweig | Assessing 465 agricultural risks of climate change in the 21st century in a global gridded crop model 466 intercomparison[END_REF][START_REF] Deryng | Regional disparities in 567 the beneficial effects of rising CO2 concentrations on crop water productivity[END_REF] . 335 Field or environment-controlled experiments are independent ways to estimate 336 temperature impacts on wheat yields [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF][START_REF] Wilcox | A meta-analysis of the predicted effects of climate change on wheat 489 yields using simulation studies[END_REF] . For example, 2% to 8% reductions in wheat yield for 337 every 1 o C increase of post-anthesis temperature above an optimum season-average 338 temperature of 15 o C (i.e. local temperature) have been measured for a range of cultivars under 339 controlled [START_REF] Wardlaw | The tolerance of wheat to high temperatures 571 during reproductive growth. I. Survey procedures and general response patterns[END_REF] and field experiments [START_REF] Wardlaw | Heat tolerance in temperate cereals: an overview[END_REF] . Considerable variations of wheat yield impacts with 340 increasing temperature have been found in a 4-growing season warming experiments [START_REF] Batts | Effects of CO2 and temperature on growth 578 and yield of crops of winter wheat over four seasons[END_REF] . 341 However, while measured temperature impacts on yields can guide other impact estimation 342 methods, they are often specific to a particular location, cultivar, crop management or 343 experimental treatment and are not representative of a larger region, which makes it difficult 344 to extrapolate such measurements to regional or global impacts. 345 in assessing climate impacts on crop production in recent studies 25,[START_REF] Godfray | Food security: 581 the challenge of feeding 9 billion people[END_REF][START_REF] Wallach | Uncertainty in Agricultural 584 Impact Assessment. Handbook of Climate Change and Agroecosystems[END_REF] . Most previous studies 348 have focused on uncertainties arising from crop models or climate models 25 . Here the 349 uncertainties in both point-based and grid-based simulations were quantified by multi-model 350 ensembles. Uncertainties due to crop models, expressed as error bars in the grid-based 351 simulations, were relatively large at both global and country scales (Fig. 1 & Fig. 3), which 352 was due to the limited number of models and relatively wide spread of model results in this 353 study. The differences in model inputs (e.g. nitrogen application, sowing dates, cultivars), 354 calibration methods and model 9 explain some of the variability between the point and 355 grid-based simulations. Many crop models do not simulate temperature interactions with 356 canopy temperature variation under different soil water conditions, which could result in 357 simulated differences of temperature impacts [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] . However, multi-model ensemble medians 358 have been shown to be more consistently accurate than individual models when comparing 359 measurements across locations and growing environments, adding confidence to the estimates 360 here [START_REF] Martre | Multimodel ensembles 588 of wheat growth: many models are better than one[END_REF] . Bootstrap resampling methods were employed to estimate the uncertainty of 361 temperature impacts calculated in the two global scale statistical regressions. Thus different 362 assessment approaches have independent methods of quantifying uncertainty. Multi-method 363 ensembles can enable the quantification of method uncertainty, similar to how multi-model 364 ensembles enable estimation of model uncertainty. The uncertainty range of wheat yield 365 reduction with 1 o C global temperature increase from the multi-method ensemble calculated 366 from the median of the four methods analyzed here was between 4.0% and 6.9% at the global 367 narrower than the uncertainty due to the models in the multi-model ensembles from the 369 simulations or the boot-strapping method in the statistical regressions. Therefore, applying 370 multi-method ensembles can improve reliability of the assessment of climate impacts on 371 global food security. 372

However, the consistency of negative global yield impacts of increasing temperature 373 quantified here at global level should not be applied to local or regional scale. As previous 374 studies have found, there were considerable large variations of increasing temperature 375 impacts on wheat yields at local and regional scale [START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF][START_REF] Xiong | Impacts of observed growing-season warming 592 trends since 1980 on crop yields in China[END_REF] , and the spatial variation of temperature 376 impacts has also been observed in the two modeling approaches here among different 377

locations. 378

Adaptation to global warming, e.g. farmer's autonomous adaptation through changing 379 sowing dates or cultivars, has been suggested in several studies to compensate negative 380 impacts of increasing temperature [START_REF] Butler | Adaptation of US maize to temperature variations[END_REF] . At global scale, point-based simulations did not consider 381 adaptation. Also a panel regression approach attempted to exclude adaptations [START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF] . In the 382 grid-based simulations, four of the seven models did allow cultivar and sowing date 383 adaptation with a changing climate (Table S3), and the simulated impacts tended to be lower 384 with simulated adaptation (Fig. S10). However, temperature impacts from models with 385 adaptation varied largely. Temperature impacts with and without adaptation were estimated 386 from different models in grid-based simulations, which added considerable uncertainty in the 387 results. The adaptation effects on temperature impacts should be further studied with more 388 consistent protocols for multi-model assessments. Other future adaptation, e.g. wheat 389 cultivation shifting to marginal regions in higher latitudes, could offset some of the negative 390

impacts. 391

Assessing climate change impacts on crop production is a key aspect in determining 392 appropriate global food security strategies [START_REF] Godfray | Food security: 581 the challenge of feeding 9 billion people[END_REF] . Reliable estimates of climate change impacts on 393 food security require an integrated use of climate, crop, and economic models [START_REF] Rosenzweig | The 485 Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot 486 studies[END_REF] . Applying 394 multi-method ensembles further improves the estimated impact precision and confidence in 395 assessments of climate impacts on global food security. The consistent negative impact from 396 increasing temperatures confirmed by three independent methods warrants critical needed 397 investment in climate change adaptation strategies to counteract the adverse effects of rising 398 temperatures on global wheat production, including genetic improvement and management 399 adjustments [START_REF] Cossani | Physiological traits for improving heat tolerance in wheat[END_REF][START_REF] Zheng | Breeding for the future: what are the 601 potential impacts of future frost and heat events on sowing and flowering time requirements 602 for Australian bread wheat (Triticum aestivium) varieties?[END_REF] . However, some or all of the negative global warming impacts on wheat 400 were assessed for 125 countries. Each country was assigned as being similar to one or more 713 representative locations, so the temperature impacts of each country were the average impacts 714 of the corresponding representative locations. More details can be found in Ref. 8. 715 Statistical regressions. All estimated temperature impacts from statistical regressions were 716 from literature reports [START_REF] Lobell | Climate trends and global crop production since 469 1980[END_REF][START_REF] Lobell | Global scale climate-crop yield relationships and the impacts of recent 472 warming[END_REF][START_REF] Xiong | Impacts of observed growing-season warming 592 trends since 1980 on crop yields in China[END_REF][START_REF] Zhang | Estimating the impacts of warming trends on wheat and maize in China 613 from 1980 to 2008 based on county level data[END_REF] , except for one new statistical regression analysis for the USA 717 that we present here (Supplementary Methods). All temperature impacts were adjusted to 718 global temperature change following the approach by Ref. 8. Details of these regression 719 studies and impacts adjustments are summarized in Table S1. 720

Meta-analysis and experimental data. Meta-analysis and experimental data from the literature 721 are cited here for further comparison after adjusting them to global temperature change where 722 possible. Meta-analysis and experimental data from the literature were cited here for further 723 comparison after adjusting them to global temperature change. An adjustment factor to global 724

  . As an 219 average temperature over a growing season is usually used in statistical regressions, such 220 in-season variability in temperature impacts would remain undetected. A dynamic crop 221 simulation model takes in-season variability and impacts into account. This may explain the 222 estimated larger impacts in Regression_A in comparison to the simulation results. For USA, a 223 recent study using data from wheat variety trials from 1985-2013 in Kansas, USA reported a 224 7.3% decrease (corrected for global temperature change) in wheat yield with 1 o C global 225
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 3 Figure 3 | Estimated impacts of 1 o C global temperature increase on wheat yield
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 4 Figure 4 | Comparison of simulated multi-model median wheat yield and yield

  simulations. Thirty models, 29 crop simulation models and one statistical 704 regression model, were used to simulate wheat grain yields for 30 representative locations in 705 high rainfall and irrigated wheat growing regions around the world (together representing 706 about 70% of global wheat production) with the estimated baseline period of 1981-2010 and 707 baseline + 2 o C. Three models (CERES, EPIC, and LPJmL) in point-based simulations were 708 used in grid-based simulations. No CO 2 fertilization effects or any adaptation was considered 709 in the point-based simulations. The impact was halved to adjust the temperature change to 710 +1 o C for the analysis here. Local temperature impacts on yields were adjusted to global 711 temperature change and upscaled via FAO statistics. Temperature impacts on national scales 712

  

  

  

Similar global impact from different methods 177

  . The point-based 171

	172	simulations from the AgMIP-Wheat project 8 consisted of simulations from 30 wheat models
	173	(including one statistical model) for 30 representative locations around the world from a
	174	baseline of the 1981-2010 period and a linear temperature increase. Temperature impacts
	175	determined by statistical regression methods were obtained directly from previously
	176	published data or our own statistical analysis (Table S1 and Supplementary methods).
	178	The average reductions in global wheat yield with 1 o C global temperature increase
	179	estimated from grid-based simulations, point-based simulations, and statistical regressions at

The potential impact of global temperature change on global crop yield has recently been

were the dates supplied from observations for each location in the point-based method[START_REF] Asseng | Rising temperatures 462 reduce global wheat production[END_REF] .
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The authors declare no competing financial interests. 436 Methods 681 Grid-based simulations. Seven global gridded models simulated 0.5 o × 0.5 o grid cells across 682 all wheat growing regions of the world from 1980 to 2099 under a RCP8.5 scenario with a 683 statistically-downscaled version of HadGEM2-ES [START_REF] Hempel | A trend-preserving bias correction-606 the ISI-MIP approach[END_REF] , with only a small trend in solar radiation 684 at some locations (Fig. S6). Here, a set of simulation experiments without effects of elevated 685 CO 2 and under full irrigation treatments were used. Among the seven global gridded models, 686 adaptation through cultivars, sowing dates or growing season had been employed in four of 687 the models (Table S3). The global yield impacts from models with and without adaptation are 688 compared in Fig. S10. Only one climate model and RCP were used as there was limited data 689 available for grid-based simulations. The period 2029-2058 was selected as being on average 690 simulations were aggregated by area-weighted means, using rain-fed and irrigated wheat 698 areas per pixel of MIRCA2000 [START_REF] Portmann | MIRCA2000-Global monthly irrigated and rainfed crop 609 areas around the year 2000: A new high-resolution data set for agricultural and hydrological 610 modeling[END_REF] combining simulations under irrigated and rain-fed 699 conditions. To make projections between the different grid-based models comparable, yield 700 simulations were bias-corrected to national FAO levels by using FAO mean yields and 701 superimposing projected relative changes. More details about the grid-based simulations can 702 temperature used for the statistical regressions was also used here. The temperature factors 725 are listed in Table S1. 726

Comparison at a national scale. Temperature impacts for 97 countries from both grid-based 727 and point-based simulations were compared. Due to the limited number of country-scale 728 estimates of temperature impacts on wheat yields with statistical regression analysis, we 729 compared the regression results with the two simulation approaches for the top five wheat 730 producing countries (Table S1). 731

Comparison at local scales. Yield simulations from 30 single grid cells from the grid-based 732 method were chosen that were centered around the 30 global representative locations from the 733 point-based method. Full irrigation treatments were applied in point-based and grid-based 734 simulations. The baseline and increased temperature periods for the 30 grid cells were 735 determined individually by matching the 30-year average annual temperature of each grid to 736 the 30-year average annual temperature of the corresponding location from point-based 737 simulations. The baseline and increased temperature periods for each of the 30 grid cells and 738 temperature differences between the two methods are shown in Table S4. Most locations had 739 very similar temperature input data in the two comparison periods for grid-based and 740 point-based simulations. Outliers (Table S4) were found where the input data differed 741 substantially but these did not cause outliers in yield impacts. The yield impact outlier at the 742 Sudan location was caused by very low simulated yields (Fig. 4). The simulated yields for 743 baseline and increased temperature periods were used to calculate temperature impacts at the 744 local scale. These were also adjusted to global temperature change with the same method at 745 global and national scales. The temperature and radiation data from the critical growing 746