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et al. 2012, Thibaud et al. 2014). The principle is to simu-
late the species’ probability of occurrence (hereafter called 
environmental suitability) with respect to one or several 
environmental gradients, and project it into a real or simu-
lated landscape. This approach allows comparing the known 
‘true’ distribution of the virtual species with the distribution 
predicted from the models, and to test independently the 
effects of each confounding factor (e.g. sampling scheme, 
model type, response shape). Consequently, the simulation 
of virtual species distributions is increasingly applied and 
advocated (reviewed by Miller 2014).

Recently, several software packages have been devoted 
to the simulation of virtual species. These packages can be 
used to test SDM outputs under multiple conditions. For 
instance, packages like RangeShifter (Bocedi et al. 2014) or 
HexSim (Schumaker 2015) are designed to simulate spa-
tially explicit population dynamics. However, these software 
do not allow to simulate species–environment relation-
ships, which is one of the most important issues in SDMs. 
As a result, they cannot be used to test the performance  
of SDMs to reproduce the simulated relationship or the 
influence of such relationships on model performance and 
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Concerns about the global decline of biodiversity in the 
face of global changes have led researchers to rely increas-
ingly on species distribution models (SDMs) to predict cur-
rent and future ranges of species. SDMs have thus become 
a central tool in conservation studies, to assess impacts of 
global changes on threatened species (Leroy et al. 2013), 
protected areas (Leroy et al. 2014), invasive species (Bellard 
et al. 2013), and also to test ecological hypotheses, such as 
niche conservatism (Strubbe et al. 2013). As a consequence, 
SDMs are constantly subject to methodological improve-
ments regarding new techniques, protocols or evaluation 
methods (Elith et al. 2006, 2010, Phillips et al. 2009, 
Barbet-Massin et al. 2012). These methodological improve-
ments need testing and validation, which have mostly been 
based on empirical data. However, the use of empirical 
data during this validation phase is problematic because 
each dataset has many confounding factors, which preclude 
generalisation (Miller 2014). A valuable alternative is the 
simulation of virtual species distributions, because under-
lying mechanisms that generate such distribution patterns 
are known and can be manipulated independently (Hirzel 
et al. 2001, Meynard and Quinn 2007, Barbet-Massin 
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virtualspecies is a freely available package for R designed to generate virtual species distributions, a procedure increasingly 
used in ecology to improve species distribution models. This package combines the existing methodological approaches 
with the objective of generating virtual species distributions with increased ecological realism. The package includes 1) gen-
erating the probability of occurrence of a virtual species from a spatial set of environmental conditions (i.e. environmental 
suitability), with two different approaches; 2) converting the environmental suitability into presence–absence with a proba-
bilistic approach; 3) introducing dispersal limitations in the realised virtual species distributions and 4) sampling occur-
rences with different biases in the sampling procedure. The package was designed to be extremely flexible, to allow users 
to simulate their own defined species–environment relationships, as well as to provide a fine control over every simulation 
parameter. The package also includes a function to generate random virtual species distributions. We provide a simple 
example in this paper showing how increasing ecological realism of the virtual species impacts the predictive performance 
of species distribution models. We expect that this new package will be valuable to researchers willing to test techniques 
and protocols of species distribution models as well as various biogeographical hypotheses.
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classification rates, which are important limitations if we 
want to relate modelling to ecological properties of real 
species. The only software specifically developed for this 
purpose, SDMvspecies (Duan et al. 2015), is very limited 
in the number of possible species–environment relation-
ships (i.e. linear, truncated linear or Gaussian response 
curves, Kong et al. 2014), and does not permit the users 
to customise occurrence–environment relationships (e.g. 
an ecophysiologist may want to use specific thermal per-
formance functions to define a probability of occurrence 
for a virtual species, and this would not be feasible in 
SDMvspecies). In addition, this software does not include 
the possibility to simulate dispersal biases, or to sample 
species occurrences. As a result of the lack of suitable soft-
ware, researchers modelling virtual species are left with the 
option to develop their own procedures to simulate spe-
cies environmental relationship. In addition to being time 
consuming, it also means forgoing standardization (see, 
for example, the variety of methods described in Table 1 
of Miller 2014). For these reasons, we developed virtual-
species, an open-source package for the R environment (R 
Core Team) designed to provide a complete framework to 
generate virtual species distributions that allow to gener-
ate virtual species through various species–environment 
relationships, and to take into account distribution and 
sample biases.

Our objective with this framework is to integrate the main 
methodological advances published on the simulation of vir-
tual species distributions, to provide a robust, comprehen-
sive and user-friendly package. Specifically, this package will 
allow researchers to simulate virtual species distributions with 
increased ecological realism. By increased ecological realism 
we mean simulations of species–environment relationships 
which are closer to the real species–environment relation-
ships. This implies the possibility for the user to define any 
type of species–environment relationship, of increasing the 
complexity of the environment (i.e. improving cases with 
only a few predictors (e.g. Varela et al. 2014) to a variety of 
predictors), and to use of a probabilistic approach to convert 
environmental suitability to presence–absence (Meynard 
and Kaplan 2013). Increased ecological realism also implies 
the possibility of generating biases analogous to real biases, 
both in the realised distribution of the species (e.g. distribu-
tion limited by species dispersal abilities) and in the sam-
pling of occurrences. Hence, the package was designed to 
be very flexible to integrate these possibilities and their full 
customisation.

The package is structured around four major steps  
(Fig. 1): 1) generating virtual species’ environmental suitabil-
ity from a spatial set of environmental conditions, with two 
different approaches (Meynard and Quinn 2007, Barbet-
Massin et al. 2012); 2) converting the environmental suit-
ability into presence–absence with a probabilistic approach 
(Meynard and Kaplan 2013); 3) introducing dispersal limi-
tations in the realised virtual species distribution and 4) 
sampling occurrences with different biases in the sampling 
procedure. The package also includes various utility func-
tions such as a function to visualise the species–environment 
relationships (Table 1). Hereafter, we detail the functioning 
of the package, step by step, and then we detail a working 
example of the package, showing how increasing ecological 

realism in the generation of virtual species impacts the pre-
dictive performance of SDMs. A comprehensive tutorial for 
the package is available online at < http://borisleroy.com/en/
virtualspecies >.

Package description

Requirements and input data

virtualspecies requires a standard installation of R and four 
extension packages, all of which can be installed from the 
Comprehensive R Archive Network: raster (Hijmans 2015), 
ade4 (Dray and Dufour 2007), dismo (Hijmans et al. 2014) 
and rworldmap (South 2011).

The package is designed to generate virtual species dis-
tributions from spatial environmental datasets (Fig. 1). 
These environmental datasets are gridded spatial data in 
the ‘raster’ format of the R package raster. Specifically, vir-
tualspecies uses RasterStack objects, i.e. piles of rasters with 
the same spatial extent and resolution, where each layer 
corresponds to an environmental variable. For example, 
the global climate dataset WorldClim (< www.worldclim.
com >) can easily be imported into R to a RasterStack for-
mat. Each layer of the input RasterStack corresponds to 
an environmental variable and must be named accordingly 
with a unique name. There is no limit to the number of 
layers of the input RasterStack, except for the capacities of 
the user’s computer.

Step 1 – generation of the virtual species’ 
environmental suitability

The basis of generating a virtual species distribution consists 
in simulating the environmental suitability of a species, i.e. 
simulating its response to different environmental gradi-
ents, such as climatic variables. To simulate the environ-
mental suitability, virtualspecies proposes two approaches 
(Fig. 1, step 1): 1) define a response function (e.g. linear, 
logistic, quadratic, gaussian) to each environmental vari-
able, and combine these responses to define the environ-
mental suitability (function generateSpFromFun); or 2) 
generate a principal component analysis (PCA) of all the 
environmental variables, define a response to each of the 
first two principal components (axes) and combine these 
responses to define the environmental suitability (function 
generateSpFromPCA).

1) Define responses to each environmental variable
This approach was introduced by Hirzel et al. (2001) which 
generated a virtual species by defining response functions to 
different predictor variables (e.g. a linear increasing response 
to forest cover, or a Gaussian response to an elevation gradi-
ent), and then combined the responses (using a weighted 
average) to obtain a habitat suitability value. It is the most 
frequently used approach to generate virtual species distri-
butions (Elith et al. 2005, Meynard and Quinn 2007, Elith 
and Graham 2009, Bombi and D’Amen 2012, Meynard and 
Kaplan 2013). This approach is implemented in the func-
tion generateSpFromFun. Several functions are embedded 
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Input:
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Step 2: 
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Area occupied by the virtual species

generateSpFromFun generateSpFromPCA

convertToPA

limitDispersal

Step 4: 

Sample occurrences

sampleOccurrences

Sampled presence points

Figure 1. Illustration of the package framework. The grey boxes on arrows indicate the names of the functions.

with virtualspecies, based on functions already used in the 
literature (Table 1). virtualspecies is also extremely flexible 
because any other function existing in R can be used as a 
response function to environmental conditions (such as the 
normal distribution: dnorm); response functions can also be 
entirely created by the user (see the virtualspecies tutorial, 
section 2.3. at  http://borisleroy.com/en/virtualspecies ).

2) Define suitability from a PCA of environmental 
conditions
Defining response functions independently to each envi-
ronmental variable (approach 1) can lead to virtual species 
with unrealistic environment conditions (e.g. a species with 
incompatible optima, such as an annual mean temperature 
of 35°C and a mean temperature of the warmest month of 
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a particular cell is turned into a presence or an absence. 
Therefore, a binomial experiment is run in each cell, with 
the probability of occurrence as the parameter. A cell  
with a probability of occurrence of 0.2 will be assigned a 
presence in 2 out of 10 cases under this probabilistic approach 
(for more details and examples see the online tutorial, sec-
tion 4.1. at  http://borisleroy.com/en/virtualspecies  and 
Meynard and Kaplan 2013). This probabilistic conversion 
to presence–absence implies that repetitions of the conver-
sion process will differ, each providing a valid realisation 
of the true species distribution map. However notice that  
this approach also provides the flexibility to simulate 
threshold as well as non-threshold responses (Meynard and 
Kaplan 2012, 2013). It is implemented in the function 
convertToPA.

The importance of species prevalence (i.e. the proportion 
of sites in which the species occurs), and particularly of the 
relationship between species prevalence and sample preva-
lence (i.e. the proportion of samples in which the species 
has been found) has been demonstrated on SDMs (Meynard 
and Kaplan 2012). Hence, the function automatically cal-
culates the species prevalence for the user. Alternatively, the 
user can also specify the desired species prevalence to the 
function, which will automatically determine an appropriate 
conversion curve.

Step 3 (facultative) – introduce a distribution bias

One of the most disputed assumptions of SDMs is the 
assumption that species are at equilibrium with their 
environment (Guisan and Thuiller 2005), i.e. the 
assumption that they occupy their full range of suitable 
environmental conditions. This assumption is disputed 

5°C). While such cases can easily be avoided when only a 
few variables are considered, it becomes much more difficult 
when numerous variables are considered, especially if mul-
tiple species are simulated. An alternative approach for such 
cases consists in generating a PCA of environmental condi-
tions, and then defining responses to two axes of this PCA 
(Barve et al. 2011, Barbet-Massin et al. 2012). This approach 
ensures that the combination of environmental conditions 
is matched in the real world for the simulated species. It is 
implemented in the function generateSpFromPCA. This 
function is currently limited to the usage of normal response 
functions to the first two axes, but future versions will also 
implement any type of response function.

Step 2 – conversion of environmental suitability into 
presence–absence

The classical approach consists in defining a threshold to 
convert environmental suitability into a binary map of 
presence–absence (Hirzel et al. 2001, Bombi and D’Amen 
2012). This approach, however, does not simulate the ran-
dom processes acting on species occupancies and will always 
lead to threshold responses, despite the previous genera-
tion of non-threshold environment–occurrence relation-
ships (Meynard and Kaplan 2012, 2013). Such unrealistic 
virtual species can provide misleading results regarding the 
ability of modelling techniques to predict species distri-
butions, particularly when non-threshold responses are of 
interest. An appropriate alternative consists in applying  
a probabilistic approach in which a logistic function is used 
first to convert environmental suitability into a probability 
of occurrence (Fig. 1, step 2). A subsequent random draw 
using the probability of occurrence determines whether 

Table 1. Description of the functions included in the virtualspecies package. Many additional options and customisations are available for 
the functions, all of which are comprehensively documented in the help files of the package.

Core functions
generateSpFromFun Generates a virtual species suitability map by defining its response functions to environmental 

variables.
generateSpFromPCA Generates a virtual species suitability map by defining its response to a principal component 

analysis of environmental variables.
generateRandomSp Randomly generates a virtual species distribution, including the conversion to presence–absence. 

The random aspects can be customised.
convertToPA Converts the environmental suitability of a virtual species into presence–absence.
limitDistribution Introduces a bias in the distribution of a virtual species by limiting its distribution to a chosen area.
sampleOccurrences Samples occurrence points of the virtual species, with or without biases.

Utility functions
formatFunctions Helps the user to format and illustrate the response functions as a correct input for generateSpFrom-

Fun.
plotResponse Plots the relationship between the species and the environmental variables. Provides a plot 

appropriate for the method used to generate the virtual species.
removeCollinearity Analyses and (if chosen) removes the collinearity among the environmental variables.
synchroniseNA Ensures that cells containing NAs are the same among all the layers of a raster stack. Useful when 

building a stack of environmental variable coming from different sources, e.g. when combining 
climate with land use data.

Response functions currently  
embedded in the package
linearFun A linear function of the form ax  b
logisticFun A logistic function of the form 1/(1  exp((x – b)/a))
quadraticFun A quadratic function of the form ax²  bx  c
custnorm A normal function parameterised by the mean, extreme values, and percentage of area under the 

curve between extremes.
betaFun The asymmetrical beta function (Oksanen and Minchin 2002): k(x – p1)a (p2 – x)g
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and remove the collinearity among environmental variables 
(removeCollinearity). These functions are summarised in 
Table 1 and have many customisable parameters described in 
their associated help files.

Example of application: evolution of SDM 
performance with increasing ecological 
realism of virtual species

The generation of virtual species distributions is often aimed 
at testing modelling techniques and protocols, with the ulti-
mate objective of transferring the results to real-world spe-
cies. It is therefore important to attempt generating virtual 
species resembling real-world species. Hence, it is crucial 
to establish the degree of model performance overestima-
tion when using virtual species with poor ecological realism. 
Here, we provide an example of this overestimation, using a 
very simple case study.

We built this example using previous works showing 
three frequent characteristics of real-world species that 
can be applied to virtual species. First, as explained in 
step 2, because of the random processes acting on species 
occupancies, real-world species are more likely to have a 
gradual response to the environment rather than a thresh-
old response (Meynard and Kaplan 2012, 2013). Second, 
sampling procedures are scarcely perfectly randomised, 
and often there are strong disparities in sampling intensi-
ties among geographical areas (see, e.g. the higher sampling 
intensity in Germany and the United Kingdom in spider 
distribution maps in Appendix S6 of Leroy et al. 2014), 
which impacts the performance of species distribution 
models (Phillips et al. 2009). Third, real-world species may 
not be at the equilibrium with their environment, as this 
has been shown for many invasive species (Václavík and 
Meentemeyer 2012).

Simulations

We generated a virtual species distribution on the basis of 
six bioclimatic variables ( www.worldclim.org/bioclim) : 
mean diurnal range (bio2), max temperature of warmest 
month (bio5), min temperature of coldest month (bio6), 
precipitation of wettest month (bio13), precipitation of  
driest month (bio14), precipitation seasonality (bio15). 
These variables were downloaded from WorldClim  
(www.worldclim.org) at a resolution of 0.17 decimal 
degrees, and the geographical area was restricted to the 
western Palearctic (longitude between –15 and 65; latitude 
between 30 and 75). On the basis of these environmental 
variables, we generated a virtual species’ environmental suit-
ability with a PCA approach, using the generateSpFromPCA 
function. We manually defined the Gaussian response func-
tions to axes 1 (mean  4, standard deviation  3) and 2 
(mean  3, standard deviation  2). The resulting spe-
cies–environment relationship was illustrated in Fig. 2 using 
the plotResponse function of the package.

From this single virtual species’ environmental suitability, 
we generated four cases of increasing complexity (see the R 
script in Supplementary material Appendix 1).

because species’ realised distributions are often assumed 
to be restricted to a subset of their potential distribu-
tions, because of constraints to dispersal, competition, or  
stochastic extinction events for example. As a consequence, 
testing how well modelling techniques perform when the 
equilibrium assumption is violated is an important con-
tribution of virtual species (Saupe et al. 2012). Virtual 
species generated with this package can be used to test 
such assumptions. The principle is to simulate a realised 
distribution for the virtual species which will be a sub-
set of its potential distribution generated at step 2. This  
distribution bias can be achieved by different ways.  
Within the package, the function limitDistribution pro-
vides several convenient ways to limit the distribution 
of the species (Fig. 1 step 3). This functions restricts  
species’ presences (defined at step 2) to a spatial area 
defined by the user, and thus precludes any presence 
in cells outside this area. For example, in Fig. 1 step 3,  
the virtual species’ distribution was restricted to conti-
nental Africa only. To define the restricting area, differ-
ent methods can be used in limitDistribution (i.e. using 
country, region or continent names, spatial polygons or 
extents).

Another possibility for users is to dynamically simu-
late the dispersion of their virtual species by combining 
outputs from virtualspecies (environmental suitability  
generated at step 1) with other modelling plat-
forms, such as the MIGCLIM R package (Engler et al.  
2012) or RangeShifter (Bocedi et al. 2014). In 
Supplementary material Appendix 2, we detail an exam-
ple where we simulate the dynamic dispersion of a vir-
tual species in Great Britain by combining virtualspecies  
with RangeShifter.

Step 4 – occurrence sampling

The last step consists in sampling observed occurrences for 
the virtual species with the function sampleOccurrences. 
This function can be used to sample different types of spe-
cies occurrence (‘presence–absence’ or ‘presence only’), 
either randomly or with different biases similar to actual 
sampling biases (Fig. 1, step 4). For example, it is possible 
to assign a probability of detection to the virtual species, 
given the impact of imperfect detection on SDM perfor-
mance (Lahoz-Monfort et al. 2014). This probability of 
detection can be weighted by environmental suitability, 
to simulate smaller populations in less suitable areas. An 
error probability can be defined, to simulate misiden-
tifications (i.e. erroneous presence in cells where the  
species is absent). A sampling intensity bias can also  
be applied, to simulate over- or under-sampled areas 
(Phillips et al. 2009).

Utility functions

virtualspecies also includes various utility functions  
(Table 1), such as functions to visualise the relationship 
between the species and its environment (plotResponse), to 
randomly generate a virtual species (generateRandomSp), 
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only protocol, using 10 runs of 1000 randomly sampled 
pseudo-absences to calibrate generalised linear models with 
the default settings of biomod. We then projected the pre-
dicted environmental suitability maps (averaged across the 
10 pseudo-absence runs) of each case (Fig. 3) and calculated 
two performance metrics by comparing the true to the pre-
dicted distributions for each case: the relative area under the 
receiver operating characteristic curve (ROC, Fielding and 
Bell 1997, ranging from 0.5 (no skill) to 1 (perfect score)) 
and the true skill statistic (TSS Allouche et al. 2006, rang-
ing from 0 (no skill) to 1 (perfect score)). To compute the 
TSS metric, the predicted suitability maps were converted 
into presence–absence maps using a threshold maximising 
the TSS value.

Results

As expected, there was a progressive degradation of the ability 
of SDMs to correctly predict the environmental suitability 
(Fig. 3 B–D) as real-world aspects were included in the virtual 
species. Interestingly, the virtual distribution generated with a 
threshold conversion at step 2 was very well predicted above 
the threshold (i.e. above an environmental suitability of 0.7), 
but nothing could be predicted below the threshold (Fig. 3B). 
On the other hand, when a probabilistic conversion was used 
to generate the virtual species, SDMs were less performant to 
predict areas of high environmental suitability; but had the 
ability to detect the lower environmental suitability of the 
virtual species (Fig. 3C). When a sampling bias was intro-
duced in Germany and the United Kingdom, the predicted 
suitability was even more biased. As expected, predicted suit-
ability values showed higher values than true environmental 
suitability in areas with climate similar to these two countries, 
and lower predicted values than true environmental suitabil-
ity elsewhere, such as in Spain and in eastern Europe (Fig. 
3D). When the species was not at equilibrium with its envi-
ronment, the predicted suitability was, unsurprisingly, dra-
matically underestimated (Fig. 3E).

Regarding the performance of SDMs, when the species 
has a threshold response where it is always absent below a 
suitability threshold and always present above that threshold 
(case 1), SDMs generate near-perfect predictions according 
to both ROC and TSS (Fig. 4). However when the presence– 
absence corresponds to a probabilistic response (cases 2–4) 
there is a strong drop in predictive performance. The applied 
sampling bias (case 3) did further decrease the predictive per-
formance, although to a lesser extent. Finally, SDMs applied 
on the species which was not at equilibrium with its environ-
ment (case 4) yielded the most spectacular drop in predictive 
performance, compared to the other cases.

Implications

This simple example clearly illustrated how virtualspecies 
can be used to simulate distributions with increasing com-
plexity and ask questions related to SDM performance. The 
case study show here confirmed the importance of using a 
probabilistic conversion into presence–absence (Meynard 
and Kaplan 2013). Results also extend the conclusions of 

Case 1: the environmental suitability was converted to 
presence–absence using a threshold of 0.7 (above the thresh-
old presence is attributed, below absence is attributed). 150 
presence points were randomly sampled.

Case 2: the environmental suitability was converted to 
presence–absence with a logistic curve of parameters b  0.7 
(inflexion point) and a  –0.1 (steepness of the slope). 150 
presence points were randomly sampled.

Case 3: same as case 2, except that a sampling bias was 
introduced, where Germany and the United Kingdom were 
50 times more sampled than elsewhere. This sampling bias 
emulates a situation where these two countries have natural-
ist societies who collected more data locally on the target 
species.

Case 4: same as case 2, except that the distribution of 
the species was subsequently limited to Great Britain and 
Ireland, using the function limitDistribution of the package. 
150 presence points were randomly sampled.

Species distribution models

We built species distribution models for each case, using 
the biomod 2 modelling R package (Thuiller et al. 2009). 
We used the six raw climatic variables as predictors (i.e. 
not the axes of the PCA). We applied a classical presence-
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Figure 2. Graphical representation of the simulation of a virtual 
species’ environmental suitability with a principal component anal-
ysis (PCA) of six climate variables (acronyms detailed in main text). 
In the top left corner the projection of each input climate variables 
on the PCA is shown. Each point of the PCA corresponds to a pixel 
of the input raster of climate variables. The Gaussian responses of 
the species to each axis are illustrated next to their respective axis. 
An ellipse is drawn around the area where the pixel suitability is 
highest. Points are coloured according to their climate suitability 
values for the virtual species: red points correspond to pixels with 
the highest suitability, and yellow to grey points correspond to pix-
els with the lowest suitability, as shown in the legend.
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tion biases and sampling of occurrences. In this package we 
combined the best methodological advances from the litera-
ture into this single framework. virtualspecies should there-
fore help researchers in generating species with increased 
ecological realism, for example by designing complex spe-
cies–environment relationships, avoiding the mistake of a 
threshold conversion into presence–absence (Meynard and 
Kaplan 2013), or introducing biases in the sampling of 
occurrence which are similar to real sampling biases (Phillips 
et al. 2009). Furthermore, virtualspecies can be coupled with 
other population dynamics platforms such as RangeShifter 
(Bocedi et al. 2014), which enables further complexity in 
the modelling of virtual species (Supplementary material 
Appendix 2).

Meynard and Kaplan (2012) to a situation where presence-
only data are used, which was not tested in the previous 
study. Our package also allows adding further complexity 
to the simulations by incorporating dispersal limitations and 
sampling bias, two additional biases that, expectedly, also 
strongly impacted the predictive performance of SDMs.

Discussion

virtualspecies is the first package providing a full working 
framework to generate virtual species distributions, includ-
ing the simulation of species–environment relationships, 
conversion into presence–absence, introduction of distribu-
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Figure 3. Maps of the (A) true and (B–E) predicted environmental suitability of the virtual species according to the different simulations: 
(B) conversion of environmental suitability to presence–absence with a threshold of 0.7; (C) conversion of environmental suitability to 
presence–absence with a logistic curve of parameters b  0.7 (inflexion point) and a  –0.1 (steepness of the slope); (D) same simulation 
as in (C), but a sampling bias was introduced where Germany and the United Kingdom were 50 times more sampled than elsewhere; (E) 
same simulation as in (C), but the dispersal of the species was limited to Great Britain and Ireland.
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Figure 4. Boxplots of performance metrics of species distribution 
models for the different virtual species simulations. Each boxplot is 
based on the 10 pseudo-absence runs for the considered virtual  
species. ROC: area under the receiver operating characteristic curve; 
TSS: true skill statistic. The TSS was evaluated on maps of pres-
ence–absence predicted using a conversion threshold maximising 
the TSS value.

Table 2. Steps of the framework, associated functions of the virtualspecies R package, and output objects.

Step Functions Output

1 – Generation of the 
virtual species 
environmental 
suitability

generateSpFromFun
generateSpFromPCA
generateRandomSp

A virtualspecies object containing three elements:
 • approach: the approach used to generate the species (response or PCA).
 • details: detailed parameters used to generate the environmental suitability. For 

example, if a response approach was chosen, then all the response functions and 
their parameters are stored here.

 • suitab.raster: the raster (gridded map) of environmental suitability of the virtual 
species.

2 – Conversion of the 
environmental 
suitability to 
presence–absence

convertToPA
generateRandomSp

The input virtualspecies object appended with two elements:
 • PA.conversion: the parameters used to convert environmental suitability into 

presence–absence.
 • pa.raster: the raster (gridded map) of true presence–absence of the virtual 

species.

3 – Introduce a 
distribution bias

limitDistribution The input virtualspecies object appended with two elements:
 • geographical.limit: the geographical constraints used to limit the distribution of 

the virtual species.
 • occupied.area: the raster (gridded map) of cells accessible to the species given 

the geographical constraints.

4 – Sample occurrences sampleOccurrences A list containing three (unbiased sampling) to four (biased sampling elements):
 • sample.points: a table (data.frame) containing the coordinates of sampled 

points, the actual occurrence of the species in these sampled points (present or 
absent), and the observed occurrence (present or absent).

 • detection.probability: the chosen probability of detection of the virtual species.
 • error.probability: the chosen probability to assign presence in cells where the 

species is absent.
 • bias: if a bias was chosen, then the type of bias and the biased sampling area 

will be included.

In this paper we provided a very simple example showing 
how the performance of SDMs can be altered when applying 
different real-world aspects on virtual species. The four cases 
of our example were generated with only a few lines of code 
(Supplementary material Appendix 1), which clearly high-

lights the simplicity of generating multiple different cases 
with the virtualspecies R package. The combination of its 
simplicity of use and possibilities of customisation will allow 
ecologists to easily generate multiple virtual species distribu-
tions with a fine control over the different simulation param-
eters. For example, the function generateSpFromFun can 
use any user-defined response function. As a consequence, 
researchers willing to test a very particular response func-
tion, specific to model organisms, will be able to use virtu-
alspecies, such as the different thermal performance curves 
described in Angilletta (2006). This will allow researchers to 
test new hypotheses, for example regarding the distribution 
of actual species or the robustness of modelling techniques 
to unusual species–environment relationships. In addition, 
the possibility of controlling every simulation parameter is 
valuable when generating virtual species distributions to test 
the robustness of modelling techniques and protocols to par-
ticular aspects or biases (Miller 2014).

Another major contribution of virtualspecies is an 
enhancement of transparency, replicability and compara-
bility of studies involving virtual species. Indeed, the gen-
erated virtual species can be stored on the hard disk drive 
and provided in online supplementary materials of articles. 
Likewise, all the parameters used to generate virtual species 
are stored in the package outputs (Table 2), and can be pro-
vided in articles. These parameters can then be used as inputs 
to generate the same virtual species (see e.g. the R script in 
Supplementary material Appendix 1 to reproduce the exam-
ple of this article), including the random aspects if the users 
use the R function set.seed before their simulations.

Given the importance of SDMs in ecology, biogeogra-
phy and biological conservation, and the fact that many 
methodological aspects of SDMs still need improvement, 
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we expect that virtual species will have a major positive 
impact in these fields. We also expect virtual species to be 
useful in other fields. For example, virtual species can pro-
vide insights to test issues in biogeography, such as niche 
conservatism, but also to test hypotheses at micro-scales, 
such as the impact of climate change on the distribution of 
insects on plant surfaces.

To cite virtualspecies or acknowledge its use, cite this 
Software note as follows, substituting the version of the 
application that you used for ‘version 0’:

Leroy, B., Meynard, C. N., Bellard, C. and Courchamp, F. 2015. 
virtualspecies, an R package to generate virtual species distribu-
tions. – Ecography 39: 599–607 (ver. 0).
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