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Abstract 

Raw milk is often described as a major source of lactic acid bacteria for indigenous lactic starter. These indigenous starters 

contribute to the sensorial quality of cheese. Raw milk, rich in Lactoccocus lactis may therefore be very interesting for the 

cheese making. Currently, the most corn mon ly used methods to differentiate lactic acid bacteria, and parti eu larly the closely 

related phenotypes Lactococcus and Enterococcus, are based on DNA sequencing, but the cost and time required for these 

analytical methods hinder their use for rapid screening of raw material. The present study therefore proposes a simple 

alternative method to identify and discriminate against Lactococcus and Enterococcus, at the genus, but also at the species 

level, that is based on collecting near infrared spectra directly from bacterial colonies in Petri dishes. The infrared spectra 

of 280 strains of Lactococcus and Enterococcus cultured on solid media were collected by using a spectrometer with a 

wavelength range of 908 to 1684 nm and a remote probe. The best Classification And Regression Trees models for genus and 

species discrimination gave an excellent classification rate of 87% on an external validation set (30 strains). Loading line 

plots, with prominent bands at 900-960 and 1270-1390 nm, confirmed that the source of variation was due to changes in the 

polysaccharides. 
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Introduction 

Lactoccocus lactis is a bacterium present in raw milk 

and is often used as a lactic acid starter to make 

cheese. 1 5 Due to their acidifying capacity, lactic acid

bacteria play a key role in the acidification of the curd 
essential for cheese making, but they also contribute to 

cheese aroma and texture as they possess endo and 

exopeptidases which are involved in the production of 

sapid molecules; they generate precursors of aromatic 

compounds.6
•
7 So, to elaborate indigenous starter

from the milk, it is necessary to differentiate between 

Lactococcus and its closely related phenotype 

Enterococcus. Currently, the most commonly used 

methods for bacterial typing are based on phenotyping, 

molecular biology or analysis of ribosomal proteins 

(MALDI-TOF MS).8 1 1 The cost and time required
for these analytical methods limit their use for rapid 

analysis of raw material. Thus, an alternative method 
is needed. Spectroscopy which is based on measuring 

absorbance of infrared radiation is a fast and nondes­

tructive tool that is commonly used in the food indus­

try. When combined with clustering
1 2

• 
1 3 or artificial

neural networks (ANNs), mid-infrared spectroscopy 

can be used to identify and classify bacteria. 14
•
1 5 

Microorganisms such as lactic acid bacteria have been 

studied with Fourier transform mid-infrared spectros­

copy (FT-mid-IR). For example, Amie! et al. 16 classi­

fied Lactobacillus, Lactococcus, Leuconostoc, Weissella, 

and Streptococcus isolates at the species level, whereas 
Savic et al. 17 focused on Lactobacillus strains. Samelis 

et al. 18 discriminated between Lactobacillus casei/para­

casei, Lactobacillus plantarum, Streptococcus thermo­

philus, Enterococcus faecium, and L. lactis by using 

cluster analysis. In another study, different strains of 

Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, 

and Streptococcus were discriminated by using 

FT-mid-IR and cluster analysis 19 and ANNs.20 Two

other studies21
•
22 

investigated several strains of 

Enterococcus by both FT-mid-IR and cluster analysis, 

which required rather long sample preparation. In ail 
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those studies, bacteria cells first had to be put in sus-
pension and then, before drying, placed on an optical
plate or other infrared-transparent material such as
ZnSe. However, to the best of our knowledge, near
infrared (NIR) spectroscopy has yet to be used to dis-
criminate between Lactococcus and Enterococcus.
Indeed, the novelty of the study is that this infrared
tool requires no preparation and enables nondestruc-
tive analysis of the samples.

The present study thus focuses on a database of NIR
spectra rapidly collected with a remote probe directly
from Petri dishes, without preparing the samples.
Furthermore, the strains did not come from a collection,
but are representative of those found in the natural eco-
system of the farms involved in the study. In this paper,
we evaluated the use of Classification And Regression
Trees (CART) to build a model to distinguish between
genera and between species of bacteria.

After preprocessing the spectra, 280 strains were dis-
criminated with CART.

Materials and methods

Milk samples

In a single week, 12 raw-milk samples were collected
from five breeds of goats in different areas of France.
After the milking, the raw samples were collected in
sterilized 500mL bottles, cooled immediately to 4 �C,
and stored at �25�C until analysis.

Bacterial culture

After inoculation on the surface of serially diluted milk
in sterile buffered peptone water (Biomérieux, France)
and incubation for 72 h at 20�C, approximately 10 acid-
ifying bacterial colonies (colonies with yellow halo)
were isolated from the suitable dilution (between 30
and 100 colonies in the Petri dish) and incubated in
Elliker broth overnight at 30�C. A loopful of the cul-
ture was taken from the Petri dish and transferred to
another Petri dish containing a modified Elliker agar.
Each Petri dish was maintained in the dark for 72 h at
30 �C before collecting any infrared spectra.

Identification of bacteria species by partial 16S
rDNA sequencing

A loopful of the culture was taken from the plates and
suspended in 5mL of Elliker broth, then genomic DNA
was isolated with NucleoSpin� Tissue (Macherey-
Nagel, Hoerd, France). The polymerase chain reaction
(PCR) amplification was done in a thermal cycler Bio-
Rad MyCycler (Bio-Rad Laboratories, Hercules, CA).

The 16S rDNA gene (V1–V4) was amplified by PCR
using primers E8F and E807R.23

The reaction mixture (50 mL) contained 5mM primer
E8F (Invitrogen, Carlsbad, CA), 5 mM Primer E807R,
5mM for each deoxynucleotide (dNTPS), 1.25U/mL

TaqDNA polymerase, a 10x Thermopol buffer
(Brolab, NewEngland, UK), 50 ng of bacterial DNA,
and was completed with ultrapure water.

DNA was sequenced by the Sanger method (GATC
Biotech, Constance, Germany). Sequences were identi-
fied by using GenBank from the National Center for
Biotechnology Information, USA.

Instrumentation

Spectra were acquired by using a NIR356 1.7 GetSpec
Spectrometer (getAMO, Dresden, Germany), equipped
with a tungsten-halogen light source Sentrolight HalS
and a reflecting probe with sapphire windows mounted
at 45� (Figure 1).

The NIR spectra were obtained over the range
908–1684nm (a bandwidth of 777 nm) with a spectral
resolution of 1 nm. Each spectrum was the average of
100 scans. Absorbance spectra of bacterial samples were
obtained on top of the background spectrum of
Spectralon� (Labsphere Inc., Bures Sur Yvette,
France). The reflecting probe was positioned 3 cm
above the Petri dish. Spectra were recorded in random
order. The spectra were recorded as absorbance. The
laboratory temperature was maintained at 22� 2 �C
during the NIR absorbancemeasurements. Three spectra
were recorded for each strain and were used separately in
the model. A total of 280 spectra (134 isolates of
Enterococcus and 146 of Lactococcus) were collected.
The spectra were collected by using CDI Spec32 data
acquisition software (v1737, Control Development Inc.,
South Bend, IN) on a Windows XP laptop computer.

Spectral classification

Prior to spectral analysis, NIR spectra were pre-treated
with multiplicative scattering correction (MSC). Data
preprocessing was done by using The Unscrambler�

Multivariate Data Analysis (v. X; CAMO A/S, Oslo,
Norway).

Prior to developing calibration, a principal compo-
nents analysis (PCA) was performed to get an overview

Figure 1. Positioning of the infrared probe above the Petri dish.



of the data, to highlight sample clustering, to detect
outlier samples, and to reduce the dimensionality of
spectral data.24 Finally, we applied CART to discrim-
inate between lactic acid bacteria genera (Enterococcus
and Lactococcus), and species: Enterococcus faecalis,
E. faecium, other Enterococcus (Enterococcus hirae,
Enterococcus italicus and Enterococcus munditi),
Lactococcus garvieae and L. lactis. CART is a non-
parametric statistical technique which is able to solve
classification problems.25,26 The model was a decision
tree of binary recursive partitioning, with node-splitting
rules. The split selection criterion was Gini Index, as
defined by Breiman.25 27 The quality of the model was
evaluated by calculating prediction accuracy and mis-
classification rates from confusion matrices.28 The true
positive rate (TP) was the proportion of positive cases
that were correctly identified; the false positive rate (FP)
was the proportion of negatives cases that were incor-
rectly classified as positive; the true negative rate (TN)
was defined as the proportion of negatives cases that
were classified correctly and the false negative rate (FN)
was the proportion of positives cases that were incor-
rectly classified as negative. The prediction accuracy
and the classification error could be calculated from
these rates. The prediction accuracy was obtained as

Figure 2. NIR spectra treated by multiplicative scattering correction of bacteria from (a) different genera and (b) different species.

NIR: near infrared.

Table 1. Identification of bacteria in 280 samples: 250

samples in the training set and 30 samples in the external

validation set.

Training

(n 250)

External validation

(n 30)

No. of

samples Percentage

No. of

samples Percentage Total

Enterococcus 120 48 14 47 134

Lactococcus 130 52 16 53 146

Enterococcus

faecalis

91 36 9 30 100

Enterococcus

faecium

19 8 2 7 21

Enterococcus

hirae

2 1 1 3 3

Enterococcus

italicus

6 2 1 3 7

Enterococcus

munditi

2 1 1 3 3

Lactococcus

garvieae

5 2 1 3 6

Lactococcus

lactis

125 50 15 50 140



follows (equation (1))

Accuracy ¼ ðTPþ TNÞ=ðTPþ FPþ FNþ TNÞ

ð1Þ

Description of the two sets

For the classification analysis, 30 samples were set for
testing (randomly selected) and remained 250 samples
for training. The accuracy of the classification models
was assessed based on the percent of correct classifica-
tion. The best model was the one with the highest
accuracy. The test set was used to estimate how well
the models would perform on new data. In the training

set, the bacterial species were identified as E. faecalis
(36%), E. faecium (8%), E. hirae (1%), E. italicus (2%),
E. munditi (1%), L. garvieae (2%), and L. lactis (50%).
Table 1 summarizes the two sets.

Results and discussion

NIR spectral features

Figure 2(a) shows the mean NIR spectra of the two
bacterial genera (Figure 2(a)) and the seven species
(Figure 2(b)).

Slight differences are observed between the different
pretreated spectral profiles. However, a detailed
analysis of the spectra requires a PCA.

Figure 3. (a) Scatter plot of first two principal components (PC1 and PC2) for all bacteria spectra. (b) Loading vector plot of first principal

component corresponding to the bacteria dataset.



Table 2. Intermediate node division conditions for discriminating genera.

% Wavelengths (nm)

Nodes

Total

no. Enterococcus Lactococcus 915 930 931 951 1047 1063 1131 1152 1219 1386 1388 1391 1399 1554 1562 1563 1576 1589 1613 1629

Node 1 250 48% 52%

Node 2 177 60% 40% x

Node 3 73 19% 81% x

Node 4 143 52% 48% x x

Node 5 34 94% 6% x x

Node 6 125 45% 55% x x x

Node 7 18 100% 0% x x x

Node 8 16 0% 100% x x x x

Node 9 109 51% 49% x x x x

Node 10 90 59% 41% x x x x x

Node 11 19 16% 84% x x x x x

Node 12 68 71% 29% x x x x x x

Node 13 22 23% 77% x x x x x x

Node 14 8 13% 88% x x x x x x x

Node 15 60 78% 22% x x x x x x x

Node 16 7 0% 100% x x x x x x x x

Node 17 1 100% 0% x x x x x x x x

Node 18 41 93% 7% x x x x x x x x

Node 19 19 47% 53% x x x x x x x x

Node 20 5 100% 0% x x x x x x x

Node 21 17 0% 100% x x x x x x x

Node 22 16 0% 100% x x x x x x

(continued)

Figure 4. Binary decision tree obtained to predict (a) genera and (b) species from infrared spectra.



Principal component analysis

After processing, the entire spectrum was submitted to
PCA analysis. The PCA model was built from seven
principal components (PC1 to PC7). No distinct clus-
ters appeared in the score plots of all pairwise combin-
ations of PC1 to PC7. Figure 3 shows a bidimensional

representation of PC1 and PC2, which together
explained 93% of the variance in the data. All samples
are labeled according to their genus.

In Figure 3(a), no clear separation appears
between the two genera, and no obvious outliers are
detected. The loadings plot (Figure 3(b)) allows the
variables most closely related to the first principal

Table 2. Continued

% Wavelengths (nm)

Nodes

Total

no. Enterococcus Lactococcus 915 930 931 951 1047 1063 1131 1152 1219 1386 1388 1391 1399 1554 1562 1563 1576 1589 1613 1629

Node 23 3 100% 0% x x x x x x

Node 24 2 0% 100% x x x

Node 25 32 100% 0% x x x

Node 26 60 8% 92% x x

Node 27 13 69% 31% x x

Node 28 58 5% 95% x x x

Node 29 2 100% 0% x x x

Node 30 3 67% 33% x x x x

Node 31 55 2% 98% x x x x

Node 32 1 0% 100% x x x x x

Node 33 2 100% 0% x x x x x

Node 34 47 0% 100% x x x x x

Node 35 8 13% 88% x x x x x

Node 36 7 0% 100% x x x x x x

Node 37 1 100% 0% x x x x x x

Node 38 2 0% 100% x x x

Node 39 11 82% 18% x x x x

Node 40 6 100% 0% x x x x

Node 41 5 60% 40% x x x x x

Node 42 2 0% 100% x x x x x

Node 43 3 100% 0% x x x x x

Figure 5. Procedure for classifying bacterial spectra regarding genera.



component to be identified. In this figure, variables in
the ranges 900–960 and 1270–1390 nm are more rele-
vant for characterizing the genera and species of bac-
teria. Bacterial cell walls are known to have a high
taxonomic value. Indeed, the peptidoglycans of the
bacterial cell wall are made up of linear glycan chains
interlinked by short peptides. Those chemical species
vary by both microorganism and culture substrate.29,30

The specific infrared bands identified by the loading
plot (900–960 and 1270–1390 nm) might be relevant
for indicating differences in peptidoglycans’ patterns
or in the amount of given hydrocarbons.31 Those
bands were tentatively assigned to specific chemical
functional groups; the range 1270–1390 nm could be
related to CH stretch and CH deformation or to CH
second combination region; whereas the range 900–
960 nm could be related to third overtone methyl
peak.32,33

Discrimination of Enterococcus and Lactococcus

We applied CART with 777 variables to 250 learning
samples for bacterial classification. Figure 4(a) shows
the decision tree built to classify bacteria as
Enterococcus or Lactococcus.

In Table 2, intermediate node-division condi-
tions are given next to each node, corresponding to
the nodes in Figure 4(a). Figure 5 shows the
example of node 1-division condition. Node 1 is
called the decisive node and nodes 2 and 3 are final
nodes, called leaves. For each node, a diagram gives
an overview of the distribution of the decision variable
(i.e. the number of bacterial spectra belonging to
Enterococcus or Lactococcus genera). The splitting
attribute, the absorbance at 1388 nm in this case, is
also indicated, as well as the corresponding absorbance
ranges (0.665–0.687 and 0.687–0.697). Table 2 gives
intermediate node-division conditions next to each
node (wavelengths) and the partitioning results (percent
of Enterococcus or Lactococcus).

The following wavelengths were used as node-split-
ting rules: 915, 930, 931, 951, 1047, 1063, 1131, 1152,
1219, 1386, 1388, 1391, 1399, 1554, 1562, 1563, 1576,
1589, 1613, and 1629 nm (Table 2).

Based on the results given in Table 2, several
recurrent wavelengths are seen to discriminate between
genera. These are 1386, 1388, and 1399 nm, corres-
ponding to CH stretch and CH deformation, and
1613 nm, corresponding to the CONHR H-bonded
band.31

The results of applying this model are presented in
Table 3.

In training, 93% and 98% of the spectra correspond-
ing to Enterococcus and Lactococcus were correctly
classified, respectively. Applying this detection method
to the test set containing 30 bacteria spectra resulted in
93% and 81% proper classification for Enterococcus
and Lactococcus, respectively.

Bacterial spectra for discriminating between species

Figure 4(b) shows the decision-tree built to classify the
species of bacteria.

The following wavelengths were used for node-split-
ting rules: 908, 915, 930, 939, 979, 1017, 1033, 1047,
1119, 1131, 1227, 1275, 1381, 1386, 1391, 1415, 1539,
1557, 1558, 1563, 1576, 1595, 1597, 1605, 1615, and
1629 nm, as detailed in Table 4.

The following recurrent wavelengths can be high-
lighted: 1227, 1386, 1415, 1539, and 1597 nm.
Chemical assignments may be made corresponding to
ROH and CH2 groups (1227 nm for second overtone of
CH stretch, 1386 nm for CH stretch and CH deform-
ation, 1415 nm for two CH stretchesþCH deform-
ation, 1539 nm for first overtone of CH or OH
stretch).31,33,34

The wavelengths 915, 930, 1047, 1131, 1386, 1391,
1563, 1576, and 1629 nm discriminated not only
between genera but also between species. These results
support those of the loading-vector plot of the first
principal component corresponding to the bacteria
dataset, which highlights the two spectral ranges 900–
960 and 1270–1390 nm.

The results of applying this model are presented in
Table 5.

In training, 95% of the spectra were correctly clas-
sified: 100% for E. faecalis, E. faecium, E. hirae,
E. munditi, and L. garvieae, 93% for L. lactis, and
50% for E. italicus. Applying this method to classify
the bacteria species in the test set containing 30 bacteria
spectra gave 87% correct classification: 100 % for
E. faecium, E. italicus, and E. munditi, 93% for
L. lactis, 89% for E. faecalis, and 0% for E. hirae
and L. garvieae. The performance of these models
approach that of the Udelhoven et al.15 or Dziuba
and Nalepa’s neural-network models,35 which gave
89% to 95% correct classification at the genus level,
and surpasses that of the Guibet model,21 which gave
78% correct classification for E. faecalis (7 of 9 samples)
and, in the best case, 75% correct classification for
E. faecium.

Table 3. Confusion matrix for genera.

To

From Enterococcus Lactococcus Total

Well classified

samples

Training

Enterococcus 111 9 120 93%

Lactococcus 3 127 130 98%

Total 114 136 250 95%

Validation

Enterococcus 13 1 14 93%

Lactococcus 3 13 16 81%

Total 16 14 30 87%
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The misclassification rate was 13% for the validation
set. By classifying a random spectrum using this model,
we had 13 out of 100 risk of bad assignment, whereas
without using the model, if we randomly attribute a
label ‘‘specie’’ to a random spectrum, taking into
account the initial repartition, we have a risk of 86%
(6/7) of bad assignment.

Thus, based on infrared absorption spectra collected
from bacterium cultures, the two CART models pro-
vided conclusive classification. Although Enterococcus
and Lactococcus have the same number of strains, this
is not the case for the species. E. faecalis, E. faecium,
and L. lactis were over-represented, although this
reflects the natural distribution. The CART model is
thus better suited to classify these species—in fact, the
rate of correct classification for under-represented spe-
cies was inferior (50% for E. italicus in training and 0%
for E. hiae and L. garvieae in tests). To improve the
model, new samples of these species could be added to
the database.

We thus identify the wavelengths of interest. A dis-
advantage of CART is that it selects only one wave-
length to define each split. Nevertheless, the selected
wavelengths seem to correspond to the ROH and
CH2 groups. The differences are attributed to the com-
position of the cell walls, which differs for the polysac-
charides between genus and species of Enterococcus et
Lactococcus.36 The polysaccharide region is evoked not
only by Dziuba and Nalepa 35 but also by Savic et al.,17

Amiel et al.,16 and Naumann et al.13 to explain the
spectral discrimination between lactic acid bacteria
and propionic acid bacteria.

Conclusion

This work shows that NIR spectroscopy with a remote
probe can be used for robust screening of Enterococcus
and Lactococcus in raw colonies of lactic acid bacteria
cultured in Petri dishes, at genus and species levels. The
best CART model based on infrared data identified
95% and 87% of genera, in training and independent
testing, respectively (these genera were initially identi-
fied by DNA isolation and PCR amplification); and
95% and 87% of the species, in training and independ-
ent test, respectively. The bacteria preparation required
for this NIR technique is easier than that required for
the mid-IR technique, which makes the NIR-based
analytical technique promising for everyday use, as it
is also rapid (<1min), and nondestructive.
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