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Ticks have been recognized as vectors of pathogenic protozoa 
and bacteria for over 120 years.1–3 The first confirmed tick-
borne viruses were identified in the early 1930s causing dis-
ease in sheep: the flavivirus louping ill virus, transmitted by 
Ixodes ricinus in Scotland,4 and the nairovirus Nairobi sheep 
disease virus, transmitted by Rhipicephalus appendiculatus 
in Kenya.5 Since then, ticks have been incriminated as vec-
tors and/or reservoirs of numerous viruses of medical and/or 
veterinary importance,6,7 including the emerging pathogens 
Alkhumra hemorrhagic fever virus, severe fever with thro-
mocytopenia virus, Heartland virus, and Bourbon virus.8–11 
In addition, many apparently nonpathogenic arboviruses have 
been isolated from ticks.6,7

Research on tick-borne viruses has benefited greatly 
from the availability of tick cell and tissue cultures. Almost 
as soon as techniques were developed for repeatedly producing 
primary tick cell cultures,12,13 they were put to use for experi-
ments on arthropod-borne and other viruses, confirming the 
ability to replicate in tick cells and helping to clarify their host 
range.14–17 Continuous cell lines, first derived from ticks in the 
1970s,18,19 have since been applied to many aspects of arbovirus 
research,11,20–25 including clarification of actual and potential 
vector capacity.11,14,15,21,22,26–28 Replication was demonstrated 
in tick cells of viruses carried by ixodid and argasid ticks, mos-
quitoes, sand flies and midges as well as some viruses with 

no known vector.15,20,29–31 Surprisingly, there are few reports 
of tick cells being used for the isolation of tick-borne viruses 
from field samples; primary tick cell cultures were found to 
be at least as sensitive as chick embryo cell cultures for the 
isolation of tick-borne encephalitis virus (TBEV) from ver-
tebrate blood and brain suspension and tick suspension.32,33 
An uncharacterized RNA virus, Cascade virus, was isolated 
from frozen triturated Dermacentor occidentalis ticks into a 
Dermacentor variabilis cell line (RML-15); Cascade virus also 
replicated well in amphibian (XTC-2) cells but poorly or not 
at all in mosquito cells, most vertebrate cells, and suckling 
mice.34 The Rhipicephalus microplus cell line BME26 was used 
recently alongside Vero and BHK-21 cells for the isolation of a 
putative novel flavivirus, Mogiana tick virus from R. microplus 
ticks in Brazil.35

Until recently, all the viruses detected in ticks had one 
characteristic in common–they could all replicate in verte-
brate cells and indeed were initially isolated into vertebrate 
cells. However, it is now recognized that ticks themselves 
harbor a diverse microflora of vertically transmitted endo-
symbiotic bacteria and endogenous viruses36–40 that may 
not cycle between ticks and their vertebrate hosts. While 
endosymbiotic bacteria have been reported to occur in vari-
ous different tick species for nearly a century,3,41–44 very 
little is known about endogenous viruses of ticks.45 An 
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electron microscope study revealed the presence of virus-like 
particles in the salivary glands of adult female R. microplus 
ticks feeding on cattle46; the presence of large numbers of 
the particles was associated with possible abnormal tick-
feeding behavior. A single apparently tick-only virus has 
been comprehensively described, sequenced, and charac-
terized: the orbivirus St Croix River virus (SCRV)47 was 
detected in, and replicates in, tick cell lines but has so far 
failed to infect or replicate in any of the vertebrate or insect 
cell lines tested.43 Originally, SCRV was detected in the 
IDE2 cell line derived from the tick Ixodes scapularis,47,48 
suggesting that this prostriate tick was its natural host; sub-
sequent detection of SCRV in two cell lines (RA243 and 
RA257) derived from developing adult R. appendiculatus 
ticks established nearly 20 years previously in a laboratory 
on a different continent18,49 suggests that the virus may have 
originated from the latter metastriate tick species (Table 1). 
Electron microscopy revealed the presence of many more 
putative and potentially tick-only viruses in the majority of 
over 50 cell lines derived from 14 ixodid and two argasid 
tick species (Table 1).45,49,50 These tick cell lines represent 
an abundant, easily accessible resource for virus discovery, 
as well as contributing to studies on virus ancestry and evo-
lution. Studies on the evolution of SCRV and other tick-
borne orbiviruses51–53 suggested that SCRV is the oldest 
orbivirus identified to date and provided evidence of coevo-
lution of orbiviruses and their respective arthropod host/
vector. More recently, the Amblyomma americanum cell line 
AAE1254 was found to contain novel orbivirus sequences 
(H. Attoui, P. Alberdi, C. Sharp, and L. Bell-Sakyi, unpub-
lished data, 2012) (Table 1); if these sequences belong to 

a replication-competent virus, it will be interesting to 
determine its relationship to SCRV and other orbiviruses.

In the past few years, high-throughput molecular 
screening and deep sequencing approaches applied to vari-
ous tick species36,38,40,55,56 have revealed tantalizing hints of 
many more potentially tick-only viruses belonging to diverse 
families, but for such putative viruses, if they cannot infect 
and replicate in vertebrate cells, tick cell lines will be needed to 
establish whether the sequences belong to intact, replication-
competent viruses or to endogenous viral elements (partial 
or full-length DNA copies of the RNA genomes integrated 
into the genome of the vector/host; EVE) incorporated into 
the tick genomes. A proteomics informed by transcriptomics 
approach applied to RNAseq data from uninfected and 
TBEV-infected tick cells24 revealed RNA sequences with 
similarity to picorna-like viruses and rhabdoviruses in the  
I. scapularis cell line IDE8 and rhabdoviruses and the ifla-
virus deformed wing virus in the I. ricinus cell line IRE/
CTVM19 (D. Matthews, S. Weisheit, J. de la Fuente, and  
L. Bell-Sakyi, unpublished data, 2013) (Table 1). Rhabdovirus-
like (weakly grouped with lyssaviruses), orthomyxovirus-like 
(related to quarjaviruses), and bunyavirus-like (related to 
Hazara and Uukuniemi viruses) endogeneous virus elements 
were identified in the genome of I. scapularis,57 the only tick 
species with a completely sequenced genome (https://www.
vectorbase.org/).58 RNA sequences with similarity to genes 
of insect densoviruses, hepatitis E virus and the tick-borne 
pathogen African swine fever virus were detected in transcrip-
tomes of R. microplus larvae and/or “tick gut” (unspecified life 
cycle stage) available on the CattleTickBase website (http://
cattletickbase.ccgapps.com.au/). These data are not published, 

Table 1. viruses and viral rna sequences detected in tick cell lines. the tick species and instar from which each cell line was derived have 
been presented previously (49).

VIRUS oR VIRaL RNa 
SEqUENCES

TICk CELL LINE REfERENCE

st croix river virus iDE2 (47)

iDE8, ra243, ra257 (49)

virus-like particles seen 
by electron microscopy

ra243 (50)

aaE2, aaE12, anE58, avl/ctvm13, avl/ctvm17, BDE/
ctvm14, BmE/ctvm5, BmE/ctvm23, BmE/ctvm30, DalBE3, 
DvE1, HaE/ctvm9, iDE2, iDE8, irE11, irE/ctvm19, irE/
ctvm20, isE6, isE18, raE/ctvm1, ran/ctvm3, rEE/
ctvm28, rEE/ctvm29, rEE/ctvm31, rsE8 

(49)

ccE1, ccE2, omE/ctvm21, omE/ctvm22, omE/ctvm24, 
omE/ctvm25, omE/ctvm26, omE/ctvm27

(45)

novel orbivirus sequences aaE12 H. attoui, P. alberdi, c. sharp and l. 
Bell-sakyi, unpublished data, 2012

rna sequences with 
similarity to picorna-like 
viruses and rhabdoviruses

iDE8 D. matthews, s. Weisheit, J. de la 
fuente and l. Bell-sakyi, unpublished 
data, 2013

rna sequences with 
similarity to rhabdoviruses 
and the iflavirus deformed 
wing virus

irE/ctvm19 D. matthews, s. Weisheit, J. de la 
fuente and l. Bell-sakyi, unpublished 
data, 2013
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and it is unclear whether they represent authentic viral 
transcripts or EVE transcripts. It is noteworthy that reverse 
transcriptase activity, as well as retrotransposons, was detected 
in three of the I. scapularis embryo-derived cell lines (IDE2, 
IDE8, and ISE6) (H. Attoui and F. Mohd Jaafar, unpublished 
data, 2006). Reverse transcriptase activity may explain why 
DNA copies of RNA virus genomes occur in the I. scapularis 
genome. Interestingly, it has been shown that TBEV infec-
tion of Hep2 human cells resulted in the production of DNA 
copies of the viral genome and the stable integration of this 
DNA into the cellular genome backbone59 and that TBEV 
DNA was found integrated into brain cells during progressive 
infection.60 Whether or not a similar process occurs in TBEV-
infected tick cells remains to be determined.

In mammalian genomes, endogenous retroviruses have 
been shown to exert essential regulatory gene expression func-
tions,61 when integrated in specific positions of the mamma-
lian genome. A decade ago, we identified a DNA form of a 
virus related to cell fusing agent virus in the Aedes albopictus 
mosquito cell line C6/36, including a 1557 amino acid open 
reading frame containing the NS1 to NS4B.62 Antibodies 
raised against recombinant NS1 and NS3 of this virus helped 
to identify expression of its NS3 in C6/36 cells (H. Attoui 
and F. Mohd Jaafar, unpublished data, 2006). The Dicer-2 of 
C6/36 cells is nonfunctional as a result of mutations,63 making 
them highly permissive to a range of arboviruses; expression 
of viral protein such as NS3 (viral protease) from EVE may 
also enhance permissivity of cells to viral infections. Similar 
situations may exist in tick cells in which EVE are expressed.

In conclusion, the present portfolio of cell lines derived 
from different ixodid and argasid tick species, and new cell 
lines under development from additional species, consti-
tutes a huge and hitherto underexplored and underutilized 
resource for the discovery, detection, isolation, and propagation 
of novel arthropod-borne viruses. It is likely that the applica-
tion of molecular technologies such as those used in the studies  
mentioned previously,35,36,38,40,55,56 and novel pipelines for metag-
enomic analysis,64 will very soon start to reveal the secrets of tick-
borne viruses and endogenous viral elements harbored by tick cell 
lines and, by inference, the ticks from which they were derived.
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