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Abstract: During the past ten years, several new hepatitis E viruses (HEVs) have been identified in
various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western
countries has increased as well, raising the question of what role these possible animal reservoirs
play in human infections. The aim of this review is to present the recent discoveries of animal HEVs
and their classification within the Hepeviridae family, their zoonotic and species barrier crossing
potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes
the transmission pathways identified from animal sources.
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1. Introduction

Hepatitis E virus (HEV) is a single stranded, positive RNA virus belonging to the Hepeviridae
family. Its genome codes for three open reading frames (ORFs) and is 7.2 kb in length. HEV is the
leading cause of enterically transmitted hepatitis worldwide. HEV infection can cause an acute hepatitis
that is self-limited. However, fulminant hepatic failure can occur in patients with underlying chronic
liver disease, in the elderly, and in pregnant women. Complications and extra-hepatic manifestations
of hepatitis E, such as acute pancreatitis, renal failure and neurological syndromes including
Guillain-Barré syndrome, neuralgic amyotrophy or encephalitis, can also occur [1]. In addition,
patients with underlying liver disease and/or immune-deficiencies can develop chronic hepatitis E,
exacerbation of liver diseases and cirrhosis, leading to liver transplantation [2,3].

The existence of HEV was postulated for the first time during an outbreak of hepatitis in Kashmir
Valley in 1978 [4]. HEV, named at that time “enterically transmitted non-A and non-B hepatitis”,
was subsequently identified after a human volunteer was infected experimentally with a pooled
faecal extract from affected military personnel [5]. This volunteer later developed acute hepatitis and
spherical 27- to 30-nm virus-like particles (VLPs) were visualised in his stool by immune electron
microscopy (IEM). In the early 1990s, the HEV genome was cloned and sequenced using samples
obtained from experimentally infected macaques [6,7].

Since the end of the 1990s, additional HEV-related agents have been identified in a large variety of
animals ranging from domestic swine, wild boar, deer, rabbit, mongoose, ferret, rat and chicken to bat
and cutthroat trout. Following the identification of these novel strains, a new classification has been
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proposed that divides the Hepeviridae family into two genera: Orthohepevirus and Piscihepevirus [8].
Most of the HEV strains identified so far belong to the Orthohepevirus genus that is divided into four
species: Orthohepevirus A, B, C and D (Figure 1). Four main genotypes of HEV that belong to the
Orthohepevirus A species are able to infect humans (HEV-1 to -4). Genotypes 1 and 2 (HEV-1 and HEV-2)
infect only humans and are associated with large waterborne epidemics in tropical and subtropical
areas. Genotypes 3 and 4 (HEV-3 and HEV-4) are present in humans and other animals, and are the
main cause of autochthonous cases of hepatitis E in industrialized countries.
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Figure 1. Phylogenetic tree of representative members of the Hepeviridae family. The tree was
inferred using the Maximum Likelihood method based on the Tamura–Nei model. The analysis was
performed with 67 hepatitis E virus (HEV) complete genomes or complete coding sequences available
in the GenBank database and representative of each genotype. The sequence size varies between 6543
and 7318 nt in length, and they were aligned using Clustal W. The bootstraps were obtained from
1000 replicates and values over 70% are indicated at the genotype level. The initial tree was obtained
by applying the Neighbour-Joining method to a matrix of pairwise distances estimated using the
Maximum Composite Likelihood (MCL) approach. The tree is drawn to scale, with branch lengths
proportional to the number of substitutions per site. Evolutionary analyses were conducted using
Molecular Evolutionary Genetics Analysis (Version 6.0). The Orthohepevirus species taxon name is
added at the junction of the last common ancestor for each species. Genotypes of non-zoonotic HEV
species (red), genotypes including HEV strains isolated from animals and human (blue), genotypes
infecting human only (green) and genotypes infecting wild boar that are not linked to human infections
(striped blue) are shown.
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The first HEV-related agent identified in an animal was swine HEV. HEV RNA and HEV-specific
antibodies were first detected in domestic swine in Nepal in 1995 [9]. Two years later, a swine strain
of HEV was identified in pig herds from the United States (US) and characterised genetically [10].
Pigs inoculated intravenously with swine HEV developed viremia prior to seroconversion, had
histological evidence of hepatitis, but did not display clinical symptoms [11]. Swine is the major
reservoir of zoonotic HEV-3 and HEV-4 worldwide and is highly prevalent in pig herds. Indeed,
anti-HEV antibodies were detected in 46%–100% of swine farms from many countries [12–14].
HEV-3 and HEV-4 are also able to infect wild boars, which represent, along with domestic pigs,
a major reservoir of zoonotic HEV [12,13]. HEV-3 strains have also been detected in different species
of deer and in the Japanese mongoose [15–17]. In addition, rabbit HEV-3 strains have been identified
in farmed rabbits in China [18] and the US [19], in farmed and wild rabbits in France [20] and also in
a pet house rabbit [21]. In the Orthohepevirus A species, two other strains of HEV, classified as genotype
5 and 6 (HEV-5 and HEV-6), have also been identified in wild boar in Japan [8,22] and more recently,
HEV-7 has been detected in faecal samples from camels [23]. An HEV strain has been characterised in
Swedish moose [24] but it is still not assigned to any HEV species.

Additional animal species infected with HEV have also been described. However, the HEV strains
detected in these animals are genetically more distant from human HEV strains and are classified as
different Orthohepevirus species. Avian HEV (Orthohepevirus B) was first described in the United States,
and is associated with hepatitis-splenomegaly (HS) syndrome in chickens [25], also called big liver
and spleen disease [26]. Avian HEV is enzootic in chicken flocks in the US with a seroprevalence
of 71% [27]. A rat strain of HEV has been identified in rats [28], with a seroprevalence rate varying
from 13% to 90% in many countries [13]. Other HEV variants have been identified in ferrets in the
Netherlands [29] and in mink in Denmark [30] (Orthohepevirus C). Partial sequences with the highest
homology to rat HEV have also been detected in foxes [31]. Another species of HEV was identified in
different bats from Central America, Africa and Europe (Orthohepevirus D) [32]. Very recently, a HEV
strain that might represent a novel Orthohepevirus species has been found and characterized in kestrels
and falcons in Europe [33]. Finally, a more distant strain of HEV has been discovered in the cutthroat
trout in the US and assigned to the Piscihepevirus genus [34].

Anti-HEV antibodies have also been detected in different animal species including goats, sheep,
buffalo, work horses, cats and dogs. This suggests that these animal species have been exposed to HEV
or a closely related agent. However, no HEV RNA has been identified formally in these animals yet.
The design of molecular tools used to detect HEV RNA is based on known HEV sequences and might
not be able to detect distantly related variants. It is then likely that other animal strains of HEV exist.

In the past 20 years, new molecular tools and the use of metagenomics have highlighted the
diversity of HEV strains and susceptible hosts existing. These discoveries have greatly contributed to
a better phylogenetic analysis and classification of the Hepeviridae family. In parallel, animal models
of HEV infection have been developed and used to study cross-species transmission of the virus and
routes of transmission of zoonotic HEV have been identified. This article reviews these recent advances
that have contributed to a better understanding of the origins and transmission of zoonotic hepatitis E.

2. HEV Phylogeny

To date, 240 complete genomes are available in Genbank (NCBI database), compared to 49
complete genomes available in 2006, with more than 120 sequences of HEV-3. The use of full-length
sequences has improved the phylogeny and classification of HEV, but trees generated previously,
using shorter sequences from selected genomic regions (partial-ORF1 or partial-ORF2), show similar
structures than those generated with full genomes [35].

Within genotypes, a high diversity can be observed requiring further classification into subtypes
or clade/group and subclade/subgroup (genotype 3, Figure 2) [35–37]. Thus, a methodology was
recently proposed to standardise HEV subtyping. Using this method, subtypes can be redefined when
novel full-sequences are added (Figure 2) [38].
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Figure 2. Phylogenetic tree of HEV-3. The tree was inferred using the Maximum Likelihood
method based on the Tamura–Nei model. The analysis involved the 75 most representative HEV-3
complete sequences/cds available on the GenBank database and aligned using the clustal W method.
The bootstraps were obtained from 1000 replicates and values >70% are indicated. The initial tree was
obtained by applying the Neighbour-Joining method to a matrix of pairwise distances estimated using
the MCL approach. The tree is drawn to scale, with branch lengths proportional to the number of
substitutions per site. Evolutionary analyses were conducted using Molecular Evolutionary Genetics
Analysis (Version 6.0). Cluster names from the classification proposed by Lu et al., Vina-Rodrigues et al.
and Smith et al. (letters a to j and ra cluster) are indicated in the table on the right side of the
tree [35,38,39] and by Mirazo et al. (Clade-I and -II and subclades I-A to I-C) [37]. Reference sequences
of the different HEV subtypes used by Smith et al. [38] are highlighted in grey. The symbols to the left
of the different HEV strains indicate the host of origin. na = non assigned.
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2.1. Piscihepevirus Genus

The Piscihepevirus genus (Figure 1) is composed of one species, Piscihepevirus A, and one member,
the cutthroat trout virus (CTV) [34] that infects the salmonid fish. CTV is the genetically most distant
virus within the Hepeviridae family. It shares 41% to 46% nucleotides (nt) identity and 13% to 26%
amino acid (aa) identity with the Orthohepevirus genus [8,34].

2.2. Orthohepevirus Genus

2.2.1. Orthohepevirus A

The Orthohepevirus A is the best-characterized species sharing 52.44% to 59.11% nt identity with
the other Orthohepevirus species, excluding the moose strain (64.5%).

Genotypes 1 and 2

These two human genotypes are genetically close with almost 76% nt identity. HEV-1 is well
described and divided into six subtypes (1a to 1f) while HEV-2 is less documented and divided into 2
subtypes (2a and 2b) (Figure 1) [38]. Strains belonging to genotype 1 share 88.53% to 94.05% nt identity
and are found mainly in Asia, Africa and Mexico [40]. Genotype 2 strains were isolated in Central
America (Mexico) and Africa (Tchad, Nigeria) [39,41–43].

Genotype 3

HEV-3 is the best described and documented genotype in Genbank. Most sequences originate
from humans, pigs and wild boars (Figure 2). HEV-3 is divided into 10 subtypes (a to j) and two clades
(3abchij and 3efg) [35,36,38,44,45] (Figure 2), sharing 78.74% to 82.46% nt identity. HEV-3 includes
some unassigned strains [38] and rabbit HEV for which genotyping it is still under consideration.

Evolutionary studies suggest that the most recent common ancestor for genotype 3 appeared in
early 19th century [46] or even in the late 18th century, considering HEV-like outbreak descriptions [47].
Phylogenetic trees are constructed with recent HEV strains using Bayesian approaches to estimate
HEV evolution [46]; there are potentially recent bottlenecks through which the various genotypes have
passed. A wider sampling of HEV genotypes may show that the present estimates are underestimates
of the true evolutionary history of HEV.

1. Clade 3abchij: Within this first clade, HEV strains can be separated into two subclades, 3abj and
3chi, sharing 81.16% to 85.33% nt identity (Figure 2) [35]. HEV strains that cluster in the 3chi
subclade share 84.7% to 96.46% nt identity and originate from Europe (France and Germany) and
Mongolia. HEV strains within the 3abj subclade share more than 83.75% nt identity. They were
isolated in Asia, Europe and North America and are predominantly circulating in Asia and
North America. Complete genomes of subtype 3a are from North America and evolutionary
studies suggest that it came from Asia and diverged from subtype 3b to subtype 3a in the early
1920s [37,40]. In the subtype 3b, nearly 90% of the full genomes are from Japan, sharing more than
95% nt identity [35,37] (Figure 2). Studies on the origin of HEV in Japan suggest that HEV-3 was
imported from Europe in the early 20th century and then diverged into the 3b subtype [37,40].
The subtype 3j was isolated from a pool of pig faecal samples in North America [48], thus, full
genome sequences from single animals must be added to validate this subtype [35].

2. Clade 3efg: This clade includes the three subtypes e, f and g, sharing 82.75%–90.57% nt identity,
and 3 non-assigned subtypes. Subtypes 3e and 3f are mainly found in Asia and Europe [49,50].
Evolutionary studies have hypothesised that these HEV strains have emerged in Europe around
1871 [37]. There is only one complete sequence for the subtype 3g from Kirgizstan, which is the
most divergent virus of this clade (Figure 2). The classification of the subtype 3d is based on one
partial ORF2 sequence from Taiwan, it shares 86.18% and 84.87% nt identity with the subtypes 3g
and 3h, respectively. Subtype 3d does not belong to any clade so far.
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3. Subtype 3ra (rabbit): These strains share 73% to 80% nt identity with other HEV-3 subtypes and
form a distinct clade within genotype 3 (Figure 2). This divergence is mainly due to numerous
substitutions and insertions in the rabbit HEV genome compared to the other Orthohepevirus
A HEV strains [8,51]. As rabbit strains better cluster with other genotype 3 strains, they are
provisionally assigned as subtype 3ra [8,38] and divided into 2 subclades [38]. This subtype
includes a strain isolated from a human case of hepatitis E in France that shares 80.12% to 86.14%
nt identity with the other rabbit strains [51].

Genotype 4

HEV-4 is mainly found in Asian countries and share between 71.79% and 77.38% nt identity with
other genotypes (Figure 1). It is divided into nine subtypes (a–i) mainly isolated from pig, wild boar
and human. HEV-4 was also detected in other animals such as sheep, cow and goat in China [52,53].
Nevertheless, more investigations are necessary to determine if these species are reservoirs of HEV-4
or accidental hosts.

Genotypes 5 and 6

Genotypes 5 and 6 were amplified from wild boars only. They are assigned as subtypes 5a and 6a
(Figure 1), sharing more than 78% nt identity amongst themselves and 71.58%–77.38% nt identity with
other genotypes. Up to now, there is no human infection associated with these genotypes.

Genotype 7

Three complete or partial sequences assigned to genotype 7 have been described. Two of them
were isolated from camel (Figure 1) [23]. The third one originates from a human transplant patient and
is lacking most of the ORF3 region [54]. These strains are close to each other (>86% nt identity) and
share 72.55%–76.13% nt identity with other genotypes.

2.2.2. Orthohepevirus B

Orthohepevirus B strains were amplified from chicken and represent the shortest HEV genome
(6.65 kb). This HEV species shares 51.47%–55.05% nt identity with other Orthohepevirus species. To date,
there are four different genotypes described from different countries worldwide [55–57] (Figure 1) and
sharing a low divergence (<6%) [8].

2.2.3. Orthohepevirus C

The Orthohepevirus C species shares 51.68%–60.57% nt identity with other Orthohepevirus species.
Two different genotypes can be distinguished: C1 and C2. Genotype C1 includes strains isolated
from rat (Figure 1). However, some variants with incomplete sequences, isolated from bandicoot and
Asian musk shrew, cluster also in this genotype [58,59]. The phylogeny analysis of the full genomes
available shows three different clusters within this genotype that may constitute three possible subtypes
(Figure 1).

Genotype C2 is composed of HEV variants isolated from ferret and mink [8,30] (Figure 1).
Only two full sequences of ferret are available sharing 81.9% nt identity.

2.2.4. Orthohepevirus D

The Orthohepevirus D species includes only bat HEV. To date, three full genomes are available and
constitute the shortest mammalian HEV genome (6.8 kb) [32]. This HEV species shares between 52.8%
and 56.06% nt identity with other Orthohepevirus species (Figure 1). A phylogeny analysis with partial
sequences isolated from many different countries has shown a high diversity within the Orthohepevirus
D species, suggesting that several genotypes can be distinguished [32].



Viruses 2016, 8, 270 7 of 24

2.2.5. Unassigned Orthohepeviruses

Swedish Moose

HEV strains were recently isolated from Swedish moose [60] (Figure 1). Only one partial genome
with complete ORFs is available. A phylogenetic analysis with partial sequences has shown high
similarities between different moose strains from the same geographic region (>91% nt identity) [24].
They form a distinct group within the Orthohepevirus genus and are close to the Orthohepevirus A
species (63% nt identity).

Kestrel (Falconidae)

Very recently, a full HEV genome was retrieved from Kestrel [33]. This HEV strain is similar to
the other HEV strains in terms of genome length and organization with 51.47%–60.57% nt identity
with others Orthohepevirus species (Figure 1). This cluster could constitute a new Orthohepevirus
species, close to the Orthohepevirus C species (58.65%–60.57% nt identity). Partial sequences show
a low diversity (>87% nt and 99% aa identities) but broader investigations are necessary to better
characterize it.

Zoonotic strains of the Orthohepevirus A species are more frequently studied and better classified
than non-zoonotic HEV. Additional HEV complete sequences from ferret, bat, moose or Cutthroat
trout, from various origins (geographic, related host), would improve the classification [24,36,61].

3. Animal models of HEV

3.1. Non-Human Primates (Historical Model)

A number of non-human primate species has shown susceptibility to HEV infection, including
chimpanzee, rhesus monkeys, African green monkeys, owl monkey, Tamarin and squirrel monkeys [62].
Natural infection and transmission of HEV-3 has been described in a monkey facility in Japan [63].
In addition, cynomolgus and rhesus macaques can be infected experimentally with HEV-1 to
HEV-4 [64–67] and have served as the primary model of HEV infection [62,68]. Experimental infection
of a cynomolgus macaque with a suspension of stool from human patients led to the excretion of
VLPs [5,69,70] and the development of hepatitis, characterised by liver enzyme elevations, viremia
and seroconversion [69–73]. Moreover, the course of infection in experimentally-infected primates
is similar to the one in humans with variable incubation periods. An important application of
non-human primate studies was to evaluate the efficacy of potential HEV vaccines [74,75]. Non-human
primates were also used to evaluate the zoonotic potential of different HEV strains. It was shown
that rhesus monkeys and a chimpanzee, experimentally inoculated with swine HEV-3, developed
hepatitis [76]. Inoculation of rhesus monkeys with swine HEV-4 also led to seroconversion and viremia
but no significant increase in the serum level of alanine aminotransferase (ALT) was observed [77].
The infection of two cynomolgus macaques with rabbit HEV led to the development of a typical
hepatitis, suggesting that rabbits may be a source of human HEV infection [78]. However, attempts
of cross-species transmission of avian, rat or ferret HEV to non-human primates under experimental
condition were unsuccessful [55,79]. Due to limited resources, ethical concerns, and difficult and
expensive experimental procedures, little has been learned about the pathogenesis of HEV using
primate models.

The discovery of HEV strains in different animal species has then led to the development of other
naturally occurring animal models.

3.2. Swine

Swine HEV was identified in 1997 and was shown to be antigenically and genetically related to
human HEV [10]. Swine is a natural host of HEV-3 and -4 and specific pathogen free (SPF) pigs have
been successfully infected intravenously with samples recovered from patients suffering from hepatitis
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E infection (HEV-3 and -4) [11,76,80,81]. Infected pigs presented mild gross and microscopic liver
lesions, viremia, seroconverted and excreted viable HEV in the faeces. Evidences of extrahepatic sites
of HEV replication have also been demonstrated in pigs inoculated intravenously [82,83]. Cross-species
transmission experiments were performed using the swine model. SPF pigs were successfully infected
with two different rabbit strains of HEV, but not with rat HEV [84]. More recently, transmission of
HEV from infected wild boar to wild boar and domestic pigs by contact between the animals was
demonstrated [85,86]. However, pigs are resistant to experimental infection with HEV-1 and -2 [81]
and swine HEV causes only subclinical infection. There is no evidence of clinical disease or elevation of
the liver enzyme ALT in this model, thus limiting its usefulness in pathogenicity studies. Nevertheless,
this naturally occurring swine model remains very useful for the study of HEV replication and
cross-species infection.

3.3. Chickens

A chicken model of HEV infection has been developed that presents some advantages: first, like
swine HEV, avian HEV is genetically and antigenically related to human HEV [26]. The genomic
organisation is very similar to mammalian HEVs. Moreover, avian HEV can be associated with
a hepatic disease (HS syndrome). However, in the field, cases of avian HEV infection are mainly
subclinical and the pathogenicity linked to avian HEV does not seem to be strain-dependent [87].
SPF chickens can be readily infected by the natural faecal oral route [88] and mild gross pathological
lesions and microscopic liver lesions characteristics of HS syndrome have been observed, making it
a homologous animal model system to study HEV pathogenesis and replication. Extrahepatic sites
of HEV replication were also identified [89]. Cross-species transmission of chicken HEV to turkeys
was demonstrated [90]. Infectious cDNA clones of avian HEV were also constructed and capped RNA
transcript were used to infect SPF chickens [91–94], allowing to study in vivo the role of particular
regions of the HEV genome in viral replication and pathogenesis.

3.4. Rabbits

Infection of SPF rabbits with rabbit HEV induces virus shedding in faeces, viremia and the
development of hepatitis, characterised by histopathological changes and an increase in the level of
ALT in the serum [95–97]. In addition, chronic hepatitis, characterised by liver inflammation and some
degree of fibrosis, was observed in rabbits experimentally infected with rabbit HEV [95]. HEV antigen
and RNA were found in extrahepatic tissues in infected rabbits [98] and high mortality and vertical
transmission of HEV in pregnant rabbits was demonstrated [99]. However, similarly to the swine
model, rabbit HEV induces only a subclinical infection with little or no sign of disease. The rabbit
model may be useful to study HEV infection and pathogenesis caused by the rabbit strain of HEV
and for vaccine evaluation [95]. Experimental infection of rabbits with human HEV genotype 1 or 4
led to the development of hepatitis in none of the rabbits inoculated with HEV-1 and in seven out
of nine rabbits inoculated with HEV-4 although most of the inoculated rabbits seroconverted [97].
Rabbits were successfully infected with swine HEV-4 [61] and SPF rabbits farmed in the same enclosed
space as HEV-infected pigs seroconverted [100].

3.5. Rats

Rodents have been widely used as animal models in scientific and medical research into parasitic,
bacterial and viral diseases. Indeed, rodents are easy to handle, manipulate, house and can be used in
great numbers. Infection of Wistar rats (via the intravenous or faecal–oral route) with HEV derived
from wild rats, can lead to seroconversion and excretion of rat HEV in stool [101]. However, no change
in weight and liver enzyme level was observed. The inoculation of Wistar rats with a human stool
suspension known to contain HEV-1, led to a successful infection characterised by virus shedding in
the faeces, viremia and histopathological changes in the liver, spleen and lymph nodes [102]. However,
in two other reports, the injection of HEV-1, -2, -3 (swine) and -4 (wild boar) failed to induce an efficient
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infection in Sprague-Dawley or Wistar rats [101,103]. Rats were also inoculated with different RNA
transcripts from infectious cDNA clones of rat HEV [104], HEV-4 [105] and swine HEV-3 [106] leading
to successful infections. Moreover, attempts to infect Wistar and nude rats with ferret HEV failed [78].
The utility of rats as a model of HEV infection still remains to be demonstrated.

3.6. Ferrets

Very recently, two ferrets were inoculated orally with ferret HEV [107], leading to a successful
infection characterised by the detection of viral RNA in the stool and the sera, seroconversion and
a significant elevation of the liver enzyme ALT. These findings indicate that ferret HEV infection can
induce liver damage and ultimately acute hepatitis in ferrets. This suggests that ferrets can be used as
a potential animal model to study HEV infection. However, strains naturally infecting this species are
close to rat HEV and distant from viruses infecting humans and their use might not be adapted to test
antivirals or vaccines.

The limited availability, difficulties in handling, manipulating, housing and the cost of both
primates and swine severely restrict their use in large number in research. Moreover, naturally
occurring small animal models have shown limits in their use to understand HEV pathogenesis and
transmission using human strains. Efforts have then been made to develop alternative small animal
models that are not natural hosts of HEV.

3.7. Mongolian Gerbils

Mongolian gerbil (Meriones unguiculatus) is a common experimental gerbil species that was
also suggested as an alternative animal model to study HEV replication and pathogenesis. Indeed,
Mongolian gerbils have been successfully infected via the intraperitonal route with a HEV-4 strain
recovered from a swine liver sample [108,109]. In addition to viremia and faecal virus shedding, the
virus was detected in the liver, kidney and spleen as well as the small intestine. Moreover, characteristic
histopathological changes observed in the liver of infected gerbils were similar to those reported in
humans, and the liver enzymes ALT, aspartate transaminase (AST) and bilirubin levels in the sera were
significantly increased. Finally, HEV RNA was detected in the liver from seven to 42 days post infection,
which is consistent with the last days of HEV RNA detection in the swine model [110], suggesting
that HEV RNA replication in the Mongolian gerbil is similar to its replication in the swine model.
Using this model, a study has also shown that swine HEV-4 is able to cross the blood–brain barrier
and replicate in the brain and the spinal cord after experimental infection [111]. Mongolian gerbils
could then be useful to study the neurological disorders associated with HEV infection. In addition,
a successful infection of Mongolian gerbils with a human HEV-1 strain isolated from an acute hepatitis
E patient has been obtained [112]. HEV RNA was detected in the faeces of the infected gerbils and
histopathological changes in the liver, spleen and kidney were reported as well as fatigue and hair loss.
Mongolian gerbils seem to be a promising model to study HEV-1 and -4 infection and pathogenesis.

3.8. Human Liver Chimeric Mice

Mouse is a small animal model that is used as a model for many viral infections. The first
attempt to infect C57BL/6 mice with HEV-1, HEV-3 and HEV-4 strains failed [113]. In another study,
balb/c nude mice were inoculated with swine HEV-4 and HEV antigens were detected in the liver
as well as in different extrahepatic organs. Moreover, histopathological changes in the liver and the
spleen and increased levels of liver enzymes were observed [114]. However, as reported for pigs,
the inoculated mice showed no clinical signs of HEV infection. Very recently, human liver chimeric
mice were developed [115]. The liver of UPA/SCID mice was repopulated with primary human
hepatocytes and the animals were inoculated with stool-derived virions from humans infected with
HEV-1 or -3. Viremia and faecal excretion were reported. Moreover, the co-housing of an HEV-infected
mouse with three naïve humanized mice led to successful HEV infection, demonstrating that HEV
infection can be transmitted through the faecal oral route in humanized mice, direct physical contact or
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micro-injuries [115]. HEV-inoculated human liver chimeric mice were also shown to develop chronic
HEV infection [116,117] and the treatment of HEV-infected humanised mice with ribavirin led to
a statistically significant decrease in the level of HEV RNA in the serum and the faeces and in no more
liver damage [115,116]. The human liver chimeric mouse model seems then to be a valuable tool to
study the biology of chronic HEV infection and evaluate preclinical drugs. However, this model does
not allow immunopathogenesis studies involving adaptive immune responses. Further refinements,
such as the transfer of immune cells, may in part overcome these limitations in the future.

Much effort has then been made recently to develop small animal models to study HEV
pathogenesis and inter-species transmission. Mongolian gerbils seem to be a promising model that
is easy to handle, cost-effective and can mimic hepatic diseases. However, more studies need to be
performed to determine whether this species is susceptible to other genotypes of HEV such as HEV-3
and HEV-7. It is also not clear whether gerbils can be infected via the faecal–oral route and whether
transmission studies can be performed in this model. Naturally occurring models such as ferrets
could also represent a good alternative. Nevertheless, their susceptibility to human and other HEV
strains from the Orthohepevirus A species remains to be determined. The identification of new strains
and hosts of HEV might help in the near future to the development of a suitable naturally occurring
animal model.

4. Inter-Species Transmission of HEV

As described above, animal models and HEV natural reservoirs have been used to study
experimentally the interspecies transmission of different HEV species and genotypes. The results
obtained from these different studies are summarised in Figure 3. They clearly show that HEV-1
and HEV-2 are restricted to humans whereas HEV-3 and HEV-4 are naturally present in several
animal species and can cross the species barrier. This difference raises the question of species barrier
determinants. Several studies have suggested that genetic elements present in HEV ORF1 are involved
in species barrier crossing [118–121].

In addition, the zoonotic transmission of HEV-3 and HEV-4 from swine, wild boar and deer to
human via the consumption of contaminated meat has been proven. Molecular and phylogenetic
analyses of HEV-3 and HEV-4 sequences from human and pig origin have shown high identity
between the two populations and the absence of species clustering [49]. This suggests that swine
HEV-3 and HEV-4 may not require any adaptation to jump between these two species. A study
showing that the consensus sequence of HEV-3 is identical during transmission from human to swine
is in agreement with this hypothesis [122]. However, it is still unclear whether strains of HEV-3 and
HEV-4 present in other animals can cross the species barrier and infect humans. For example, the
ability of rabbit HEV to infect humans and its contribution to zoonotic hepatitis E infection remain
to be determined. The successful infection of cynomolgus macaques with rabbit HEV suggests
that inter-species transmission of rabbit HEV-3 to human is possible [78]. The identification of
a human strain that is closely related to rabbit strains is also in agreement with this hypothesis [51].
Further studies are also needed to determine the risk of zoonotic transmission of other strains from the
Orthohepevirus A species such as wild boar HEV-5 and HEV-6. In addition, the recent identification
of a human case associated with HEV-7 strongly suggests that this genotype is transmissible from
camels to humans [54]. However, the contribution of HEV-7 to zoonotic hepatitis E remains to be
clarified. Since zoonotic genotypes such as HEV-3 and HEV-4 can infect multiple animal species, it is
also important to determine experimentally whether HEV-7 can infect other species such as rabbit and
swine. This will help to clarify whether second or new reservoirs of this potential zoonotic genotype
might exist or appear through direct transmission from camels or through human intervention.
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5. Transmission Pathways of Zoonotic HEV

Since the discovery of swine HEV in 1997 [10], the risk of zoonotic transmission of HEV has
been questioned and concern for public health has been raised. The first direct evidence of zoonotic
transmission of HEV to humans was provided six years later following cases of HEV infection among
patients who had consumed sashimi of Sika deer [123]. HEV-3 RNA was retrieved from the left-over
deer meat and its sequence was found to be identical to those from the patients (326 nt within HEV
ORF1). Three case reports have then provided additional direct evidence that HEV is a zoonosis that
can be transmitted via the consumption of contaminated food. In these studies, identical or near
identical HEV sequences were detected in patients suffering from hepatitis E and animal products they
had consumed: grilled wild boar meat in Japan [124], pig meat in Spain [125] and ficatellu sausage
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from Corsica [126]. Several reports in Japan, France, Spain and Australia have also linked sporadic
cases or outbreaks of hepatitis E with the consumption of raw or undercooked pork or wild boar
products (meat, liver, liver paté, ficatellu or liver-based stuffing) without direct proof that these food
items were the source of the infection [126–133]. These data are supported by studies showing that the
consumption of pork and wild-boar meat and processed products is a risk factor for autochthonous
HEV infection and HEV seropositivity [129,134–138]. In one of these studies, consumption of offal
and wild-boar meat was found to be associated with autochthonous HEV infection in Germany [134].
Eating pork meat, pork liver sausages, game meat and offal was also found as a major contributor to
the presence of anti-HEV antibodies in a recent nationwide survey performed in France [135].

HEV-3 and HEV-4 RNA is present throughout the pork food chain worldwide [130,133,139–143].
Studies have reported that 3%–11% of pig liver samples at the slaughterhouse are HEV positive in
France (4%) [144], the Netherlands (6.5%) [145], Czech Republic (5%) [141], Italy (6%) [140], Spain
(3%) [140], the United Kingdom (3%) [146], Japan (5%) [147] and the US (11%) [148]. HEV RNA was
also found in the liver of wild boars (5.8%), deer (3.2%) and wild rabbits (5%) hunted in southwestern
France [149] and in the liver of wild boars (1.9%) hunted in north-western Italy [150]. HEV RNA has
also been detected in pork sausages sold in the UK (10%) [146] and in Spain (6%) [140]; in ficatelli
(30%), dried salted liver (3%), quenelle and quenelle paste (25%) and dried or fresh liver sausages
(29%) sold in France [139]; in raw and dry liver sausages purchased in Italy [141], in raw sausages
(20%) and liver sausages (22%) sold in Germany [142]; and in pork pâté and blood sausage (36%) sold
in Brazil [151].

Several studies have shown that such commercially-available pork livers and pork-derived
products containing raw liver can contain infectious virus and are potential sources of foodborne
HEV. Pigs inoculated intravenously with homogenates from contaminated pig livers sold in grocery
stores in the United States became infected with HEV [148]. Moreover, HEV was successfully cultured
in human cell lines inoculated with extracts from ficatelli sausages produced in France [152] or raw
porcine liver purchased from grocery stores in Japan [153].

Recently, a liver-transplant patient from the Middle East who regularly consumed camel meat
and milk was found to be infected with camelid HEV-7 [54]. Other animal reservoirs and genotypes of
HEV might then be involved in the foodborne transmission of HEV. Milk from HEV-infected animals
could also represent another source of zoonotic HEV that need to be further investigated.

Other foods that are not derived from animal products can be contaminated with HEV and are
possible sources of foodborne HEV transmission. For instance, HEV-3 or HEV-4 RNA has been found
in mussels from Galicia (14.81%) [154] and Scotland (85%) [155]; in oysters from coastal regions in
Korea (8.7%) [156]; in bivalves from Japanese rivers [157]; and in shellfish from the coastal waters of
China [158]. Moreover, experimental bioaccumulation has shown that oysters, flat oysters, mussels
and clams can concentrate HEV, mostly in their digestive tissues [159]. Transmission of zoonotic HEV
to human via the consumption of seafood has not been proven directly yet as no identical or near
identical HEV sequences have been retrieved in patients suffering from hepatitis E and the seafood
they had consumed. However, the consumption of shellfish has been strongly linked to an imported
case of HEV-4 infection in a Japanese patient who travelled to Vietnam [160] and to an outbreak of
hepatitis E on a cruise ship (HEV-3) [161].

In addition, HEV RNA has been found in strawberries in Canada [162], in frozen raspberries sold
in Europe [163] and in the salad vegetable supply chain in Europe [164], suggesting that soft fruits and
vegetables can also be contaminated with HEV RNA. A study has also suggested that herbs and spices
can be contaminated with HEV (0.9%) [165].

The presence of HEV in shellfish, vegetable and fruits is likely caused by the contamination of
surface and irrigation water with animal sewage. HEV RNA has been detected in swine sewage and
manure worldwide [133,166–169] and it was shown that such waste products can be infectious when
inoculated experimentally to pigs [169]. Runoff or insufficient treatment of sewage water from pig
farms and use of manure as soil fertiliser could then lead to the contamination of neighbouring surface
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water. This hypothesis is supported by studies that found HEV RNA in surface water in proximity
of pig farms [170,171]. HEV sequences similar to sequences found in patients with autochthonous
hepatitis E infection and in swine have also been repeatedly found in river and seawater [172–174].
In addition, some of the shellfish found to be HEV RNA positive in Scotland were harvested near
a slaughterhouse and pork processing plant [118].

The presence of HEV in food products derived from natural reservoirs of zoonotic HEV or
food that are contaminated by surface and irrigation water raises concerns for public health and
food safety worldwide. A subunit vaccine based on the expression of a truncated viral capsid
is able to confer full protection after three doses and is licensed in China [175]. However, such
vaccine has not yet been approved and commercialised in other countries. Prevention of zoonotic
HEV relies mainly on avoiding raw and undercooked meat or selfish and cooking meat and meat
products thoroughly. A few studies have been conducted using cell-culture [176,177] or in vivo swine
experimental models [178,179] to determine the stability of HEV in the environment and in food
products. Infectious viruses are still present in faecal suspension or cell-culture supernatant after
heating at 56–60 ◦C [176,177]. Efficient inactivation of HEV in food products derived from infected
pork liver was only achieved after a cooking time of at least 20 min at an internal temperature of
71 ◦C [178,179]. Temperatures equivalent to rare and medium-to-rare cooking are then insufficient
to inactivate the virus and cooking food thoroughly and evenly is highly recommended to prevent
foodborne transmission of HEV. Appropriate hygiene measures such as frequent hand and surface
cleaning should also been followed when handling uncooked meat. In addition, swine waste should
be properly eliminated and the use of swine manure as soil fertiliser should be regulated to reduce the
risk of HEV contamination of crops and surface water.

As described above, HEV RNA has been detected in diverse food products ranging from meat
and seafood, to fruits and vegetables. However, it is still unclear whether infectious lived virus can be
present in most of these items. To solve this issue, a robust cell culture system needs to be developed
rapidly. Such model will also help to clarify whether infectious viruses can be present in pork products
that contain no liver such as cured ham. Indeed, the high HEV seroprevalence in human found in
some countries such as France (22.4%) [135] cannot be explained only by the consumption of products
containing raw pork liver such as ficatelli. Efforts are also needed to establish standardized methods to
ensure a quality control of products at risk and the HEV oral-infectious dose remained to be determined
to perform risk assessment studies.

In addition to foodborne routes of transmission, seroprevalence studies have suggested that direct
contacts with infected animal reservoirs are risk factors for HEV exposure. Higher seroprevalence
of anti-HEV antibodies was found in swine workers and veterinarians in the United States [180,181];
in swine veterinarians in France [137] and the Netherlands [145]; in swine farmers in Sweden [182],
France [137] and Moldovia [183]; and in pork butchers in Burkina Faso [184]. In addition, higher
HEV seroprevalence was detected among French hunters [100] and among forestry workers in
France [137,185] and Germany [186]. The presence of stools from infected wild animals in forest
may represent a source of contamination for this population. Interestingly, simple prevention measures
such as wearing gloves and wearing boots for pig farmers, forestry workers or hunters are associated
with reduced risk of HEV exposure [137,187]. A cross-sectional survey conducted in China has also
found a higher anti-HEV IgG seroprevalence in seafood processing workers who have direct contacts
with raw seafood [188]. Direct contacts with contaminated food and water might then represent a risk
of HEV infection.

Contact with pet pig might also represent a possible source of HEV infection. In one study,
frequent contact with a pet pig was reported to be the most likely cause of contamination of a French
patient with acute hepatitis E [189].
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6. Conclusions

Many novel strains of HEV have been identified in the last decades in diverse animal species.
These discoveries have led to the reviewing of the Hepeviridae family classification and the ratification
by the ICTV of a new taxonomic structure [8]. Nevertheless, it is very likely that additional HEV
variants exist and that this classification will further evolve in the future. Available diagnostic tools are
based on identified HEV strains and are probably not able to detect all the existing HEV strains. It is
essential then that new molecular techniques are designed rapidly to detect a larger diversity of HEV
strains and hosts. The wider use of metagenomics and deep sequencing could also contribute to the
identification of HEV variants. Swine have been studied as the main HEV reservoir since its discovery
in the late 1990s and HEV screenings in food have focussed mainly on pork-derived meat and meat
products. However, it is possible that other animal reservoirs representing a significant risk for the
zoonotic transmission of HEV exist. More studies are then clearly needed to screen a larger variety of
food products derived from diverse animal species, including rabbit, camel and many others for the
presence of HEV RNA and infectious virus. An exhaustive understanding of the extent of the animal
reservoirs and transmission routes representing a risk for zoonotic hepatitis E infection is essential to
prevent and control efficiently the disease in the future.
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