
HAL Id: hal-01604197
https://hal.science/hal-01604197v1

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Optimizing distributed DEVS simulations with
partitioning and Hidden Markov Model learning

methods
Christopher Herbez, Eric Ramat, Gauthier Quesnel

To cite this version:
Christopher Herbez, Eric Ramat, Gauthier Quesnel. Optimizing distributed DEVS simulations with
partitioning and Hidden Markov Model learning methods. 29th European Simulation and Modelling
Conference - ESM’2015, The European Technology Institute, Oct 2015, Leicester, United Kingdom.
pp.133-140. �hal-01604197�

https://hal.science/hal-01604197v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Optimizing distributed DEVS simulations with partitioning and Hidden Markov
Model learning methods

Christopher Herbez & Eric Ramat
LISIC, ULCO

50 rue Ferdinand Buisson, Calais, France
email: [herbez,ramat]@lisic.univ-littoral.fr

Gauthier Quesnel
MIAT, INRA

24 chemin de Borde Rouge, Castanet-Tolosan, France
email: gauthier.quesnel@toulouse.inra.fr

KEYWORDS

Simulation, DEVS, Graph weighting, Partition, Hidden
Markov Models

ABSTRACT

With the emergence of parallel computational infras-
tructures at low cost, reducing simulation time becomes
again an issue of the research community in modeling
and simulation. In this context, our previous papers
presented a method to reduce the simulation time in a
parallel DEVS context. This approach reduces simu-
lation time without reaching the maximum gain. The
partitioning method used does not take into account the
dynamic of models. To address this problem, we propose
in this paper an approach to weight the model graph to
take into account this dynamic when partitioning. This
paper presents the weighting graph process by learning
of the dynamic of models states using Hidden Markov
Models. The purpose of this article is to determine the
quality of this weighting method compared to a simula-
tion approach.

INTRODUCTION

Modeling and analysis of complex systems dynamics
are becoming increasingly costly in time and memory
capacity. The multi-modeling is a response to the
increase demand for coupling heterogeneous mod-
els. Obviously, this process leads to the increase in
computation demand and therefore, the increase of
computation time. It is therefore important to think
about the good use of new physical processor infras-
tructure (multicore, multiprocessor and grid). Work
in this area is it not new : includes all work around
distributed simulation [Chandy and Misra, 1979,
Chandy and Misra, 1981] but also work on parallel
computing [Fujimoto, 1990]. However, what interests
us is the construction of an optimized organization
of simulators as part of DEVS (Discrete Event Spec-
ification). The DEVS formalism [Zeigler et al., 2000]
and Parallel-DEVS variant [Chow and Zeigler, 1994]
is a candidate to develop a response to both formal
and technical. That is a discrete events modeling
and simulation theory with a hierarchical approach.

The global model, called structure of the model in
DEVS terminology, is a graph of coupled models. Our
approach is to flattening the hierarchy in order to
obtain the graph of models. This graph is partitioned
in order to parallelize the models execution as efficiently
as possible.

In [Herbez et al., 2015a], we presented this approach as
well as the relative gains obtained for two types of par-
titioning. One is based on the connectivity of the graph,
and the other is oriented modeler. In these examples,
the gain obtained by the introduction of a good parti-
tioning is about 20% compared to an initial model hier-
archy. Thereafter, in [Herbez et al., 2015b], we showed
the limits of this approach. Currently, the dynamic of
models is not taken into account when graph partition-
ing, which explains the limited gain observed. In this
paper we propose an approach to weight this graph in
order to better reflect the dynamic of models.

The first part describes the Parallel-DEVS formalism
and our approach. The second part present the method-
ology implemented to weight the model graph using the
Hidden Markov Models. Finally, the last part evalu-
ates the quality of the graph weighting obtained by our
approach and allows to validate its.

EFFICIENT DISTRIBUTION OF MODELS IN
A PARALLEL DEVS CONTEXT

Our researches is mainly centered around optimizing dis-
crete simulations in a parallel DEVS context. This pa-
per presents the changes that we propose to make in
order to optimize these simulations in time and mem-
ory. For this, we propose a modification of the DEVS
hierarchical structure. This section presents the DEVS
formalism and the approach set up to change the hier-
archy of models.

Parallel-DEVS context

DEVS [Zeigler et al., 2000] is a high level formalism
based on the discrete events for the modeling of com-
plex discrete and continuous systems. The model is a
network of interconnections between atomic and cou-
pled models. These models are in interaction via time-
stamped events exchanges.



More specifically, we present the Parallel-DEVS
(PDEVS) formalism [Chow and Zeigler, 1994,
Chow, 1996]. This extension of the classic DEVS
introduces the concept of simultaneity of events es-
sentially by allowing bags of inputs to the external
transition function. Bags can collect inputs that are
built at the same date, and process their effects in
future bags.
PDEVS defines an atomic model as a set of input and
output ports and a set of state transition functions:

M = 〈X,Y, S, δint , δext , δcon , λ, ta〉

With: X, Y , S are respectively the set of input values,
output values and sequential states

ta : S → R+
0 is the time advance function

δint : S → S is the internal transition function

δext : Q×Xb → S is the external transition function

where:

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
Q is the set of total states,

e is the time elapsed since last transition

Xb is a set of bags over elements in X

δcon : S ×Xb → S is the confluent transition

function, subject to δcon(s, ∅) = δint(s)

λ : S → Y is the output function

If no external event occurs, the system will stay in state
s for ta(s) time. When e = ta(s), the system changes
to the state δint . If an external event, of value x, occurs
when the system is in the state (s, e), the system changes
its state by calling δext(s, e, x). If it occurs when e =
ta(s), the system changes its state by calling δcon(s, x).
Every atomic model can be coupled with one or several
other atomic models to build a coupled model. This
operation can be repeated to form a hierarchy of coupled
models. A coupled model is defined by:

N = 〈X,Y,D, {Md}, {Id}, {Zi,d}〉

Where X and Y are input and output ports, D the set
of models and:

∀d ∈ D,Md is a PDEVS model

∀d ∈ D ∪ {N}, Id is the influencer set of d :

Id ⊆ D ∪ {N}, d /∈ Id,∀d ∈ D ∪ {N},
∀i ∈ Id, Zi,d is a function,

the i-to-d output translation:

Zi,d : X → Xd, if i = N

Zi,d : Yi → Y, if d = N

Zi,d : Yi → Xd, if i 6= N and d 6= N

The influencer set of d is the set of models that interact
with d and Zi,d specifies the types of relations between
models i and d.
The atomic and coupled models are respectively asso-
ciated with simulators and coordinators. The aim of
simulators is to compute the various functions while the
coordinators manage the synchronization of exchanges
between simulators (or coordinators in a hierarchical
view).

Optimization of the DEVS hierarchical structure

Many DEVS implementations reduce the hierarchy to
only one level : a coordinator and several simulators.
[Muzy and Nutaro, 2005] introduce this type of struc-
ture called flattening. The first step of our approach is
to flattening the hierarchy in order to obtain a graph of
model. This work is possible thanks to the closure under
coupling property of DEVS [Zeigler et al., 2000]. This
property describes formally the coupled model is equiv-
alent to an atomic model. Thus an atomic model can
be move into a new coupled model and all the hierarchy
of coupled model can be merge into a unique coupled
model. The connections between atomic models of this
coupled model give an oriented graph called graph of
model. The Figure 1 give an example of flattening of
the hierarchy.

Figure 1: At the top, an example of hierarchical structure

of a DEVS model. At the bottom, new structure after flat-

tening of the hierarchy

Our approach is centered around the restructuring of the
hierarchy so that it is optimal for distributed simulation.
The optimality depends on two main factors:

• charge balance between different parties to execute
a maximum of models in parallel

• minimizing of exchanges between different parties
to avoid increase of transfers cost related to infor-
mation exchange between hosts



The restructuring is done by a partitioning of the models
graph. It is made in order to comply with the conditions
presented above.
The partitioning phase of our approach is presented
in details in our previous paper [Herbez et al., 2015a].
It consist to apply the multilevel method presented
in [Karypis and Kumar, 1998]. This method is divided
into 3 phases:

• Coarsening: Graph reduction by successive vertices
matching, while keeping the nature of the origi-
nal graph. The Heavy Edge Matching introduced
in [Karypis and Kumar, 1998] is implemented for
this phase.

• Partitioning: Creating of a partition Pk of the
coarsening graph Gn using a partitioning heuris-
tic. We choose an expanding region method:
the Greedy Graph Growing Partitioning presented
in [Bichot and Siarry, 2013].

• Uncoarsening: Projection of the partition Pk on
each contraction graph levels with a refinement
for keep a good quality. We use a local opti-
mization algorithm based on Kernighan-Lin algo-
rithm [Kernighan and Lin, 1970].

This method generates a partition of atomic models
minimizing the optimality criteria for distributed sim-
ulation. From this partition, a new two-level hierarchy
is built. This hierarchy consists of the same number
of coupled models that there are parts in the partition.
The atomic models of the same part are assigned to the
same coupled model. And these new coupled models are
distributed on the network of machines available for the
simulation. The Figure 2 illustrates the construction of
the new hierarchy from a partitioning on the previous
example.

Figure 2: At the top, example of partitioning of the models

graph. At the bottom, new hierarchical structure at 2 levels

obtained from this partition

The current problem is that the model graph as it is con-
structed does not contain information regarding the in-
formation transmission frequency from one model to an-
other or on their execution time. However, these infor-
mation are crucial for the partitioning quality because
they correspond to the weighting of the graph and re-
flect the dynamic of models. For now, this weighting
is set to 1 by lack of information, which damages the
partitioning quality. To address this problem, the fol-
lowing section presents an approach to weight the graph
by learning of model dynamics.

Weighting of model graph

The model graph is a oriented graph where each vertex
corresponds to an atomic model and each edge at in-
formation flow linking two atomic models. Graph the-
ory, presented in [Bichot and Siarry, 2013], authorizes
the weighting of these elements. For a vertex, weight is
a quantification of the running time of the model that
it symbolizes. More a model has a long execution time,
more the weight of the vertex associated with it will be
great. For an edge, the weight quantifies for one hand
the amount of data that flows between two models but
also the frequency at which they pass. The aim of our
approach is to develop a graph weighting system with-
out knowledge of the internal dynamic of models.

Each atomic model is considered individually and as a
black box, the internal dynamics of the model is as-
sumed unknown. The unique information provided by
model are the duration di corresponding to the elapsed
time between each emission of external events via the
output function λ. Moreover, models tells us if it is
in a ”Infinite state” or not. We call ”Infinite state”, a
state whose the duration is infinite. This assumption
is strong but essential for the effective convergence of
learning algorithms.

From these information, a learning algorithm is per-
formed to create a probabilistic states automaton.
These automata must be able to generate sequences of
observations statistically close to that of the model. The
advantage of this approach is to generate a very large
number of observations without being penalized by the
calculation times that require multiple executions of a
model. This is possible provided that the learning model
is less expensive than the generation of observation se-
quences by simulation.

The observation sequences obtained by simulation of
probabilistic states automata allow to estimate the emis-
sion frequency of outputs by calculating a weighted
mean. Consider an observation sequence of emission du-
ration between two outputs consisting of k distinct val-
ues d1, · · · , dk and denote ni ∀i = 1, · · · , k the number
of times where the duration di appears in the sequence.
The average duration of emission between two outputs



is given by:

d mean =

k∑
i=1

di × ni
k∑
i=1

ni

Its provides the average frequency of issue:

f mean =
1

d mean
if f mean −→ 0 slow model

if f mean > 1 fast model

The weighting of the edges is given by emission fre-
quency average f mean. When generating the observa-
tion sequence by simulation, the elapsed time to obtain
for a set of N durations is recorded. With this infor-
mation, we can weight the edges of the graph by this
time.
We start from the assumption that our simulation con-
sists of K types of different models. The goal is to
achieve a learning for each type of model in order to
establish a weighting rule. This approach enables mini-
mize the number of learning. The following section out-
lines the learning method used to model the dynamics
of the models.

LEARNING OF ATOMIC MODELS DY-
NAMIC USING HIDDEN MARKOV MODELS

Knowing that, for each model, the set S of states is
unknown and that only a series of observations Y =
{y1, · · · , yk} is available through simulation, we choose
to model the dynamic of models from a Hidden Markov
Model (HMM) introduced by Baum and his colleagues
in [Baum et al., 1970]. The following section presents
the hidden Markov models.

Generalities on Hidden Markov Models

A Markov chain is a sequence of random variables
(Sn, n ∈ N) which allows to model the dynamics of
a system. The feature of this process is that the current
state Sn is independent of the past state Sn−1, which is
expressed mathematically by:

P (Sn = j|S1 = i1, · · · , Sn−1 = in−1) =

P (Sn = j|Sn−1 = in−1)

Having no knowledge of the dynamics of the model, it is
necessary to assume that every state is reachable from
any system status. Moreover, each transition is associ-
ated at an observation which is the duration of emission
di between two outputs. Considering this information,
it appears that an ergodic Hidden Markov Model is a
good candidate to model our state graph. One of the
features of a HMM is a finite symbol alphabet is asso-
ciated with each state. In our case, symbols correspond
to period di observed by simulation.

The HMMs are defined in [Rabiner, 1989] by five pa-
rameters:

• N the number of states in the model. Where the
states are defined by S = {S1, · · · , SN}.

• M the number of symbols. Where symbols are de-
fined by V = {v1, · · · , vM}.

• A = {ai,j | i, j = 1, · · · , N} the state transition
probability distribution.

• B = {bi,j | i = 1, · · · , N ; j = 1, · · · ,M} the obser-
vation symbol probability distribution. Where bi,j
is the probability that the state Si emit the symbol
vj .

• π = {π1, · · · , πN} the initial state distribution.

For clarity, we call an HMM by HMM = {π,A,B},
where π, A and B are built such that:

N∑
i=1

πi = 1 ,

N∑
j=1

ai,j = 1 and

M∑
j=1

bi,j = 1

The Figure 3 illustrates an ergodic Hidden Markov
Model by an example.

Figure 3: Example of ergodic HMM with 3 states and 3

symbols

For each learning, an HMM is created with a view to
answering the following problem: Starting from a set of
observations O = {O1, · · · , Ok}, how to adjust settings
of an HMM to model at best the process?
The following section presents the algorithms used for
the HMM learning.

Learning Methods of HMMs

Learning determines the best HMM parameters to rep-
resent observations O ie, which attribute to O the best



probability of occurrence. We denote PHmm(O) the
probability of occurrence of the sequence O assigned by

the HMM, the goal is to estimate the parameters ĤMM
that maximizes PHmm(O) :

Ĥmm = arg max
Hmm

PHmm(O)

The learning process begins with system initialization
Hmm = {π,A,B}. As we have no knowledge except
the observation sequence O = {O1, cdots,Ok}, it is
necessary to begin by arbitrarily fix the number of sys-
tem states. For the number of symbol, it suffices to
determine the different number of observations in the
sequence (assuming that the sequence contains all the
symbols). The sets π, A and B can be randomly con-
structed (provided they respect the properties of an
HMM) or with equal probability distributions.
It is very difficult if not impossible to get the perfect

ĤMM . However, there is a method to get a good ap-
proximation: the Baum-Welch algorithm presented in
section 4 [Bilmes, 1998]. The Baum-Welch algorithm
is a learning algorithm derived from the EM algorithm
(Expectation Maximization). Given a set of observa-
tion sequences O and an initial model Hmm, the Baum-
Welch algorithm undertakes a re-estimation of the pa-
rameters (π,A,B) of the model so as to increase gen-
erating probabilities of these observation sequences. To
optimize computation steps, the Baum-Welch algorithm
uses the Forward and Backward algorithms also detailed
in [Bilmes, 1998]. The procedure is to re-estimate the
parameters of the model and to recalculate the likeli-
hood of the new model. The process is re-iterated until
the current maximum likelihood.
The following section presents the relationship between
DEVS models and HMMs.

Building of learning sets from atomic DEVS
model simulations

The atomic models of which we seek to model the dy-
namics are classified into two categories:

• models without input : they are simply represented
by a conventional Hmm (see Figure 3).

• models with inputs: a ”modified” HMM is used to
be able to represent the states called ”Infinite state”

Indeed, it is essential to represent the states where the
model is waiting for an input event. For this we add the
symbol ∞ corresponds to a state of infinite duration.
This additional symbol will also lead us to modify the
generation algorithm by simulation.
On the other hand, the learning of models with inputs
requires the creation of a generator. This generator is
intended to simulate potential model inputs. To ensure
the best exploration of the dynamics of the model, the
generator must explore the widest possible spectrum of

the input values (di). For simplicity, we consider that
the events do not carry data.

The generation of learning sets from individual atomic
models, produces sequences of type {di} where di is
either a positive integer value or infinity for ”Infinite
states”. There is one sequence by model type. This
sequence is then divided into sub-sequences. Each sub-
sequence has a random length and ends with an end
symbol. This splitting is random. It is assumed that
the splitting will not lead to bias in learning. From
these sub-sequences, HMMs are constructed by learn-
ing. Figure 4 illustrates the learning process.

Figure 4: Learning scheme of the weighting of the model

graph

The following section present how the HMM obtained
by learning allows to create the weighting of edges of
the model graph.

Building weighted graph from HMM models

The learning of models is performed using one or more
sequences of observations obtained by simulation. The
sequences should be neither too large not to lose time
with the calculations nor too short not to lose infor-
mation on symbols. From these observations, we first
construct the set of symbols V and then initializes the
Hidden Markov Model Hmm = (π,A,B). For models
with inputs, we add the symbol ∞ to the set V . The
number of states is fixed at N = 6 and the distribution
probabilities are almost equal for A and for B.

Once the HMM constructed from the Baum-Welch al-
gorithm, the complete graph is reconstructed by replac-
ing the atomic models by their HMM . We simulate
the automaton graph at probabilistic states. This simu-
lation is based on the observation sequences generation
algorithm for models without entry (see Algorithm 1)
and on a variant of the previous algorithm for models
with inputs see Algorithm 2).



The random selection for a state or a observation, ac-
cording to the probabilities π, A ans B, requires the
creation of sets of cumulative probabilities πc, Ac and
Bc. Where

πci =
∑
k<i

πk + πi

Acij =
∑
k<j

Aik +Aij

Bcij =
∑
k<j

Bik +Bij

To simulate this selection, we select three values
kπ, ka, kb ∈ [0, 1] with a uniform distribution. To de-
termine the initial state, we search j such as kπ ∈
[πcj−1, πcj ]. Similarly, to determine the future state
and the emitted symbol, we search j such as ka ∈
[Acij−1, Acij ] and kb ∈ [Bcij−1, Bcij ].

Algorithm 1 Observation sequence generation for
model without input

1: procedure
2: select an initial state Si with probabilities π
3: set initial state S ← Si
4: select a symbol vk with probabilities bik
5: seq ← {vk}
6: while S 6= SN do
7: select a future state Sj with probabilities aij
8: S ← Sj
9: select a symbol vk with probabilities bjk

10: seq ← seq ∪ {vk}
return seq

Changes that we must achieve in the simulation algo-
rithm are twofold: to take into account the symbols
∞ and interaction between the HMMs. In algorithm
1, the sequence may be entirely generated because it
is not dependent on external information. However, in
the case of models with inputs, we must take account
of events produced by the upstream models of the sim-
ulated model. The sequences {di} are converted into
events. Events are placed in input of the models and the
arrival dates are defined by the di. Events are considered
in the simulation of HMMs when the automaton sends
the symbol∞. Indeed, when the symbol∞ is generated,
the automaton waits for an external event (as defined
in the DEVS formalism). However, if the transmitted
symbol is not∞ and an external event happens then the
event is ignored. So unlike the conventional case, the
HMM simulator is piloted by the presence of the sym-
bol ∞ and the arrival of events. Finally, emission time
average is determined between two outputs on all edges
of the graph. This weighted average is the computation
of the expectation of the variable of symbols derived of
the symbol ∞: V − {∞} = {v1, · · · , vM−1}. At each

vj is associated a probability P (vj) =
N∑
i=1

bi,j which is

Algorithm 2 Observation sequence generation for
model with inputs

1: procedure
2: D, set of arrival dates of external events
3: I = 0, index of current date in D
4: select an initial state Si with probabilities π
5: set initial state S ← Si
6: select a symbol vk with probabilities bik
7: seq ← {vk}
8: t = 0
9: while t < tmax do

10: select a future state Sj with probabilities aij
11: S ← Sj
12: if S = SN then
13: select a new initial state Sj with proba-

bilities π
14: S ← Sj

15: select a symbol vk with probabilities bjk
16: if vk 6=∞ then
17: t← t+ vk
18: seq ← seq ∪ {t− tlast + vk}
19: tlast ← t
20: while DI <= t do I ← I + 1

21: else
22: t← DI

23: I ← I + 1
return seq

the sum of the emission probabilities of the symbol j for
each state Si. The expectation of the variable V is:

E(V ) =

M−1∑
j=1

vjP (vj) =

M−1∑
j=1

vj

N∑
i=1

bij =

M−1∑
j=1

N∑
i=1

vjbij

The entire process of weight computation will be illus-
trated in an example of model graph presented in section
Model and graph.

DATA PRESENTATION AND RESULTS

To illustrate the process, we will use an example based
on a graph of atomic models. This graph consists of a
single type of deterministic model. For each model, the
parameters are different which implies different dynam-
ics from the point of view of di. Using this example,
we will show the impact of the approximation due to
HMM . It seems obviously that the building by learn-
ing of HMMs leads to a loss of accuracy compared to
the original models. We will quantify this loss and show
that the impact on the estimated weight is low.

Models and graph

Our tests are made from only one type of models. An
atomic model represents the fill of N tanks of same size,
where each has its own filling speed si. The dynamic is



this: when K tanks have reached the maximum capac-
ity Qmax, they are emptied. If all tanks are full so an
output event is generated. At this time, a di is calcu-
lated. Figure 5 illustrates the operation of this model.
Depending on the setting, one sees a dynamic that can
be represented by a finite state automaton. The di are
shown on the automaton edges and vertices represent
states where the tanks are all full.

Figure 5: Tank model example and state graph

Then, we introduce an external dynamic at the deter-
ministic model. The tanks are under the influence of
upstream tanks. When tanks were full k times, down-
stream tanks fill faster. We model this mechanism by:
when k external events arrived, the filling speed is in-
creased for one of the tanks. The speed will be reset to
the initial state when all speeds have been increased.

Figure 6: On the left, atomic model graph with dmean.
On the right, HMM graph with dmean

Results

The first step of the method allows us to get the di for
all atomic models. The models A, B and C have same
values for parameters. In this way, a single simulation is
required (see figure 7). In the general case, it is impor-
tant to identify identical models to minimize the number
of simulations. For the other five models, three simula-
tions are needed: D and E are identical and H have

no exit. These three simulations require the setting of
input generators: each generator produces di randomly
according to a uniform law whose boundaries are be-
tween the minimum and maximum of di observed at
the output of the upstream models. We have four sets
of di.

15; 3; 15; 1; 2; 12; 1; 17; 2; 4;
{9; 3; 12; 3; 3; 4; 8; 10; 15; 1; 2; 2; 3; 8; 7; 8; 4; 11;

3; 12; 3; 12; 1; 2; 1; 11; 6; 9; 15; 3;
1; 14; 3; 9; 3; 15; 3; 1; 11; 3; 15; 3; 2; 13; 1; 2; 12; 6;

13; 2; 3; 12; 15; 3; 1; 5};
{9; 3; ...}; ...

Figure 7: di of A model with stable sub-sequence

According to the method, the di are subdivided to ob-
tain a set of observation sub-sequences for the learning
step. We took the opportunity to compute the duration
average dmean (see figure 6).
Two parameters are to be set for the learning step
(Baum-Wesh algorithm): the number of maximum of
iterations and the number of hidden states. In our case,
we fix them respectively 100 and 10. The number of
hidden states leads to highly variable quality results. It
is important to fix them an adequate way. By example,
one would be to vary them to retain the optimal number.
Some methods exist (for example, [Geiger et al., 2010]).

Figure 8: HMM graph with weights

Then, from HMMs constructed by learning, an HMMs
graph is built and simulated. We then obtain the simu-
lated dmean. Figure 6 shows the differences between the
simulated di from DEVS models and simulated di from
HMMs. There are different but the results are close.
To improve these results, it is necessary to introduce a
method for optimizing the number of hidden states, to
study the impact of the initial conditions of learning and
also to study the setting of generators for models with
inputs. These three elements determine the quality of
HMMs. In addition, the DEVS models treated in the



example are deterministic and show sequences that are
repeated in the di. What is the impact? What happens
if there is no repetition or if the sequences are too short?
The last step is to convert the di to weight (see fig-
ure 8) and make partitions from the flattening graph
[Herbez et al., 2015b]. Partitioning is not addressed in
this paper.

CONCLUSION AND PERSPECTIVES

The optimization of the hierarchical structure of the
DEVS simulation is not limited to a simple partition-
ing of the model graph. As we have shown in our pre-
vious work, the partitioning process does not take into
account the dynamics of the models, which is reflected
by a lower gain in performance. In this article, we pro-
posed a method of weighting of the model graph with
Hidden Markov models.
As we have seen in the results section, several factors
may impact the quality of learning. It is therefore im-
portant to study the different impacts. In addition, the
DEVS models that were used to validate the approach,
belong to a subclass of DEVS models (deterministic and
finite states). We must therefore expand the types of
models (eg, stochastic). Similarly, di are integer and
their number is finite. It is important to extend our re-
sults to models whose di are real and whose number is
infinite. The definition of di classes could be a solution.
There are also two other restrictions: the models have
only one input port and one output port, and events do
not carry data. The first restriction is not complicated
to take into account, in particular, in the simulation al-
gorithms of HMM . However, it is more difficult to take
into account data. We should build specific generators
for models with inputs.
One last important perspective is the study of the trans-
formation function of di in weight. This function is now
quite simple and non-linear. Another way, by example
linear, might be a better choice.

REFERENCES

[Baum et al., 1970] Baum, L. E., Petrie, T., Soules, G., and
Weiss, N. (1970). A maximization technique occurring
in statistical analysis of probabilistic functions in markov
chains. The Annals of Mathematical Statistics, 41(1):164–
171.

[Bichot and Siarry, 2013] Bichot, C. E. and Siarry, P.
(2013). A Partitioning Requiring Rapidity and Quality:
The Multilevel Method and Partitions Refinement Algo-
rithms, pages 27–63. John Wiley & Sons, Inc.

[Bilmes, 1998] Bilmes, J. A. (1998). A gentle tutorial of the
em algorithm and its application to parameter estimation
for gaussian mixture and hidden markov models. Univer-
sity of California Berkeley.

[Chandy and Misra, 1981] Chandy, K. M. and Misra, I.
(1981). Asynchronous distributed simulation via a se-

quence of parallel computations. Communications of the
ACM, 24(4):198–206.

[Chandy and Misra, 1979] Chandy, K. M. and Misra, J.
(1979). Deadlock absence proofs for networks of com-
municating processes. Information Processing Letters,
9(4):185–189.

[Chow, 1996] Chow, A. C.-H. (1996). Parallel devs: A par-
allel, hierarchical, modular modeling formalism and its
distributed simulator. Trans. Soc. Comput. Simul. Int.,
13(2):55–67.

[Chow and Zeigler, 1994] Chow, A. C. H. and Zeigler, B. P.
(1994). Parallel devs: A parallel, hierarchical, modular,
modeling formalism. In Proceedings of the 26th Confer-
ence on Winter Simulation, WSC ’94, pages 716–722, San
Diego, CA, USA. Society for Computer Simulation Inter-
national.

[Fujimoto, 1990] Fujimoto, R. M. (1990). Parallel discrete
event simulation. Communications of the ACM - Special
issue on simulation, 33:30–53.

[Geiger et al., 2010] Geiger, J. T., Schenk, J., Wallhoff, F.,
and Rigoll, G. (2010). Optimizing the number of states
for hmm-based on-line handwritten whiteboard recogni-
tion. In International Conference on Frontiers in Hand-
writing Recognition, ICFHR 2010, Kolkata, India, 16-18
November 2010, pages 107–112.

[Herbez et al., 2015a] Herbez, C., Quesnel, G., and Ramat,
E. (2015a). Building partitioning graphs in parallel-devs
context for parallel simulations. In Proceedings of the 2015
Spring Simulation Conference.

[Herbez et al., 2015b] Herbez, C., Quesnel, G., and Ramat,
E. (2015b). Optimization of parallel-devs simulations with
partitioning techniques. In Proceedings of the 2015 Simul-
tech Conference.

[Karypis and Kumar, 1998] Karypis, G. and Kumar, V.
(1998). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput.,
20(1):359–392.

[Kernighan and Lin, 1970] Kernighan, B. W. and Lin, S.
(1970). An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49(2):291–307.

[Muzy and Nutaro, 2005] Muzy, A. and Nutaro, J. (2005).
Devs & dsdevs abstract simulators. 1st Open Interna-
tional Conference on Modeling and Simulation (OICMS,
Clermont-Ferrand), pages 273–279.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden
markov models and selected application in speech recog-
nition. Proceeding of the IEEE, 77(2):257–286.

[Zeigler et al., 2000] Zeigler, B. P., Kim, D., and Praehofer,
H. (2000). Theory of modeling and simulation: Integrating
Discrete Event and Continuous Complex Dynamic Sys-
tems. Academic Press, 2nd edition.


