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Abstract

Regression models have been developed for the case where the dependent variable is a
vector of shares. Some of them, from the marketing literature, are easy to interpret but
they are quite simple and can only be complexified at the expense of a large number of
parameters. Other models, compositional regression models, are based on the simplicial
geometry and use a log-ratio transformation of shares. They are flexible in terms of
explanatory variables, but their interpretation is not straightforward, due to the link
between shares. This paper combines both literatures in order to obtain a performing
market-share model allowing to get relevant interpretations, which can be used for
decision making in practical cases.

For example, we are interested in modeling the impact of media investments on auto-
mobile manufacturers sales. In order to take into account the competition, we model
the brands market-shares as a function of brands media investments. We furthermore
focus on compositional models where some explanatory variables are compositional.
Two specifications are possible: in Model A, a unique coefficient is associated to each
compositional explanatory variable, whereas in Model B a compositional explanatory
variable is associated to component-specific and cross-effect coefficients.

Model A and Model B are estimated for our application in the B segment of the
French automobile market, from 2003 to 2015. In order to enhance the interpretability
of these models, we present different impact measures (marginal effects, elasticities,
odds ratios) and we show that elasticities are particularly useful to isolate the impact
of an explanatory variable on a particular share. We prove that elasticities can be
equivalently computed from the transformed model and from the initial model. Direct
and cross effects of media investments are computed for both models. Model B shows
interesting non-symmetric synergies between brands.

Key words: Elasticity, odds ratio, marginal effect, compositional model, market-
shares model, media investments impact.
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1 Introduction

We are interested in modeling the impact of media investments on automobile manufacturer sales.
We consider that the sales volume in a particular segment of the automobile market is mainly
determined by the demand through the socio-economic and regulatory context. Thus, each brand
tries to have “the largest share of the cake” using marketing tools, like price and media invest-
ments. The impact of media investments of brand j on its own sales cannot be assessed without
taking into account the competition. Thus, we want to model the impact of media investments on
market-shares, taking into account the marketing actions of competitors, directly (cross-effects) of
indirectly.

In the existing literature, we found different types of models to model shares (Morais et al. (2016)
for a comparison). Some of them, from the marketing or econometric literature, are perfectly
adapted to model market-shares and to interpret direct and cross impacts of media investments,
but the proposed models are quite simple or can only be complexified at the expense of a very
large number of parameters. Other models adapted to share data are proposed, which are called
compositional regression models and are based on the simplicial geometry. These mathematical
models are very flexible in terms of explanatory variables and complexity (alternative-specific and
cross-effect parameters), but their interpretation is not straightforward. This paper combines
both literatures in order to obtain a performing market-share model allowing to get relevant and
appropriate interpretations, which can be used for example to help decision making of automobile
manufacturers concerning their media investments.

Here we focus on compositional models which are coming from the so called Compositional Data
Analysis (CODA) literature (Pawlowsky-Glahn et al. (2015)). A composition of D components is a
vector ofD shares, lying in a space called the simplex, and then respecting the following constraints:
components are positive and summing up to one. Compositional models are “transformation”
models in the sense that they use a log-ratio transformation of shares. Transformation models
have several advantages compared to other share models: they are easy to estimate (usually by
OLS on coordinates) and flexible in terms of explanatory variables (they can be compositional or
classical variables, with or without component-specific parameters). More specifically, we focus on
models where a compositional dependent variable is explained by some compositional explanatory
variables. We make a difference between two specifications of this model: in Model A, a unique
coefficient is associated to each compositional explanatory variable (Wang et al. (2013)), whereas in
Model B a compositional explanatory variable is associated to component-specific and cross-effect
coefficients (Chen et al. (2016)).

In compositional models, the interpretation of parameters is not straightforward as all shares are
linked by the summing up to one constraint. They are usually interpreted in terms of marginal
effects on the transformed shares. In this paper we propose several interpretations directly linked
to the shares, in terms of marginal effects, elasticities and odds ratios, in order to enhance the
interpretability of these models. We show that marginal effects on shares are not well adapted to
interpret these models because they depend a lot on the considered observation. Elasticities are
useful to isolate the impact of an explanatory variable on a particular share as they correspond to
the relative variation of a component to the relative variation of an explanatory variable, ceteris
paribus. We show that they can be computed from the transformed model or equivalently from
the model in the simplex. Other types of elasticities and odds ratios can be computed for ratios
of shares, which are observation independent but they can be complicated to use in practice.

Model A and Model B are applied to an automobile market data set, where the aim is to explain
the brands market-shares in a segment with brands media investments. The two models are
interpreted using marginal effects, elasticities and odds ratios, and they are compared in terms of
(out-of-sample) goodness-of-fit using quality measures adapted for share data.

This paper is organized as follows: the second section presents the two types of compositional
models; the third section explains how to interpret them; the fourth section presents the results
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Morais J. et al. 3

of the estimation of the models for the French automobile market along with interpretations and
quality measures. Finally, the last section concludes on the findings and on further directions to
be investigated.

2 Compositional regression models

2.1 Definition and notations

By definition shares are compositional data: a composition is a vector of D parts of some whole
which carries relative information. D-compositions lie in a space called the simplex SD.

SD =

⎧⎨⎩s = (s1, s2, . . . , sD)′ : sj > 0, j = 1, . . . , D;
D∑

j=1

sj = 1

⎫⎬⎭
Compositions are subject to the following constraints: the components are positive and sum up to
1. Because of these constraints, classical regression models cannot be used directly.

The following operations are used in the simplex (Van Den Boogaart and Tolosana-Delgado (2013)
for example):

• C() denotes the closure operation which transforms volumes into shares: C(x̌1, . . . , x̌D)′ =(
x̌1∑D

j=1 x̌j
, . . . , x̌D∑D

j=1 x̌j

)′
= (x1, . . . , xD)′ where x̌ denotes the volume and x denotes the share

of a variable.

• ⊕ is the perturbation operation, corresponding to the addition operation in the simplex:
x⊕ y = C(x1y1, . . . , xDyD)′ with x,y ∈ SD

• � is the power transformation, corresponding to the multiplication operation in the simplex:
λ� x = C(xλ

1 , . . . , x
λ
D)′ with λ ∈ R,x ∈ SD

• � is the compositional matrix product, corresponding to the matrix product in the simplex:

B� x = C(∏D
j=1 x

b1j
j , . . . ,

∏D
j=1 x

bDj

j

)′
with B ∈ RD×D,x ∈ SD

2.2 Log-transformation approach

Compositional data analysis is based on the log-ratio transformation of compositions in order to
obtain coordinates which can be represented in a R

D−1 Euclidean space1. Then, classical methods
suited for data in the Euclidean space, like linear regression models, can be used on coordinates.
Below, terms with a “∗” refer to transformed elements (in coordinates), whereas terms without
“∗” refer to elements in the simplex (compositions).

Several transformations are developed in the CODA literature (Pawlowsky-Glahn et al. (2015) for
example). The ILR (isometric log-ratio) transformation is preferred for compositional regression
models. It consists in a projection of components on an orthonormal basis of SD in order to
obtain D − 1 orthonormal coordinates. Considering the transformation matrix VD×(D−1), ILR
coordinates are defined as:

ilr(s) = V′ log(s) = s∗ = (s∗1, . . . , s
∗
D−1)

′

Its inverse transformation is given by: S = ilr−1(S∗) = C(exp(VS∗))′.

1Or in R
D in the case of the CLR transformation.
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After inverse transformation, results of a compositional analysis are the same regardless of the
chosen transformation. However, ILR is preferred for compositional regression models.

2.3 Two types of compositional models

In this section, we consider two types of models adapted to a compositional dependent variable
explained by compositional explanatory variable (and potentially classical variables). The differ-
ence between the two models is about the specification of the relationship between compositional
explanatory and dependent variables: in contrast with Model B, Model A does not allow for
component-specific and cross effect parameters associated to a compositional explanatory variable
X. In this paper, we add the possibility to use classical variables Z as explanatory variables. There
is no difference between Models A and B with regard to classical variables: component-specific pa-
rameters are specified. For simplicity, models are presented with a single explanatory variable of
each type (compositional X and classical Z), but of course several ones can be used like in the
examples presented in Section 4.

2.3.1 Model A: Compositional dependent and explanatory variables without component-
specific and cross-effect parameters

Model A is presented by Wang et al. (2013). In Model A, a compositional explanatory variable is
associated to a unique parameter b ∈ R (Table 1, Eq. (1)). Thus, cross-effects2 are not modeled
directly, but indirectly through the shares closure. Indeed, we show in Morais et al. (2016) that
Model A in Equation (1) can be written in attraction form like in Equation (3). This equation
contains a closure, and we can see that a change of Xl will have an indirect impact on Sj through
the denominator. Moreover, the attraction form of Model A enables to see that Model A respects
the IIA (independence from irrelevant alternative) property. This property means that the ratio of
shares of two alternatives j and l, Sj/Sl, does not depend on characteristics of other alternatives
m �= j, l. Note that Equation (3) can be expressed either in terms of shares Xj or in terms of
volumes X̌j thanks to the closure operation. If a classical explanatory variable Z is used in Model
A, it is associated to a composition of parameters c3.

The ILR transformation is used in order to estimate Model A [Eq. (5)]. Assuming that the
transformed error terms are normal (implying that the non-transformed compositional error terms
are “normal in the simplex”), we can use OLS to estimate the model.

An important feature of Model A is that compositional explanatory variables X have to be of the
same dimension that the compositional dependent variable S, such that S,X ∈ SD. This model
is adapted when compositions X and S refer to two variables associated to the same components
in the same order, for example S can be the composition of brands market-shares and X the
composition of brand media investments (where brands are in the same order in S and X) (see
Section 4), or S can be the composition of GDP from three sectors and X the composition of
labor force of these three sectors. Otherwise, this model makes no sense. Then, Equation (5) is
estimated using (D− 1)×T observations (the number of ILR coordinates D− 1 times the number
of observations T ). Actually, this model specification is close to the specification of multinomial
or market-share models (see Morais et al. (2016) for a comparison).

2We denote by cross-effect the effect of a variation of Xl on Sj , where l �= j.
3It can be surprising to see that in the attraction form of Model A, the variable Z is powering the intercept cj ,

but this corresponds to the term Zt � c.
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2.3.2 Model B: Compositional dependent and explanatory variables with component-
specific and cross-effect parameters

Model B is used by Van Den Boogaart and Tolosana-Delgado (2013) and Chen et al. (2016) for
example. Using exactly the same dependent and explanatory variables as Model A [Eq. (2)],
it allows each component Xl of X to have a specific impact on each component Sj of S. This
is particularly visible in the attraction form of Model B [Eq. (4)]: instead of having a unique
parameter b ∈ R associated to X, we have a matrix of parameters B ∈ RDS ,DX

. If DS = DX and
S and X refer to the same components in the same order, then B is a square matrix with direct
effect on the diagonal and cross-effects outside of the diagonal. There is no difference between
Model A and Model B for the specification of the intercept and classical explanatory variables.
The same remark than for Model A can be done concerning the attraction form of Model B:
Equation (4) can be expressed either in terms of shares Xj or in terms of volumes X̌j thanks to
the closure operation.

As in Model A, in order to estimate Model B, we transform it using the ILR transformation [Eq.
(6)]. But here, DS − 1 equations are estimated separately (one for each coordinate of S) with T
observations each. The complexity of Model B is reflected by a large number of parameters. This
can be an issue if the number of observations T is too small.

Note that in Model B, X ∈ SDX and S ∈ SDS can have different dimensions. For example, S
can be the composition of GDP from three sectors and X the composition of labor force for six
occupation categories. In our application, DS = DX : S is the composition of brands market-shares
and X is the composition of brand media investments (see Section 4).

One can show that Model A is a particular case of Model B where DS = DX and where B∗ is
a diagonal matrix with b∗ = b on the diagonal and 0 otherwise, that is where only the jth ILR
coordinates of compositional explanatory variables are relevant to explain the jth ILR coordinates
of the dependent variable (see the Appendix A.1 for demonstration in the case of D = 3).

Table 1: Two kinds of models for compositional dependent and explanatory variables

Model A Model B

In compositions
St = a⊕b�Xt⊕Zt�c⊕ε (1) St = a⊕B�Xt ⊕ Zt � c⊕ ε (2)

In attraction form
Sjt =

ajX
b
jtc

Zt
j εjt∑D

m=1 amXb
mtc

Zt
m εmt

(3) Sjt =
aj

∏D
l=1 X

bjl
lt cZt

j εjt∑D
m=1 am

∏D
l=1 X

bml
lt cZt

m εmt

(4)

In coordinates
S∗
t = a∗ +X∗

t · b+ c∗Zt + ε∗t (5) S∗
t = a∗ +X∗

t ·B∗
k + c∗Zt + ε∗t (6)

Component-specific
parameters for X

No Yes

Cross-effects for X No Yes
Dimension D for S and X DS for S ; DX for X

Nb. parameters (D − 1)(1 +KZ) +KX (DS − 1)(1 +KZ +
∑KX

k=1(Dk − 1))

Xt: compositional explanatory variable; Zt: classical explanatory variable.

DS : number of components of S; DX or Dk: number of components of Xk.

S,a,b,X, ε ∈ SD; b,X ∈ R; B ∈ R
DS×DX ; S∗,a∗,b∗,B∗,X∗, ε∗: ILR coordinates.

ε: normal in the simplex distributed error terms ; ε∗: normal distributed error terms.

KX and KZ : number of compositional and classical explanatory variables (KX = KZ = 1 in the table).

E
⊕: expected value in the simplex.

CoDaWork 2017 — Abbadia San Salvatore (IT)
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3 Interpretation of compositional models

As the estimation of compositional models is performed in the coordinate space, the interpretation
of the fitted parameters is difficult because parameters are linked to the log-ratio transformation of
shares, not directly to the shares. It is possible to derive the coefficients in the simplex associated
to shares using the inverse transformation, but their interpretation is not straightforward either.

We are going to show that relative impacts, like elasticities or odds ratios, are more natural (as is
the case of the classical logistic model) than marginal effects, to interpret impacts on shares.

Table 2 compares the different measures of impact assessment of explanatory variables (composi-
tional and classical) in Model A and Model B, which are detailed below. Note that it is not possible
to measure the impact of the share of Xlt, but only of the corresponding volume of X̌lt. Indeed, a
share cannot increase ceteris paribus because it implies a change in other shares. However, we can
consider a change in the volume of X̌lt, with all other volumes X̌mt,m �= l fixed.

3.1 Marginal effect of a component

In classical linear models, coefficients are usually interpreted in terms of marginal effects: if the
explanatory variable increases by one, then the dependent variable increases by the value of the
coefficient. In the case of compositional models, we prove in this paper that it is possible to
compute marginal effects, but it is not straightforward. The marginal effect of the component X̌lt

(in volume) on the dependent share Sjt is defined as:

me(E⊕Sjt, X̌lt) =
∂E⊕Sjt

∂X̌lt

(7)

where E
⊕Sjt is the “expected value in the simplex” of Sjt (Morais et al. (2016)) , such that

E
⊕Sjt =

ajX
b
jtc

Zt
j

∑D
m=1 amXb

jtc
Zt
m

for Model A and E
⊕Sjt =

aj

∏D
l=1 X

bjl
lt c

Zt
j

∑D
m=1 am

∏D
l=1 X

bml
lt c

Zt
m

for Model B.

For Model B, we show that marginal effects can be computed as follows:

me(E⊕Sjt, X̌lt) =
∂E⊕Sjt

∂ logE⊕Sjt

∂ logE⊕Sjt

∂ log X̌lt

∂ log X̌lt

∂X̌lt

=

(
bjl −

D∑
m=1

Smtbml

)
E
⊕Sjt

X̌lt

(8)

If MEDS ,DX
is the matrix containing all marginal effects, we then have:

ME(E⊕St, X̌t) = [Sjt]WtB�
[

1

X̌lt

]
= [Sjt]�WtVB∗V′ �

[
1

X̌lt

]
(9)

where � denotes the Hadamard product here (term by term product)4, [Sjt] is a DS ×DS matrix

with Sjt on the jth row,
[

1
X̌lt

]
is a DX ×DX matrix with X̌lt on the lth column, B∗ and B denote

the parameters in the transformed space and in the simplex, andWt is a DS×DS matrix composed
of diagonal terms equal to 1−E

⊕Sj and non-diagonal terms in column j equal to −E⊕Sj . Similar
results can be found for Model A in Table 2, where B is replaced by b.

This marginal effect matrix can also be computed using ILR coordinates and Jacobian matrices
instead of using the attraction form of the model (Appendix A.2).

3.2 Elasticity of a dependent share relative to a component

The marginal effect me(E⊕Sjt, X̌lt) depends on all shares Smt and on volumes X̌lt. Thus, it can
vary a lot across observations, and therefore it is not a good measure to summarize the impact of a

4Note that � in bold denotes the Hadamard product whereas � denotes the power transformation.

CoDaWork 2017 — Abbadia San Salvatore (IT)



��������	
��
	−	�������	���	���������	���� �!���� 

�������	
�
����	
�����


Morais J. et al. 7

component X̌lt on a share Sjt. We are going to show that elasticities are more natural to interpret
compositional models.

The first elasticity we may want to compute is the elasticity of the share Sjt relative to the volume
of X̌lt. It corresponds to the relative variation of Sjt induced by a relative variation of 1% of X̌lt:

ejlt = e(E⊕Sjt, X̌lt) =

∂E⊕Sjt

E⊕Sjt

∂X̌lt

X̌lt

=
∂ logE⊕Sjt

∂ log X̌lt

(10)

These elasticities are easy to compute from the attraction form of E⊕Sjt, in a similar way than
marginal effects [Eq. (8)]. They can also be expressed in a matrix form E(E⊕St, X̌t) (results are
in Table 2). The relationship between marginal effects and elasticities is as follows:

ME(E⊕St, X̌t) = [Sjt]� E(E⊕St, X̌t)�
[
1/X̌lt

]
These elasticities allow to isolate the impact of one X̌’s component on one S’s component which
is very useful. e(E⊕Sjt, X̌lt) depends on observations but only through the Smt, not through X̌lt.
Then, if shares are not varying to much, as it is the case in our example (see Section 4), they can
be a good measure of impact.

As for marginal effects, the elasticity matrix can also be computed from ILR coordinates (Appendix
A.2).

Note that for a small relative change of X̌lt equal to h = ΔX̌lt

X̌lt
, a first order Taylor approximation

of the share denoted S′jt is:
S′jt = Sjt(1 + hejlt) (11)

We can verify that, for a small h, the S′mt do belong to the simplex (they are summing up to one

because
∑D

m=1 E
⊕Smtejlt = 0, see proof in the Appendix A.3).

Moreover, we can link these elasticities to simplicial derivatives5 (i.e. derivatives in the simplex).
Indeed, the simplicial derivative of the composition S with respect to the log of a particular
component X̌l is defined as follows:

e⊕lt =
∂⊕E⊕St

∂⊕ log X̌lt

= C
(
exp(

∂ logE⊕St

∂ log X̌lt

)

)
= C (exp(e1lt), . . . , exp(eDlt)) (12)

For a small relative change of X̌l equal to h = ΔX̌lt

X̌lt
, another first order Taylor approximation of

share denoted S′′t is6:

S′′t = St ⊕ h� e⊕lt = C (S1t exp(he1lt), . . . , SDt exp(heDlt)) (13)

Note that when h→ 0, exp(hejlt) � 1 + hejlt, so that:

S′′t � C (S1t(1 + he1lt), . . . , SDt(1 + heDlt)) = C (S′1t, . . . , S′Dt) = (S′1t, . . . , S
′
Dt) (14)

where S′jt are computed in Equation (11) and S′′t in Equation (13). The last equality of Equation

(14) is justified by the fact that
∑D

m=1 E
⊕Smt = 1 and

∑D
m=1 E

⊕Smtejlt = 0.

3.3 Elasticity and odds ratio of a ratio of dependent shares relative to
a component

In order to avoid being observation dependent, other measures can be computed for interpreting
Models A and B. However, they are concerning ratios of shares, not directly a single share. Then,
they can be complicated to interpret in practical cases.

5See Equation (9.9), p.183, in Pawlowsky-Glahn et al. (2015).
6See Equation (12.13), p.168, in Pawlowsky-Glahn and Buccianti (2011).
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Elasticity of a ratio of dependent shares As compositional data analysis is based on a log
ratio approach, elasticities of ratios are easy to compute. We can be interested in the elasticity of
a ratio of shares (or volumes) E

⊕Sjt/E
⊕Sj′t relative to an infinitesimal change in the volume of

X̌lt.

e(E⊕Sjt/E
⊕Sj′t, X̌lt) =

∂ log(E⊕Sjt/E
⊕Sj′t)

∂ log X̌lt

(15)

We see in Table 2 that the result is constant across observations because it only depends on
parameters. Note here that Model A respects the IIA (Independence from Irrelevant Alternatives)
property, meaning that the ratio of two shares E

⊕Sjt/E
⊕Sj′t only depends on the corresponding

components j and j′ of X̌. Then, e(E⊕Sjt/E
⊕Sj′t, X̌lt) = 0 if l �= j, j′. Moreover, the elasticity

of the ratio between the share j and the share j′ relative to a change in X̌jt is the same for all
considered shares j′. This is a lack of flexibility of Model A, because it implies that an increase
of X̌jt will reduce proportionally all other shares. Model B does not satisfy the IIA property, and
then this model is able to take into account possible synergies between brands.

Odds ratio of a ratio of dependent shares Another type of interpretation which can be used
for shares is the odds ratio. The advantage of this measure is that it is a measure of impact of a
discrete change, as opposed to infinitesimal change, of X̌l (X̌l is increased by Δ × 100% between
situations t = t1 and t = t2) on the ratio E

⊕Sjt/E
⊕Sj′t. The empirical odds ratio for a couple of

shares E⊕Sjt/E
⊕Sj′t relative to X̌lt is given by:

OR(E⊕Sjt/E
⊕Sj′t, X̌lt,Δ) =

(E⊕Sj,t2/E
⊕Sj′,t2)|X̌l,t2

(E⊕Sj,t1/E⊕Sj′,t1)|X̌l,t1

(16)

where X̌l,t2 = (1 +Δ)X̌l,t1 and Δ ≥ 0.

Remark: e(E⊕Sjt/E
⊕Sj′t, X̌lt) and OR(E⊕Sjt/E

⊕Sj′t, X̌lt,Δ) are more or less measuring the same
thing differently, if Δ is small:

e(E⊕Sjt/E
⊕Sj′t, X̌lt) � (E⊕Sjt2/E

⊕Sj′t2)− (E⊕Sjt1/E
⊕Sj′t1)

(E⊕Sjt1/E⊕Sj′t1)
/
X̌lt2 − X̌lt1

X̌lt1

� OR(E⊕Sjt/E
⊕Sj′t, X̌lt,Δ)− 1

(X̌lt2 − X̌lt1)/(X̌lt1)

3.4 Elasticity of a particular ratio of dependent shares relative to a
particular ratio of components

Usually, compositional models are interpreted directly on coordinates. Thus, it is advised to
choose an appropriate ILR transformation in order to have ILR coordinates which make sense for
the considered application, using sequential binary partition for example (Hron et al. (2012)). But,
previously the interpretation was made in terms of marginal effects on ILR coordinates, that is
marginal effects on a particular log ratio of shares. We show here that we can go a step further
and make an interpretation in terms of elasticity for the ratio of shares directly.

Chen et al. (2016) interpret in the case of Model B the impact of the ratio Xl/g(X−l) = X̌l/g(X̌−l)
on the ratio E

⊕Sj/g(E
⊕S−j) = E

⊕Šj/g(E
⊕Š−j) (ratios on shares or volumes are equivalent),

which is the ratio of a particular share (or volume) Sj over the geometric average of other shares
(or volumes). The adapted ILR transformation is the following:

ilr(X)i =

√
D − i

D − i+ 1
log

xi

(
∏D

j=1+i xj)1/(D−i)
, i = 1, . . . , D − 1
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Morais J. et al. 9

With this transformation, the first expected coordinate of S in Model A, is equal to:

Eilr(S)1 =

√
D − 1

D
log

E
⊕S1t

g(E⊕S−1t)
= a∗1 + b∗

√
D − 1

D
log

X̌1t

g(X̌−1t)
+ c∗1Zt

In Model B, the first expected coordinate of S is equal to:

Eilr(S)1 =

√
DS − 1

DS
log

E
⊕S1t

g(E⊕S−1t)
= a∗1+b

∗(j,l)
11

√
DX − 1

DX
log

X̌1t

g(X̌−1t)
+b
∗(j,l)
12

√
DX − 2

DX − 1
log

X̌2t

g(X̌−1−2t)
+. . .

In order to interpret their model, Chen et al. (2016) compute the marginal effect of ilr(X)
(l)
1 on

ilr(S)
(j)
1 :

me(Eilr(S)
(j)
1 , ilr(X̌)

(l)
1 ) =

∂
√

DS−1
DS

log(E⊕Sjt/g(E
⊕S−jt))

∂
√

DX−1
DX

log(X̌lt/g(X̌−lt))
= b

∗(j,l)
11

such that an increase of one unit of ilr(X̌)
(l)
1 implies an increase of b

∗(j,l)
11 units of Eilr(S)

(j)
1

7.

Note that this is only true if
√

DX−1
DX

log(Xlt/g(X−lt)) moves because X̌1t moves while other X̌jt

remain constant. Otherwise, other ILR coordinates in the right part of the equation are moving
and the marginal effect should take it into account. However, for Model A, we do not have this
problem because other ILR coordinates of X are not used.

We show that this is equivalent to compute the following elasticity (multiplying by a factor if
DS �= DX):

e

(
E
⊕Sjt

g(E⊕S−jt)
, X̌lt

)
=

∂ log(E⊕Sjt/g(E
⊕S−jt))

∂ log X̌lt

=

√
(DX − 1)/DX

(DS − 1)/DS
b
∗(j,l)
11

Thus, instead of saying that when ilr(X̌)
(l)
1 increases by 1 unit, Eilr(S)

(j)
1 increases by b

∗(j,l)
11 units,

one can say that when X̌lt increases by 1%, E⊕Sjt/g(E
⊕S−jt) increases by b

∗(j,l)
11 % (in the case

where DS = DX). Note that this b
∗(j,l)
11 will be different for each permutation (i.e. each couple

j, l). Chen et al. (2016) show how one can determine in one step the first coefficient of B∗(j,l), the
b
∗(j,l)
11 which is used to compute the above elasticity, for all possible permutations without fitting
several times the model.

3.5 Elasticities and odds ratios relative to a classical variable

The same kind of interpretations can be done for classical variables Z, as presented in Table 2,
except for the elasticity including the geometrical mean.

Indeed, this would allow to measure the marginal effect (not the elasticity) of Zt over
√

DS−1
DS

log S1t

g(S−1t)
.

This marginal effect would be equal to c∗1 for Model A and Model B, but this kind of interpretation
is not useful to understand the impact of Z on the final shares. Thus, we do not show this measure
in Table 2.

Note that in practice, elasticities and other measures depending on E
⊕Sjt are estimated using the

observed shares Sjt, not the fitted shares Ŝjt.

7ilr(S)
(j)
1 denotes the first ILR coordinate of S where Sj is in the first position; ilr(X̌)

(l)
1 denotes the first ILR

coordinate of X̌ where X̌l is in the first position.
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Morais J. et al. 10

Table 2: Measures of impact assessment for Model A and Model B

Var Measure Effect Model A Model B

X

me(Sjt, X̌lt)
Direct b(1− Sjt)

Sjt

X̌lt (bjl −
∑D

m=1 Smtbml)
Sjt

X̌ltIndirect (−bSlt)
Sjt

X̌lt

ME(St, X̌t) Matrix [Sjt]�Wtb� [1/X̌lt] [Sjt]�WtB� [1/X̌lt]

e(Sjt, X̌lt)
Direct b(1− Sjt)

(bjl −
∑D

m=1 Smtbml)Indirect −bSlt

E(St, X̌t) Matrix Wtb WtB

e
(

Sjt

Sj′t
, X̌lt

)
Direct b

(bjl − bj′l)Indirect 0

OR
(

Sjt

Sj′t
, X̌lt,Δ

)
Direct (1 + Δ)b

(1 + Δ)(bjl−bj′l)
Indirect 0

e
(

Sjt

g(S−jt)
, X̌lt

) Direct b
b
∗(j,l)
11

√
DX−1
DX

/
√

DS−1
DSIndirect 0

Z

me(Sjt, Zt) (log cj −∑D
m=1 Smt log cm)Sjt

ME(St, Zt) Vector [Sjt]�Wt log c

e(Sjt, Zt) (log cj −∑D
m=1 Smt log cm)Zt

E(St, Zt) Vector Wt log c · Zt

e(
Sjt

Sj′t
, Zt) log(cj/cj′)Zt

OR
(

Sjt

Sj′t
, Zt,Δ

)
(cj/cj′)

ΔZt

In this table, E⊕Sjt is denoted by Sjt to shorten notations, and � denotes the Hadamard product.

Moreover, these measures are estimated using observed shares Sjt in practice, not fitted shares.

Direct effect when l = j; indirect effect when l �= j.

Wt contains 1− Sit on the diagonal and −Sit otherwise.

4 Impact of media investments on brands market-shares

In Europe, the automobile market is usually segmented in 5 segments, from A to E, according to
the size of the vehicle chassis. Within each segment, one can suppose that consumers intending
to buy new cars make their choice between brands8 according to the price and the “image” of
the brand. The image of the brand is supposed to reflect the notion of quality and reliability
of the brand. Car manufacturers spend millions of euros in media investments to enhance their
image, giving rise to the following question: do the media investments have an impact on brands
market-shares9?
In order to answer this question in the present paper, we model brands market-shares of the B
segment of the French automobile market10 as a function of brand media investments (in TV, radio,
press, outdoor, internet and cinema), of brand average catalogue price and of a scrapping incentive
dummy variable. In a further work, we consider modeling other segments, and differentiate media
investments according to channels.

In this paper, three brands are highlighted (Renault, Peugeot, Citroen, the leaders of the B seg-
ment) while other brands of the B segment are aggregated in a category “Others” (Fig. 1). The
media investments are the sum of TV, radio, press, outdoor, internet and cinema investments in
euros by brands for their vehicles in the B segment (Fig. 1). They do not include advertising
budget for the brand itself. Actually we use the media investments of one, two and three months
before the purchase time (at time t − 1, t − 2, t − 3) as explanatory variables. The average brand
price (average of catalogue prices weighted by corresponding sales at the vehicle level) is also used
as an explanatory variable (Fig. 1). It does not include potential promotions made in the car

8Inside a segment, a brand generally supplies only one main vehicle. Thus, we can consider that the alternatives
for a consumer inside a particular segment coincide with the available brands in this segment.

9We decide to ask the question in terms of market-shares instead of in terms of sales volumes because one can
suppose that at time t, brands have to share a market for which the size is mainly determined by the demand.

10The B segment is the most important segment in terms of sales in France (around 40% of new passenger car
sales).
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Morais J. et al. 11

dealership at the time of purchase. Even if they do not vary a lot across time, prices are used to
position brands within the segment. We also control for scrapping incentive periods. The corre-
sponding dummy variable is a “classical” variable (not compositional) and varies across time only,
not across brands.

Model A and Model B can be considered in this framework: Model A considers that the effect of
media investments and price are the same for all brands whereas Model B implies cross-effects and
brand-specific impacts of media investments and price on market-shares.
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Figure 1: Sales, media and average price of brands, in volume and in share, in the B segment

This section presents the results of this application. We interpret the two models A and B in terms
of elasticities and odds ratios of shares, and we compare them in terms of goodness-of-fit measures.

4.1 Non brand-specific impact of media investments (Model A)

Model In the case where it is assumed that brand media investments and brand prices have the
same effect for all brands, the following equations correspond to the model in the simplex and the
attraction formulation of the model:

St = a

3⊕
τ=1

bτ �Mt−τ ⊕ bP �Pt ⊕ SIt � c⊕ εt

⇔ Sjt =
aj ·

∏3
τ=1 M

bτ
t−τ,j · P bP

t,j · cSI
j · εjt∑4

m=1 am ·
∏3

τ=1 M
bτ
t−τ,m · P bP

t,m · cSI
m · εmt

where S,Mt−τ ,P ∈ S4 are the compositions of brand sales, of brand media investments at time
t−1, t−2 and t−3, and of brand prices. bτ , bP ∈ R are the parameters associated to compositional
explanatory variables and c ∈ S4 is a composition of parameters associated to the dummy variable
SI (scrapping incentive).
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Morais J. et al. 12

The ILR transformed version of the model is:

S∗t = a∗ +
3∑

τ=1

bτM
∗
t−τ + bPP

∗
t + c∗SIt + ε∗t

⇔ S∗jt = a∗j +
3∑

τ=1

b∗τM
∗
j,t−τ + b∗PP

∗
jt + c∗jSIt + ε∗jt for j = 1, 2, 3

where ε∗ is supposed to be a Gaussian distributed error term. The balance matrix used for the
ILR transformation is the default matrix in the R software:

VILR,4 =

⎡
⎢⎢⎣

−√
1/2 −√

1/6 −√
1/12√

1/2 −√
1/6 −√

1/12

0
√

2/3 −√
1/12

0 0
√

3/4

⎤
⎥⎥⎦ (17)

Results All explanatory variables are significant at 0.1% according to the analysis of variance
(ANOVA). Figure 2 compares observed and fitted shares. It confirms that the model succeeds in
fitting the main trends of brands market-shares. However, the model underestimates the market-
share of “Others” at the beginning of the period, and overestimates it at the end.
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Figure 2: Observed (color) and predicted (grey) brands market-shares

The parameters estimated on the ILR transformed model are presented in Table 3. The corre-
sponding parameters for the model in the simplex are in Table 4. We remark that the coefficient
associated to the price is positive, which can be surprising, but price here is correlated with the
image of quality of the brand, which is very important for the customer who buy a durable and
expensive good like a car.

4.2 Brand-specific impact of media investments (Model B)

Model Now, let us look at a different specification of the model (dependent and explanatory
variables are the same as in Model A) where brand-specific coefficients are assumed and cross-
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Table 3: Estimated parameters on ILR coordinates - Model A

Estimate Std. Error t value Pr(> |t|)
a∗
1 0.3439 0.0151 22.84 0.0000∗∗∗

a∗
2 0.3363 0.0159 21.19 0.0000∗∗∗

a∗
3 0.6620 0.0263 25.14 0.0000∗∗∗

b1 0.0267 0.0071 3.79 0.0002∗∗∗

b2 0.0241 0.0062 3.90 0.0001∗∗∗

b3 0.0264 0.0062 4.26 0.0000∗∗∗

bP 1.2217 0.2313 5.28 0.0000∗∗∗

c∗1 -0.0241 0.0338 -0.71 0.4758
c∗2 -0.1690 0.0334 -5.05 0.0000∗∗∗

c∗3 0.1292 0.0336 3.84 0.0001∗∗∗

Nb param. 10

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4: Estimated parameters in the simplex - Model A

S1 S2 S3 S4

(Citroen) (Peugeot) (Renault) (Others)

(Intercept) 0.1300 0.2114 0.2502 0.4084
Mt−1 0.0267
Mt−2 0.0241
Mt−3 0.0264
Pt 1.2217
SI 0.2610 0.2523 0.2086 0.2780

effects are directly modeled. It corresponds to the following model:

St = a

3⊕
τ=1

Bτ �Mt−τ ⊕BP �Pt ⊕ SIt � c⊕ εt

⇔ Sjt =
aj ·

∏3
τ=1

∏4
l=1 M

bτ,jl
t−τ,l ·

∏4
l=1 P

bP,jl

t,l · cSI
j · εjt∑4

m=1 am ·
∏3

τ=1

∏4
l=1 M

bτ,ml

t−τ,l ·
∏4

l=1 P
bP,ml

t,l · cSI
m · εmt

where Bτ ,BP ∈ R
D×D are the matrices of parameters associated to compositional explanatory

variables.

The corresponding ILR transformed model is:

S∗t = a∗ +
3∑

τ=1

B∗τM
∗
t−τ +B∗PP

∗
t + c∗SIt + ε∗t

⇔ S∗jt = a∗j +
3∑

τ=1

3∑
l=1

b∗τ,jlM
∗
l,t−τ +

3∑
l=1

b∗P,jlP
∗
lt + c∗jSIt + ε∗jt for j = 1, 2, 3

where ε∗ is supposed to be a Gaussian distributed error term. The same balance matrix VILR,4 is
used.

Results All variables of the model are significant at 0.1% according to the ANOVA, except the
price which is significant at 1%. According to Figure 2, Model B seems to fit better than Model
A (see Section 4.3 for associated quality measures). The estimated parameters of the models are
given in Table 5 and Table 6.
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Table 5: Estimated parameters on ILR coordinates - Model B

S∗
1 S∗

2 S∗
3

(Peu. vs Cit.) (Reu. vs Cit.,Peu.) (Oth. vs Cit.,Peu.,Reu.)

(Intercept) 0.3686∗∗∗ 0.3637∗∗∗ 0.6940∗∗∗

M∗
t−1,1 0.0193. -0.0052 0.0081

M∗
t−1,2 0.0162 0.0319∗ -0.0245

M∗
t−1,3 -0.0069 0.0009 0.0279

M∗
t−2,1 0.0208. -0.0093 0.0205.

M∗
t−2,2 0.0151 0.0361∗∗ -0.0259.

M∗
t−2,3 -0.0197 -0.0338. 0.0278

M∗
t−3,1 0.0289∗∗ -0.0115 0.0278∗

M∗
t−3,2 0.0104 0.0206∗ -0.0274.

M∗
t−3,3 -0.0114 0.0064 0.0323.

P ∗
1 0.8854. -0.5981 1.9138∗∗∗

P ∗
2 0.0151 0.2615 0.6509

P ∗
3 -0.6442 -0.3729 2.4717∗∗∗

SI∗ -0.0394 -0.2088∗∗∗ 0.2070∗∗∗

Adjusted R2 0.3353 0.3255 0.3269
Nb param. 42

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 6: Estimated parameters of Mt−1 in the simplex - Model B

S1 S2 S3 S4

(Citroen) (Peugeot) (Renault) (Others)

Mt−1,1 0.0179 -0.0079 -0.0067 -0.0032
Mt−1,2 -0.0016 0.0111 -0.0161 0.0066
Mt−1,3 -0.0132 0.0084 0.0292 -0.0243
Mt−1,4 -0.0030 -0.0115 -0.0064 0.0209

4.3 Interpretation of models A and B

Marginal effect of media investments We calculate the marginal effects of media investments
at time t − 1 on market-shares at time t. The average marginal effects are reported in Table 7.
They are quite consistent between Model A and Model B, with positive direct marginal effects
and negative cross marginal effects. However, these measures are not really adapted to summarize
an impact as they fluctuate a lot across time, as we can see in Figure 3 (marginal effects can be
larger than 6e-08 but we voluntarily cropped the graph). The marginal effects of Citroen media
investments are especially very high when these investments are very low, for example between
2007 and 2009.

Table 7: Average marginal effects of media investments M̌t−1 on market-shares

me(Sjt, M̌l,t−1) Model A Model B
M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

SCitroen,t 1.93e-05 -1.65e-09 -2.13e-09 -3.01e-10 1.68e-05 -7.20e-10 -2.82e-09 -2.00e-10
SPeugeot,t -4.58e-06 1.14e-08 -3.09e-09 -5.30e-10 -7.67e-06 5.51e-09 7.72e-09 -7.52e-10
SRenault,t -4.88e-06 -3.64e-09 1.35e-08 -5.96e-10 -6.43e-06 -1.14e-08 2.23e-08 -5.71e-10
SOthers,t -9.89e-06 -6.10e-09 -8.24e-09 1.43e-09 -2.66e-06 6.60e-09 -2.72e-08 1.52e-09
C: Citroen; P: Peugeot; R: Renault; Z: Others.

Figures in bold: direct elasticities.

Elasticity of the share Sj relative to Xl For Model A, cross elasticities are necessarily
negative and direct elasticities are necessarily positive if the parameter b is positive. Moreover,
cross-elasticities of market-shares Sj with respect to a particular media budget Ml,t−1 are equal
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Figure 3: Direct marginal effects of Mj,t−1 on Sjt across time

for any brand j �= l. This is a lack of flexibility of Model A compared to Model B: it does not
allow positive interaction between brands, and it considers that if a brand increases its media
investments of 1% it will affect in the same way all competitors market-shares Sj (they will all
decrease by b%).

Let us consider a situation where the market shares of Citroen, Peugeot, Renault and Others in the
B segment are respectively 10%, 25%, 25% and 40%. According to Table 8, if Renault increases
its media investments Mt−1 about 1%, the average elasticity of Model A on the studied period
suggests that its market-share should increase by 0.0204% to reach 25.005% and that competitors
market-shares should decrease by 0.0204% to reach respectively 9.998%, 24.995% and 39.992%11.

In Model B, when brand-specific effects and cross-effects are taken into account, the direct elasticity
of Renault market-share in the B segment relative to its corresponding media investments is much
higher than other brands (0.0327), contrary to Peugeot which has the lowest (0.0099). Note that
positive cross-effects (synergies) are possible in Model B: for example when Renault invests more
in media, it tends to help its own market-share a lot, but also to raise a little bit the share of
Peugeot, and to have a negative impact on Citroen and Others. Then, after closure and depending
on the considered values of Sj , an increase in Renault media investments in the B segment can
increase or decrease the Peugeot market-share.

Taking the same example as previously, according to Model B, if Renault increases its media invest-
mentsMt−1 of about 1%, the average elasticity on the studied period suggests that its market-share
should increase by 0.0327% to reach 25.008% and that competitors market-shares should respec-
tively decrease by 0.0097%, increase by 0.0119% and decrease by 0.0208% to reach respectively
9.999%, 25.003% and 39.992.

As shown in Figure 4, the estimated direct elasticities are quite stable across time. However, as
elasticities in Model A are computed using the same parameter b for all brands, they are closer to
each other than in Model B where they are computed using different parameters bjl. The direct
elasticity of Renault is larger than those of other brands during the whole studied period.

Elasticity of the ratio
Sj

Sj′
relative to X̌l (Table 10 in the Appendix A.4)

In Model A, the elasticity of a ratio Sj/Sj′ relative to X̌j is equal to 0.0267, whereas in Model B
it can be smaller or larger according to the considered brands: the largest elasticity is for SR/SZ

11NB: here we take an example for an arbitrary share of 25% using the average elasticity. However, the only
way to ensure that the sum of the modified shares

∑D
m=1 S

′
mt is equal to 1 is to use the corresponding elasticities

calculated at the same time t, not the average elasticities.
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Figure 4: Direct elasticity of Sjt relative to Mj,t−1 across time

Table 8: Average elasticity of market-shares relative to media investments M̌t−1

e(Sjt, M̌l,t−1) Model A Model B
M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

SCitroen,t 0.0235 -0.0056 -0.0063 -0.0116 0.0204 -0.0028 -0.0097 -0.0078
SPeugeot,t -0.0032 0.0211 -0.0063 -0.0116 -0.0054 0.0099 0.0119 -0.0163
SRenault,t -0.0032 -0.0056 0.0204 -0.0116 -0.0043 -0.0173 0.0327 -0.0111
SOthers,t -0.0032 -0.0056 -0.0063 0.0151 -0.0008 0.0054 -0.0208 0.0161

C: Citroen; P: Peugeot; R: Renault; Z: Others.

Figures in bold: direct elasticities.

relative to X̌R which is equal to 0.0535. In general, ratios between the market-share of Renault
and another brand are quite positively sensitive to media investments of Renault. For example, if
the ratio SR/SZ is equal to 25/40 = 0.6250 and Renault increases by 1% its media investments,
then the ratio will increase to 0.6253. Let us remind that this measure does not depend on the
considered period. This evolution is consistent with the fact that the market-share of Renault is
very positively elastic and the market-share of “Others” is very negatively elastic to Renault media
investments, as seen in Table 8.

Odds ratio of
Sj

Sj′
to a change of X̌l (Table 11 in the Appendix A.4)

As expected, this measure is consistent with the previous one. In Model A, the odds ratio of any
couple of brand market-shares Sj/Sj′ to a change of 10% of M̌j,t−1 is equal to 1.0025, whereas it
can reach 1.0054 in Model B for the ratio SR/SZ for a change of 10% in M̌R,t−1. It means that if
the ratio of market-shares of Renault over Others is equal to 25/40 = 0.6250 and Renault decides
to increase its media budget by 10%, then this ratio will increase to 0.6266 according to Model A
and to 0.6284 according to Model B.

Elasticity of
Sj

g(S−j)
relative to X̌l (Table 12 in the Appendix A.4)

As in Model A, no matter which transformation is used, the parameter b1 will be the same,

then we obtain that e
(

Sjt

g(S−jt)
,

Mj,t−1

g(M−j,t−1)

)
= e

(
Sjt

Sj′t
,Mj,t−1

)
= e

(
Sjt

Sj′t
,

Mj,t−1

Mj′,t−1

)
. Moreover, these

elasticities are consistent with previous impact measures, and the largest one concerns the ratio
SR

g(S−R) relatively to the ratio MR

g(M−R) , which is equal to 0.0389%. For example, let us consider a

situation where the market-shares are the following: (SC , SP , SR, SZ)
′ = (13, 22, 25, 40)′, inducing

that SR

g(S−R) = 1.1095. Then, if Renault increases its media investments by 1% of the geometric

average of other brands media investments, we can expect its market-share to move from 110.95%
to 110.99% of the geometric average market-share of others.
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4.4 Complexity and goodness-of-fit

We have seen that Model A and Model B can be used for the same type of application. Model
B is more complex than Model A because it allows to have component-specific parameters for
each explanatory variables along with cross-effects parameters. The number of parameters to
fit of Model B can be a serious limitation when the number of components D and the number
of explanatory compositions K increase. For example, in our application Model A involves 10
parameters whereas Model B involves 42.

However, Model B is also more flexible than Model A in the sense that it allows to have positive
synergies (positive interactions) between some shares, whereas cross elasticities of Model A are
necessarily negative12. For example, we see in Table 8 that when media investments of Citroen
increase, it tends to benefit also to “Others”, and when media investments of Renault increase, it
tends to benefit to Peugeot.

Is the complexity of Model B useful to explain brands market-shares of the B segment? To answer
this question, let us look at cross-validated quality measures 13 (Table 9). Quality measures agree
that Model B is much better than Model A to fit brands market-shares of the B segment of the
French automobile market.

Table 9: Quality measures - Model A and Model B

R2
T R2

A KLC RMSE
Model A 0.3039 0.2578 0.0386 0.0324
Model B 0.4532 0.2816 0.0399 0.0318

5 Conclusion

The focus of this paper is to present two types of compositional models for the case when the
dependent variable and some of the explanatory variables are compositions, and to interpret them.
A composition is a vector of shares called components (for example the brands market-shares in a
given market), which are positive numbers and sum up to one. Compositional models are transfor-
mation models: they use a log-ratio transformation to transform components into coordinates in
order to enhance the estimation. The difference between Model A and Model B is due to the model
specification: in Model A, a single global coefficient is associated to an explanatory composition,
whereas in Model B we assume that each component of the explanatory composition has a specific
impact on each component of the dependent variable. Thus, in Model B, cross-effects between
components are explicitly specified and can be positive, whereas in Model A they are implicit and
negative by construction. Consequently, Model B is more flexible but also much more complex
than Model A, and the number of parameters to fit can be a serious limitation to use it.

This paper presents a set of possible measures, mutually consistent, to interpret parameters of these
two models: marginal effects, elasticities and odds ratios. The elasticity of a component relative
to an explanatory variable is the relative variation of this component to a relative variation of
the explanatory variable, ceteris paribus. This type of measure is totally adapted to enhance the
interpretability of these models. However, this measure is observation dependent and we have to
make sure that it is stable across observations to use it. Marginal effects are not well adapted to
interpret this kind of models because they depend a lot on the considered observation. The other
types of measures presented have the advantage to be observation independent, but they are more
difficult to interpret in practical cases because they involve ratios.

12As long as the direct elasticity is positive (the cross elasticity is of opposite sign of the direct elasticity by
construction).

13The out-of-sample computation process and the quality measures used are the same than in Morais et al. (2016).
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The two models are applied to the B segment of the French automobile market, for the purpose
of measuring the impact of brand media investments on brands market-shares. Model B fits our
data better than Model A according to several quality measures. In Model B, Renault is the
brand which has the largest direct elasticity to media investments. The model shows interesting
non-symmetric synergies between brands.

In a further work, it would be interesting to mix Model A and Model B in order to chose to put
more or less flexibility on each explanatory variable. As compositions are observed across time, the
potential autocorrelation of error terms has to be considered. Moreover, from a marketing point
of view, it would be interesting to measure the impact of each channel (TV, radio, press, outdoor,
internet, cinema) separately.
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A Appendix

A.1 Model A is a particular case of Model B

Let consider a Model B where DS = DX = 3, where the matrix of coefficients in the trans-

formed space is equal to B∗ =

[
b∗ 0
0 b∗

]
, and where V =

⎡⎢⎣
1√
6

1√
2

1√
6

− 1√
2

− 2√
6

0

⎤⎥⎦. Then, B = VB∗V′ =

1
3b
∗

⎡⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤⎦ such that the matrix B does verify the rows sum and columns sum equal to

0 requirement.

We can check that in this case we have B�X = b�X:

B�X = C(X 2
3 b
1 X

− 1
3 b

2 X
− 1

3 b
3 , X

− 1
3 b

1 X
2
3 b
2 X

− 1
3 b

3 , X
− 1

3 b
1 X

− 1
3 b

2 X
2
3 b
3 )′

= C(Xb
1(X1X2X3)

− 1
3 b , Xb

2(X1X2X3)
− 1

3 b , Xb
3(X1X2X3)

− 1
3 b)′

= C(Xb
1 , Xb

2 , Xb
3)
′ = b�X

Then, in this particular case, the Model B specification is equivalent to the Model A specification.

A.2 Marginal effect calculus

We are going to demonstrate how to compute marginal effects of the volume X̌lt on the de-
pendent shares Sjt, and elasticities of Sjt relative to X̌lt, using the transformed and the non-
transformed models. The demonstration is made for Model B, with D = 3 components and an

ILR transformation defined by the transformation matrix V =

⎡⎢⎣
√

2
3 0

− 1√
6

1√
2

− 1√
6
− 1√

2

⎤⎥⎦. Let us remind that

X∗ = ilr(X) = V′ log(X), and X = ilr−1(X∗) = C(exp(VX∗)).

We define the following transformations:

T : (X̌1, X̌2, X̌3)
′ → (X̌∗

1 , X̌
∗
2 )
′

F : (X̌∗
1 , X̌

∗
2 )
′ → (ES∗1 ,ES

∗
2 )
′ = (a∗1 + b∗11X̌

∗
1 + b∗12X̌

∗
2 , a

∗
2 + b∗21X̌

∗
1 + b∗22X̌

∗
2 )
′

T−1 : (ES∗1 ,ES
∗
2 )
′ → (E⊕S1,E

⊕S2,E
⊕S3)

′

We are going to use the following property of Jacobian matrices: J = JT−1JFJT , implying that:

ME(E⊕St, X̌t) =

[
∂E⊕Sit

∂X̌jt

]
D,D

=

[
∂E⊕Sit

∂ES∗jt

]
D,D−1

[
∂ES∗it
∂X̌∗

jt

]
D−1,D−1

[
∂X̌∗

it

∂X̌jt

]
D−1,D

and

E(E⊕St, X̌t) =

[
∂ logE⊕Sit

∂ log X̌jt

]
D,D

=

[
1

Sit

]
�
[
∂E⊕Sit

∂ES∗jt

]
D,D−1

[
∂ES∗it
∂X̌∗

jt

]
D−1,D−1

[
∂X̌∗

it

∂X̌jt

]
D−1,D

�[Xjt]

where � denotes the Hadamard product here (term by term product)14,
[

1
Sit

]
is a D × D − 1

matrix with 1/Sit on the ith row and [Xjt] is a D − 1, D matrix with Xjt on the jth column.

14Note that � in bold denote the Hadamard product whereas � denote the power transformation.
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The Jacobian of the model in coordinates JF

JF =

⎡⎣∂ES∗
1

∂X̌∗
1

∂ES∗
1

∂X̌∗
2

∂ES∗
2

∂X̌∗
1

∂ES∗
2

∂X̌∗
2

⎤⎦ =

[
b∗11 b∗12
b∗21 b∗22

]
= B∗

The Jacobian of the transformation JT The ILR transformation is defined by:

(X̌∗
1 , X̌

∗
2 )
′ = T (X̌1, X̌2, X̌3)

′ =

(√
2

3
log X̌1 − 1√

6
log X̌2 − 1√

6
log X̌3 ,

1√
2
log X̌2 − 1√

2
log X̌3

)′

Then, JT =

[
∂X̌∗

1

∂X̌1

∂X̌∗
1

∂X̌2

∂X̌∗
1

∂X̌3
∂X̌∗

2

∂X̌1

∂X̌∗
2

∂X̌2

∂X̌∗
2

∂X̌3

]
= V′ �

[
1
Xj

]
=

[√
2
3

1
X1

− 1√
6

1
X2

− 1√
6

1
X3

0 1√
2

1
X2

− 1√
2

1
X3

]
where

[
1
Xj

]
is a D − 1, D matrix with 1/Xj on the jth column.

The Jacobian of the inverse transformation JT−1

(E⊕S1,E
⊕S2,E

⊕S3)
′ = T−1(ES∗1 ,ES

∗
2 )
′ = C(exp(V · ES∗)′)

= C
(
exp(ES∗1 )

√
2
3 ; exp(ES∗1 )

− 1√
6 exp(ES∗2 )

1√
2 ; exp(ES∗1 )

− 1√
6 exp(ES∗2 )

− 1√
2

)′
=
( u1

DEN
;

u2

DEN
;

u3

DEN

)
where

u1 = exp(ES∗1 )
√

2
3

u2 = exp(ES∗1 )
− 1√

6 exp(ES∗2 )
1√
2

u3 = exp(ES∗1 )
− 1√

6 exp(ES∗2 )
− 1√

2

DEN = u1 + u2 + u3

In order to compute the matrix JT−1 =

⎡⎢⎢⎣
∂E⊕S1

∂ES∗
1

∂E⊕S1

∂ES∗
2

∂E⊕S2

∂ES∗
1

∂E⊕S2

∂ES∗
2

∂E⊕S3

∂ES∗
1

∂E⊕S3

∂ES∗
2

⎤⎥⎥⎦, we need to compute the derivatives of

the numerators of E⊕S: u = (u1, u2, u3)
′ with respect to ES∗.

(
∂u

∂ES∗

)
= V� u =

⎡⎢⎢⎣
∂u1

∂ES∗
1
=
√

2
3u1

∂u1

∂ES∗
2
= 0

∂u2

∂ES∗
1
= − 1√

6
u2

∂u2

∂ES∗
2
= 1√

2
u2

∂u3

∂ES∗
1
= − 1√

6
u3

∂u3

∂ES∗
2
= − 1√

2
u3

⎤⎥⎥⎦
Now we can compute the elements of JT−1 . For example, the first element of this matrix is:

∂E⊕S1

∂ES∗1
=

DEN
√

2
3u1 − u1[

√
2
3u1 − 1√

6
u2 − 1√

6
u3]

DEN2
=

3√
6
u1(u2 + u3)

DEN2
=

3√
6
E
⊕S1(1− E

⊕S1)

using the fact that u1/DEN = E
⊕S1 and u2 + u3 = DEN − u1.

CoDaWork 2017 — Abbadia San Salvatore (IT)



��������	
��
	−	�������	���	���������	���� �
���� 

�������	
�
����	
�����


Morais J. et al. 21

Similar computations give the results for the whole matrix:

JT−1 =

⎡
⎢⎢⎣

∂E⊕S1
∂ES∗

1

∂E⊕S1
∂ES∗

2
∂E⊕S2
∂ES∗

1

∂E⊕S2
∂ES∗

2
∂E⊕S3
∂ES∗

1

∂E⊕S3
∂ES∗

2

⎤
⎥⎥⎦ =

⎡
⎢⎣

3√
6
E
⊕S1(1− E

⊕S1)
1√
2
E
⊕S1(E

⊕S3 − E
⊕S2)

− 3√
6
E
⊕S1E

⊕S2
1√
2
E
⊕S2(E

⊕S1 + 2E⊕S3)

− 3√
6
E
⊕S1E

⊕S3 − 1√
2
E
⊕S3(E

⊕S1 + 2E⊕S2)

⎤
⎥⎦

= [Sit]�

⎡
⎢⎣

3√
6
(1− E

⊕S1)
1√
2
(E⊕S3 − E

⊕S2)

− 3√
6
E
⊕S1

1√
2
(E⊕S1 + 2E⊕S3)

− 3√
6
E
⊕S1 − 1√

2
(E⊕S1 + 2E⊕S2)

⎤
⎥⎦ = [Sit]�W∗

The Jacobian of the model in the simplex J

J = JT−1JFJT =

⎡⎢⎣
∂S1

∂X̌1

∂S1

∂X̌2

∂S1

∂X̌3
∂S2

∂X̌1

∂S2

∂X̌2

∂S2

∂X̌3
∂S3

∂X̌1

∂S3

∂X̌2

∂S3

∂X̌3

⎤⎥⎦
= [Sit]�W∗B∗V′ � [

1/X̌j

]
= [Sit]�W∗V′B� [

1/X̌j

]
= [Sit]�WB� [

1/X̌j

]
= [Sit]�

⎡⎢⎣
3√
6
(1− E

⊕S1)
1√
2
(E⊕S3 − E

⊕S2)

− 3√
6
E
⊕S1

1√
2
(E⊕S1 + 2E⊕S3)

− 3√
6
E
⊕S1 − 1√

2
(E⊕S1 + 2E⊕S2)

⎤⎥⎦[b∗11 b∗12
b∗21 b∗22

] [√
2
3 − 1√

6
− 1√

6

0 1√
2

− 1√
2

]
� [

1/X̌j

]

= [Sit]�
⎡⎣1− S1 −S2 −S3

−S1 1− S2 −S3

−S1 −S2 1− S3

⎤⎦⎡⎣b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤⎦� [
1/X̌j

]
= ME(E⊕St, X̌t)

⇔ E(E⊕St, X̌t) =

[
1

Sit

]
�ME(E⊕St, X̌t)�

[
X̌j

]
= WB

where W∗V′ = W is a D,D matrix with 1− Si in the diagonal and −Si in the row i otherwise.

We then conclude that marginal effects and elasticities matrices are easy to compute using coeffi-
cients in the simplex or coefficients in the transformed space:

ME(E⊕St, X̌t) = [Sit]�WB� [
1/X̌j

]
= [Sit]�WVB∗V′ � [

1/X̌j

]
E(E⊕St, X̌t) = WB = WVB∗V′

A.3 Nullity of the sum of elasticities weighted by shares

We have to prove that
∑D

m=1 emltE
⊕Smt = 0. This is the necessary condition for new shares S′mt,

resulting from a change in Xlt, to sum up to one:
∑D

m=1 S
′
mt = 1⇔∑D

m=1 emltE
⊕Smt = 0.

Proof:

D∑
m=1

E
⊕Smt = 1⇔

D∑
m=1

∂E⊕Smt

∂ logXlt
= 0⇔

D∑
m=1

∂E⊕Smt

∂ logXlt

1

E⊕Smt
E
⊕Smt = 0⇔

D∑
m=1

emltE
⊕Smt = 0

(18)
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A.4 Impact measures

Table 10: Elasticity of ratios of market-shares
Sjt

Sj′t
relative to media investments M̌l,t−1

Model A Model B
M̌t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

e
(

Sjt

Sj′t
, M̌j,t−1

)
0.0267 SC/P 0.0258 SP/C 0.0127 SR/C 0.0424 SZ/C 0.0239

e
(

Sjt

Sj′t
, M̌j′,t−1

)
-0.0267 SC/R 0.0246 SP/R 0.0272 SR/P 0.0208 SZ/P 0.0325

e
(

Sjt

Sj′t
, M̌l,t−1

)∗
0 SC/Z 0.0211 SP/Z 0.0044 SR/Z 0.0535 SZ/R 0.0273

∗where l �= j, j′ and SC/Z means SCitroen,t/SOthers,t for example.

Table 11: Odds ratios of market-shares for an increase of 10% in media investments M̌l,t−1

Model A Model B
For Δ = 10% M̌t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

OR
(

Sjt

Sj′t
, M̌j,t−1,Δ

)
1.0025 SC/P 1.0025 SP/C 1.0012 SR/C 1.0045 SZ/C 1.0022

OR
(

Sjt

Sj′t
, M̌j′,t−1,Δ

)
0.9975 SC/R 1.0024 SP/R 1.0030 SR/P 1.0026 SZ/P 1.0031

OR
(

Sjt

Sj′t
, M̌l,t−1,Δ

)∗
0 SC/Z 1.0020 SP/Z 1.0007 SR/Z 1.0054 SZ/R 1.0028

∗where l �= j, j′ and SC/Z means SCitroen,t/SOthers,t for example.

Table 12: Elasticity of ratios
Sjt

g(S−jt)
relative to M̌l,t−1

Model A Model B
M̌C/g(−C) M̌P/g(−P ) M̌R/g(−R) M̌Z/g(−Z)

e
(

Sjt

g(S−jt)
, M̌j,t−1

)
0.0267

SC/g(−C) 0.0239 -0.0022 -0.0176 -0.0040
SP/g(−P ) -0.0106 0.0148 0.0112 -0.0154

e
(

Sjt

g(S−jt)
, M̌l,t−1

)∗
0

SR/g(−R) -0.0090 -0.0215 0.0389 -0.0085
SZ/g(−Z) -0.0043 0.0089 -0.0324 0.0279

∗where l �= j.

SC/g(−C) means SCt
g(S−Ct)

, where g(S−Ct) is the geometric mean of others shares than Citroen.
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