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almost exclusively in islands (Veitch and Clout 2002), it 
is now widely accepted that eradication over large areas is 
extremely difficult when species have been established for 
a long time and have already modified the ecosystem (Vilà 
et al. 2011, Simberloff et al. 2013). The alternate approach 
consists of predicting and understanding invasion pathways 
and processes in order to prioritise strategies to control the 
arrival and spread of invasive alien species into their invaded 
ranges (Hulme 2009, 2011).

Species distribution models (SDMs) have been often 
employed as a tool to investigate the potential impact of 
invasive alien species (Weber 2001, Strubbe and Matthysen 
2009). SDMs relate species occurrence to different predic-
tors, mostly environmental conditions to predict the poten-
tial distribution of a species across an area of interest (Guisan 
and Thuiller 2005, Elith and Leathwick 2009). SDMs rely 
on the assumption of equilibrium which states that occu-
pancy has reached a stable state with respect to the relevant 
environmental gradients (Guisan and Zimmermann 2000). 
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Human-assisted dispersal has allowed species to cross bio-
geographical barriers, introducing them to new environ-
ments where they interact with native species (Williamson  
1996). A subset of those species, termed invasive alien  
species (Williamson 1996), established successfully and 
expand their range rapidly in the invaded area. Some of 
those species pose major threats to ecosystems by modify-
ing native diversity and the services they provide, and can 
have consequences on human health by spreading diseases or 
becoming agricultural pests (Pyšek and Richardson 2010). 
Overall, invasive alien species are acknowledged as a source of  
tremendous cost to the global economy (Cook et al. 2007).

Invasive alien species have been a focus of research in 
both natural and managed ecosystems as scientists, manag-
ers, conservation biologists, and restoration biologists test 
various approaches for managing the impacts of these taxa 
(Sakai et  al. 2001). Eradicating invasive alien species and 
restoring ecosystems has been attempted (D’Antonio and 
Meyerson 2002). However, despite a few successful results 
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Species distribution models (SDM) have often been used to predict the potential ranges of introduced species and prioritize 
management strategies. However, this approach assumes equilibrium between occurrences and environmental gradients, 
an assumption which is violated during the invasion process, where many suitable sites are empty because the species has 
not yet reached them. Here we considered the invasive ladybird Harmonia axyridis as a case study to show the benefits 
of using a dynamic colonization–extinction model that does not assume equilibrium. We used a multi-year occupancy 
model incorporating environmental, anthropogenic and neighborhood effects, to identify factors that explained spread-
ing variation of this species in France from 2004, when only a few occupied sites were detected, to 2011. We found 
that anthropogenic factors (urbanization, agriculture, vineyards, and presence/absence of highways) explained more varia-
tion in the diffusion process than environmental factors (winter and summer temperatures, wind-speed, and rainfall).  
The surface of urbanization was the major anthropogenic factor increasing the probability of colonization. The average 
summer temperature was the main environmental factor affecting colonization, with a negative effect when high or low. 
The neighborhood effect revealed that colonization was mostly influenced by contributions coming from a radius of  
24 km around the focal cell. The contribution of neighborhood decreases over time, suggesting that H. axyridis is reaching 
its equilibrium in France. This is confirmed by the small discrepancy observed between the performance of our approach 
and a SDM approach when predicting a single year occupancy pattern at the end of the study period. Our approach  
has the advantage of explicitly modelling the state of the biological system during the spatial expansion and identifying 
colonization constraints. This allows managers to explore the effect of different actions on the system at key moments of 
the invasion process, hence providing a powerful approach to prioritize management strategies.
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However, out of equilibrium, a site can also be empty 
because of dispersal limitations, which temporary prevent 
the species reaching such a stable state after a perturbation 
or at the beginning of an invasion (Pulliam 2000). Therefore 
SDMs can be used to predict the potential distribution of 
a species by analyzing its distribution in its native environ-
ment, where the assumption of equilibrium is reasonable, 
and projecting the potential distribution at equilibrium in 
the invaded area (Araújo and Pearson 2005). SDMs are more 
problematic to use, however, when modeling the distribu-
tion of a species shifting its range (i.e. when equilibrium has 
not yet been reached) and when making inferences about the 
factors affecting the dynamic process of spreading (Marco 
et al. 2008, Elith et al. 2010, Gallien et al. 2010).

Multi-season occupancy models represent an alternative 
approach for modeling a dynamic process (MacKenzie et al. 
2003). They allow relaxing the assumption of equilibrium 
inherent of SDMs by modeling explicitly the colonization 
and extinction process (MacKenzie 2006). Furthermore, a  
recent extension of occupancy models incorporating a  
component accounting for spatial autocorrelation, allows 
modelling a contagious-type process (Bled et  al. 2010, 
Yackulic et  al. 2012). This extension is of particular inter-
est for modelling the spatial spread of invasive alien species 
over continuous years and for assessing the relative impact 
of environmental or anthropogenic factors in the diffusion 
process.

In this study, we applied multi-season occupancy models 
to investigate the spread of the harlequin ladybird Harmonia 
axyridis in France. This insect, native to Asia, was originally 
introduced into North America and Europe as a biological 
control agent against aphids (Koch 2003). It is now invasive 
in four different continents including Europe since 2001 
(Brown et  al. 2011). The species has widely spread and is 
still spreading in these areas where it has become a harm-
ful predator of non-target arthropods, a competitor of some 
local coccinellid species, a household invader, and a pest of  
fruit production (Koch 2003, Roy et al. 2012). In France, 
H. axyridis was first introduced for biological control in 
1982 but very few records exist until 2004, when the  
species started to spread across the country (Coutanceau 
2006, Brown et al. 2008a, b).

Maps of first observations in France suggest a hetero-
geneous process of diffusion, with some regions rapidly 
colonized while others were colonized after a long delay 
or remain uncolonized (see maps in < http://vinc.ternois.
pagesperso-orange.fr/cote_nature/Harmonia_axyridis >). 
Population genetics data show that this heterogeneous 
diffusion is not due to multiple introductions, as it is the 
case in several other countries (Lombaert et  al. 2014a, b). 
It is worth noting, however, that a biocontrol strain of H.  
axyridis has been recurrently introduced for many years in  
different areas in Europe (including France) for biocontrol use 
(Brown et al. 2011). Population genetics studies have shown 
that, although this strain was not at the origin of the main 
invasive population in France (the initial invasive propagule 
originating from eastern North America), individuals from 
European biocontrol introductions introgressed genetically 
with those from North America (Lombaert et al. 2014b). The 
heterogeneous process of diffusion observed in France may 
be explained by (un)suitable environmental conditions and/

or by (un)favorable diffusion factors. In particular, the dif-
fusion of many invasive alien species might be facilitated by 
anthropogenic factors such as the land use homogenization 
caused by agricultural practices, landscape features (includ-
ing urbanization) or the acceleration of trade and transport 
(Olden et al. 2004, Hufbauer et al. 2012). Disentangling the 
relative contributions of both environmental and anthropo-
genic factors during the diffusion is a key step for designing 
management actions.

Our study, using the case of the spread of H. axyridis in 
France, aims at 1) modeling the expansion of an invasive 
alien species integrating both anthropogenic and environ-
mental factors; 2) understanding the spatial and temporal 
variation of the diffusion pattern; 3) measuring the relative 
contributions of the different factors affecting the diffusion 
process and 4) predicting further spread of H. axyridis in 
France.

Methods

Observation data

Observation data of H. axyridis were collected by the  
‘observatoire permanent pour le suivi de la Coccinelle asia-
tique en France’ (Permanent observatory for the monitoring 
of the harlequin ladybird in France), a network composed of 
regional coordinators compiling the observations made by 
about 1800 voluntary participants from all over the French 
territory (Ternois et al. 2012). A total of 5206 observations 
of H. axyridis individuals or populations and their given 
locations were reported between 2004 and 2011. We divided 
the surface of France into a regular grid with square cells of  
8 by 8 km, corresponding to the grid cell of the meteorologi-
cal data SAFRAN from Meteo France (the French national 
meteorological service). The final partition of the studied 
area included 9891 cells. In order to model the expansion 
of its distribution area, we needed to discriminate between 
colonized and non-colonized cells over time and space. The 
network coordinating the monitoring of H. axyridis included 
observers distributed evenly over the entire French country 
Thus, although the sampling design did not properly cor-
respond to a design of presence–absence, we assumed that 
the large number of evenly distributed observers allowed us 
to consider as true absence data the cells with no H. axyridis 
observed in it, and as presence a cell with one or more obser-
vations of the species in it. To test and account for a possible 
bias in detecting the species due to uneven sampling effort, 
with regions densely inhabited being potentially more sur-
veyed than less populated areas, we included in the analysis a 
covariate of density of human population (see also Isaac et al. 
2014). To this end, we used data of density of French popu-
lation provided by the French National Inst. of Statistics and 
Economic Studies ( www.insee.fr/ ).

Environmental factors

Harmonia axyridis survival is known to be strongly affected 
by temperature, with survival of the different stages and eggs 
hatching following a quadratic response: H. axyridis survival 
decreasing at low and high temperatures (Lamana and Miller 
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1998, Koch 2003). We here tested more specifically for an 
effect of average winter temperature (January to March) and 
average summer temperature (June to August) per cell per 
year. Wind is also expected to influence the probability and 
distance of dispersal of flying individuals (Jeffries et al. 2014), 
but because H. axyridis diapauses during cooler periods, we 
included in the models a covariate of average wind speed 
from May to October (Majerus 1994). Finally, we included 
a covariate of average precipitation between May to October 
because rainfall results in an advantage to growing plants and 
therefore production of aphids, a preferred food source of 
H. axyridis (Roy et al. 2012, Purse et al. 2014). All environ-
mental data (average winter and summer temperature, wind 
speed, and average precipitation in each cell and for each 
year, as described above) were obtained from the SAFRAN 
climate database (Meteo-France).

Anthropogenic factors

Biological invasions are often human-induced events 
(Williamson 1996). To account for human-related diffusion 
of H. axyridis in France, we used as a proxy for the likeli-
hood of human transportation the presence of a highway in 
a cell and tested if cells with highways were more likely to 
be colonized. A highway in France corresponds to a main 
road (with at least four lanes) connecting major towns or 
cities. The highway network in France is dense (i.e. 142 dif-
ferent highways with a total length of 13 000 km in 2014). 
Highways concentrate the largest part of middle to long 
distance transportation of produce and people within the 
country. We hence considered that the presence/absence 
of highways might represent a sensible proxy to account 
for human related diffusion of H. axyridis in France. The 
disturbance of natural habitats by human activities (mainly 
agriculture and urbanization) is also thought to facilitate 
bioinvasions, for instance by homogenising the environ-
ment over large geographical scales (Hufbauer et al. 2012). 
To test for this hypothesis we included covariates of human-
altered habitats where H. axyridis has been found: in crops 
(Vandereycken et al. 2013), in vineyards (Koch 2003) and 
in urban areas (Adriaens et  al. 2008). All these covariates 
were quantified by their surface within a cell, this informa-
tion being provided by Corine Land Cover data (< www.eea.
europa.eu/data-and-maps >).

The different environmental and anthropogenic covari-
ates used in our modeling are summarized in Table 1.

Modeling

We followed the multi-season occupancy approach described 
in Yackulic et al. (2012) to model the dynamics of the inva-
sion process. We modelled the state of occupancy of a cell as 
a function of extinction and colonization. The probability 
of extinction ei,t, is defined as the probability of a cell i not 
occupied at time t  1 conditional on the cell being occu-
pied at time t. The probability of colonization gi,t, is defined 
as the probability of a cell i occupied at time t  1 condi-
tional on the cell being non-occupied at time t (MacKenzie 
et al. 2003). The probability that a cell i is occupied at time 
t  1, yi,t  1 is then :

yi,t  1  yi,t (1 – ei,t)  (1 – yi,t) gi,t

To account for the spatial expansion process, an autologis-
tic component can be added in either the colonization or 
extinction parameters (Bled et al. 2010, Yackulic et al. 2012). 
During its expansion, an invasive alien species will diffuse to 
neighboring sites and thus an empty site will be more likely 
colonized if the species already occupies its neighborhood. 
As defined in Yackulic et al. (2012), if a focal site i has ni sites 
in its neighborhood, the average probability of occupancy of  
this neighborhood can be estimated by π ψ∧

∈


n

i
j tj ni t

in, ,{ }


1 ∑   

where ψ∧ j t,  is the estimated probability that a neighboring 
site j is occupied at time t. To test for several hypotheses 
about the capacity of diffusion, we considered different sizes 
of neighborhood. The smallest neighborhood considered 
included the first layer of surrounding cells, and thus a maxi-
mum diffusion distance of about 16 km corresponding to 
the most distant points from two adjacent cells. The largest 
neighborhood considered included a possible diffusion of 
insects distant from up to 5 cells from the focal site i, which 
corresponds to a maximum diffusion distance of about  
48 km. Then, colonization can be modeled as a function of 
the neighborhood occupancy such as for example:

logit ( ) , , ,γ β β πi,t  0 1t t ni t+ 

Anthropogenic and environmental factors also affect the 
dynamic by increasing or decreasing the rates of coloniza-
tion. To model their impact, we included them as covariates 
in the model as following:

logit ( ) ( )2( ) , , ,γ β β πi,t  0 1t t ni t+ + +$
Y Y Yλ µ

Y

where m and l are the estimated vectors of parameters of  
a quadratic response to the vector of anthropogenic and 
environmental covariates Y.

Defining the absence area in case of invasion requires  
additional assumptions. As a matter of fact, during the phase 
of expansion, only a proportion of the study area has the 
potential to be invaded, this proportion being a function of 
the dispersal rate of the invader. Therefore, only sites within 
that study area that could potentially be invaded were inte-
grated in the model. We included this potentially invaded 
region in the following way. At time t, nt sites have been 
recorded as colonized. At time t  1 Δ new sites are colonized. 
These Δ new sites are obviously part of a region invaded at 
time t. We then included a buffer zone around these Δ sites 
to account for other potential sites, and those new sites 
were added to the older sites already included in the poten-
tial invaded zone (see Supplementary material Appendix 1, 
Fig. A1 for an illustration). The buffer zone depends on the 
capacity of dispersion of the species. In the case of H. axy-
ridis, we used a buffer zone of 50 km around the new colo-
nized sites, approximately corresponding to the maximum 
neighborhood effect tested. Therefore, the study area varies 
over time. To account for this, we coded data in the grid 
cells as follows: inside the potential invaded zone, each site is 
coded with 0 or 1 to account for the species observed or not 
observed, whereas outside the potential invaded zone, each 
site is simply considered as not surveyed (no data value).

soso
Highlight
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of neighborhood effect over time (pi) versus a time varying 
component of neighborhood effect (pi,t).

Model validation and forecasting H. axyridis’s 
distribution

We used observation data from 2004 to 2010 to estimate 
the different parameters of the models and to perform model 
selection. Data of year 2011 was kept apart and used to 
measure model performance using the following approach: 
starting from the observations of 2004, we projected the prob-
ability of presence in each cell and for each year until 2010, 
the last year of data used in the model. We then predicted 
the distribution of H. axyridis over the period 2011–2020. 
We compared the predictions for 2011 with the observations 
for the same year. We calculated the area under the receiver 
operating characteristic curve, known as AUC and the Kappa 
statistic, two standard methods used to estimate the predic-
tive accuracy of distributional models derived from presence– 
absence data. We set the threshold that maximizes the aver-
age of the sensitivity and the specificity, using the R package 
‘PresenceAbsence’ (Freeman and Moisen 2008).

Comparison with classical niche modeling 
approaches

We compared the above measures of model performance 
with the same ones estimated from a classical (and hence 
static) approach of niche modelling (also called species 
distribution modeling; SDM). For this we used Boosted 
Regression Trees (BRT) (Elith et  al. 2008) with the same 
environmental and anthropogenic covariates pooled over the 
2004–2010 period. We then estimated the same indices of 
model validation (respectively AUCBRT and KappaBRT) by 
comparing predictions of H. axyridis’ distribution in 2011 
with the observations of 2011.

Data available from the Dryad Digital Repository: 
 http://dx.doi.org/10.5061/dryad.jg613  (Veran et  al. 
2015).

It is worth stressing that here we assumed the absence 
of local extinction. In other words, once a cell has been 
colonized it remained occupied for the following years. This 
pattern of low to null local extinction is often observed in 
invasive populations during the diffusion stage (Facon and 
David 2006) and is confirmed by our own experience of 
recurrent annual collection in the field of H. axyridis in 
France for the last five years. Raw observation data compiled 
in the analyzed database also supported this assumption to 
a large extent. As a matter of fact, we found that when a 
cell was first colonized, it remained colonized the following 
years. We note however that for a few cells, observations were 
not continuous over time. Those few years without observa-
tions were likely due to a lack of report rather than to a local 
extinction. As a matter of fact, once a given observer had 
reported a colonized site, he/she was unlikely to report the 
same site the following year but reported new sites instead. 
This bias is to a large extent compensated by the presence of 
multiple observers within a cell.

We used the software PRESENCE (< www.mbr-pwrc.
usgs.gov/software/presence.html >) to perform model selec-
tion and estimate the different parameters of the models 
using a maximum-likelihood approach. Two covariates, den-
sity of human population and surface of urbanization, were 
highly correlated between them (r  0.726). Including both 
of them in the analysis would have increased instability when 
estimating regression coefficients (Graham 2003). Therefore, 
we first compared full models incorporating either density 
of human population or surface of urbanization, and kept 
for the following steps of model selection the covariate from 
the model with lowest AIC. In a second step, we selected 
among models considering different sizes of neighborhood 
(pi), from one layer of cells (p1) to five layers of cells (p5). 
We then tested among the different models for the relative 
contribution of anthropogenic versus environmental factors 
and estimated a relative contribution of each factor using a 
likelihood ratio test (LRT), comparing the deviance between 
the full model and the full model without one factor at a 
time. The different LRT were then transformed to sum 1 and 
used as a measure of relative contribution. Lastly, we built a 
model to test for the hypothesis of a constant component 

Table 1. Covariates used for modeling g the probability of colonization of H. axyridis.

Abbreviation Covariate description Level of 
variation

Anthropogenic covariates
VinP Presence–absence of vineyards Space
VinC Area covered by vineyards (ha) Space
Agri Area covered by agricultural areas, arable land (ha) Space
Urb Urban surfaces (ha) Space
High Presence–absence of a highway Space

Environmental covariates
Twin Average winter temperature (January to March) Space and time
Tsum Average summer temperature (January to March) Space and time
Wind Average wind speed during HA’s active time (May to October) Space and time
Rain Average rainfall during HA’s active time (May to October) Space and time

Other covariates
Pop Population density (average number of individuals per km2) Space
p̂i Neighborhood effect (i: number of layers accounting for neighborhood effect) Space and time

Notes: all covariates were standardized to have a mean of 0 and a standard deviation of 1 except p̂i, High and VinP. Time variation of  
ecological covariates includes annual records from 2004 to 2011, which corresponds to the spreading period of H. axyridis in France.
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Table 2. Model selection results for the H. axyridis dataset. The probability of colonization g is decomposed into environmental covariates 
and/or anthropogenic covariates and an autologistic component. Models are arranged following the different hypothesis tested: a –  
contribution of urban areas versus density of population, b – number of layers of the autologistic component (p̂i: effect of i layers of cells),  
c – contribution of the different covariates, d – time varying autologistic component – (p̂i  t). Models are compared with ΔAIC and Akaike 
weight (w). k indicates the number of parameters of the model. Abbreviations of the different covariates are explained in Table 1. Square 
power indicates a quadratic response.

Probability of colonization g

Autologistic component Environmental factors Anthropogenic factors ΔAIC w k AIC

Time varying g 0 1 9 12625
Null model : g constant 716  0.01 4 13341

a – Urban area versus density of population
– Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 0 1 19 11947
– Twin2  Tsum2  Wind2  Rain2 Pop2  VinP  VinL  Agri2  High 116  0.01 19 12163

b – Selection of the auto-logistic component for a full model with urban area
p̂3 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 0 0.86 20 11590
p̂2 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 4 0.11 20 11594
p̂4 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 7 0.02 20 11597
p̂5 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 17  0.01 20 11607
p̂1 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 37  0.01 20 11627

c – Contribution of the different environmental and anthropogenic covariates
p̂3 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2 0 0.73 19 11607
p̂3 Twin2  Tsum2  Rain2 Urb2  VinP  VinL  Agri2  High 2 0.26 18 11609
p̂3 Twin2  Tsum2  Wind2 Urb2  VinP  VinL  Agri2  High 17  0.01 18 11624
p̂3 Tsum2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 36  0.01 18 11643
p̂3 Twin2  Tsum2  Wind2  Rain2 Urb2  Agri2  High 43  0.01 18 11650
p̂3 Twin2  Tsum2  Wind2  Rain2 Urb2  VinP  VinL  High 50  0.01 18 11657
p̂3 Twin2  Wind2  Rain2 Urb2  VinP  VinL  Agri2  High 173  0.01 18 11780
p̂3 Twin2  Tsum2  Wind2  Rain2 VinP  VinL  Agri2  High 503  0.01 18 12110

d – Temporal variation of the autologistic component
p̂3  t Twin2  Tsum2  Wind2  Rainé Urb2  VinP  VinL  Agri2  High 0 1 12 10880

Results

Relative contributions of environmental and 
anthropogenic factors

We found that the rate of colonization of H. axyridis in  
France is heterogeneous in time and space. This heterogene-
ity is better accounted for when incorporating a covariate 
of urbanization rather than a covariate of density of human 
population (Table 2a). We found that urbanization is the 
covariate which contributes the most to the full model 
(53.0%), followed by summer temperature (19.6%), surface 
of agriculture (7.2%), of vineyards (6.5%) and winter tem-
perature (5.8%) (Table 2c and Fig. 1). Rainfall, wind and 
presence of highways only slightly contributed to the full 
model ( 5% for all covariates). Overall, the relative con-
tribution of anthropogenic factors to the variation of colo-
nization explained by the full model reaches 68.5% whereas 
environmental factors contribute the complementary 31.5% 
(Table 2c and Fig. 1). The response curves of colonization 
to the different predictors (Fig. 2) point to an optimal range 
of several environmental conditions: an average summer 
temperature around 15°C, an average winter temperature 
around 5°C and an average wind speed around 2 m s–1, 
whereas the rate of colonization increases with increasing 
rainfall. Regarding the anthropogenic factors, colonization is 
highest for a surface of crops per cell of 3000 ha (about 46% 
of the cell) and for a surface of urbanization of about 4000 ha 
per cell (about 62% of the cell), whereas it increases steadily 
with the surface of vineyards. The presence of a highway in 
a cell only slightly increases the rate of colonization (i.e. an 

increase of 0.285 in the logit scale), which corresponds to a 
7% increase of the probability of colonization.

Neighborhood effect

Adding a component of spatial autocorrelation increases 
the fit of the model. Among the different levels of neigh-
borhood considered, the model composed of three rows  
of cells performs better. Adding more rows increases the  
AIC, indicating a lower fit of the model (Table 2b). This 
implies that sites located within 3 neighboring cells (about 
24 km) from a focal site represent the main contribution to 
colonization. Interestingly, the intensity of spatial correlation 
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Winter temperature (Twin)
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Summer temperature (Tsum)
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Figure 1. Relative contribution of the different covariates included 
in the model of colonization of France by H. axyridis. Black bars 
represent anthropogenic covariates, white bars environmental 
ones.
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Figure 2. Response curves of the probability of colonization g of a cell by H. axyridis as a function of the different covariates. Covariates  
are: (a) Agri  surface of crops (in m2), (b) Urb  surface of urbanized area (in m2) in a cell, (c) Rain  average annual amount of rainfall 
from May to October (in mm), (d) Tsum  average summer temperature (in celsius), (e) Wind  average wind speed (in m s–1) and (f ) 
Twin  average winter temperature (in celsius).

varies in time (Table 2d). The estimated parameter b̂ 1,t of the 
autologistic component decreased from 19.52 (SE  4.50) 
in 2005 to 0.69 (SE  0.37) in 2010 (Fig. 3a). This repre-
sents a strong shift over time towards a lower sensitivity of a 
cell to its neighboring ones (Fig. 3b).

Model validation

We evaluated the model accuracy by projecting the diffusion 
of H. axyridis over time, starting from the observations of 
2004 and modeling the probability of presence over time 
using the different parameters estimated from the best occu-
pancy model (Supplementary material Appendix 1, Fig. A2). 
To predict the distribution of H. axyridis in 2011, we pre-
dicted the coefficient of autocorrelation for 2011 based on 
an exponential regression of the estimated parameters b̂ 1,t  

from 2004 to 2010 (Fig. 3a). The AUC from comparing the 
predictions of the distribution of H. axyridis in 2011 (Fig. 
4a) with the observations made in 2011 (Fig. 4b) equals 
0.792. Kappa equals 0.317 for a maximum average sensitiv-
ity and specificity of, respectively, 0.728 and 0.706.

Comparison with classical niche modeling 
approaches

We compared the above measures of model performance with 
the same ones estimated from a classical approach of niche 
modeling using boosted regression trees (BRT). The indices 
calculated from the BRT approach give similar but slightly 
lower values: AUCBRT  0.786 and a KappaBRT  0.299 for 
a maximum average sensitivity and specificity of 0.713 and 
0.707, respectively.
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Figure 3. (a) Estimates and confidence intervals of the neighbor-
hood parameters of a model of colonization with autologistic time 
varying coefficients. The line represents the fit of an exponential 
regression based on the estimated parameters from 2005 to 2010 
(x) whereas 2011 (•) is predicted from the exponential regression. 
(b) Response curves of the probability of colonization g at time  
t  1 of a cell by H. axyridis as a function of its neighborhood 
occupancy at time t. The x-axis is the average probability of occu-
pancy within the neighborhood (p̂3) of a site i at the previous time 
step. Plain lines represent the response curve at the first time inter-
val (2004–2005), dash lines – at the second time interval (2005–
2006), dot lines (…) at the third one (2006–2007), dash-dot (-.-.) 
at the fourth (2007–2008), long dash (– – –) at the fifth (2008–
2009) and long dash dot (–.–.–.) at the sixth one (2009–2010).

Predictions of the future distribution of H. axyridis

The predictions of the future spatial distribution of H.  
axyridis in France from 2012 to 2020 using our dynamic 
model indicate a strong deceleration of the species expan-
sion in the south of France and increasing probabilities of  
presence in the north east of France (Fig. 4c and d).

Discussion

We found that the spatial spread of H. axyridis in France is 
heterogeneous in space and time, and therefore does not only 

depend on its capacity of dispersal but also on environmen-
tal and anthropogenic factors that increase or decrease its dif-
fusion ability. The response of H. axyridis to climatic factors 
follows, as predicted by its biology, a quadratic response for 
summer and winter temperatures, with a substantial decrease 
at low and high temperatures (Lamana and Miller 1998). 
In the same way, too slow and too fast wind speed appear 
disadvantageous for H. axyridis dispersal. Finally, we found 
that rainfall is a favorable factor, probably by increasing food 
availability.

Interestingly, our results show that anthropogenic factors 
represent strong components in the process of diffusion 
of H. axyridis. Among anthropogenic factors, the surface  
of urbanization explains more than half of the variation of 
colonization induced by external factors. More specifically, 
we found that low urban densities, corresponding to rural 
areas, are not favorable habitats. Harmonia axyridis mostly 
feeds on aphids, whose highest densities are found in plants 
and trees of parks and gardens in urban and peri-urban 
zones (Majerus 1994, Adriaens et al. 2008). Moreover, the 
urban environment provides buildings, which are the pre-
ferred overwintering location for this species (Brown et al. 
2008a, Roy et al. 2012). In agreement with this, higher H. 
axyridis densities in urban areas was found in other parts 
of the invasive range, for example in Great Britain (Brown 
et al. 2008b) and Belgium (Adriaens et al. 2008), and the 
species was found to spread more rapidly into areas con-
taining a high proportion of urban land cover (Purse et al. 
2014). We found, however, that very high levels of urban-
ization appear unfavorable to colonization. Although  
H. axyridis might be present at a local scale in trees or 
gardens, the density of such favorable habitats declines in 
highly urbanized areas at the spatial scale of cells of 8 by  
8 km. This may explain, at least partly, the quadratic shape 
of the response curve.

It is worth noting that the surface of urbanization in a cell 
is highly correlated to density of human population which 
is itself a proxy of a potential observer effect. We therefore 
cannot exclude an artefact in the response curve, especially 
at low urban densities. More specifically, the first part of the 
response curve, showing a strong increasing probability of 
colonization with an increase of surface of urban area could 
reflect a confounding effect due to an increasing number of 
potential observers. Only a different sampling design allow-
ing separation of the observation process with the biologi-
cal process could discriminate between the two hypotheses 
(MacKenzie et al. 2003). The quadratic response we found 
for this covariate with a decreasing colonization at high 
urban densities suggests, however, that a biological process is 
probably involved and that highly urbanized areas are indeed 
unfavorable for H. axyridis colonization.

Among other anthropogenic factors impacting H.  
axyridis colonization, we found a favorable impact of increas-
ing surfaces of crops and vineyards up to a threshold of  
surface cultivated (cf. quadratic shape of the response curve), 
in agreement with previous studies mentioning the presence 
of H. axyridis on crops and vineyards (Pickering et al. 2005, 
Vandereycken et al. 2013). The low positive impact of the 
presence of highways on the probability of colonization indi-
cates that produce and people transportation via main roads 
might not play a strong role in H. axyridis diffusion.



8-EV

Figure 4. Predicted and observed spatial distributions of H. axyridis (HA) in France (a) predicted in 2011 from our modeling approach, (b) 
observed in 2011 and to be compared with (a), (c) predicted in 2015 and (d) predicted in 2020.

Our study confirms that classical mechanistic models 
of invasion based on differential equations (Okubo and 
Levin 2001) need to account for heterogeneous diffusion 
in order to model more accurately the diffusion process 
observed in the field (Wikle 2003). On the other hand, 
classical niche modeling outcomes are limited by the non-
temporal, static structure of the modeling (Araújo and 
Pearson 2005, Marco et al. 2008, Elith et al. 2010). The 
approach of dynamic occupancy models used here is more 
mechanistic than niche modeling, accounts for the tem-
poral component of the diffusion process and at the same 
time integrates the heterogeneity of this process induced by 
external factors, either environmental or anthropogenic. A 
major difficulty when modeling a process of invasion is to 
account for diffusion. In the present study, diffusion is not 

explicitly integrated in the model with a parameter of dis-
persal but through a proxy of spatial autocorrelation (Bled 
et al. 2010, Yackulic et al. 2012). Our results indicate that 
individuals located within three neighboring cells (up to 
24 km) from a focal site represent the main contribution 
to colonization to the focal site. These results are consis-
tent with estimates of dispersal distances, with flights of 
tens to hundreds of meters measured experimentally (Seko 
et  al. 2008). However, we cannot exclude the potential 
impact of long distance dispersal by wind or anthropo-
genic sources, evaluated in Europe to be a maximum of 
200 km yr–1 (Brown et al. 2011, Jeffries et al. 2014). Such 
long distance dispersal events are nevertheless rather rare 
and hence poorly accounted for in the parameter of inter-
cept of our model.
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as among the study area, there might have been locations 
surveyed by observers with no H. axyridis detected as well as 
locations not surveyed at all. There is an abundant literature 
about the issues of using presence-only data (Brotons et al. 
2004, Hastie and Fithian 2013). The debate remains intense 
for niche modeling and it is likely that dynamic models such 
as our model are even more sensitive to misclassifications. 
Furthermore, even when all the study area is surveyed, the 
issue of true absence versus non detection remains, unless an 
appropriate design of temporal or spatial replicates is con-
ducted (MacKenzie 2006). Thus, in order to improve the 
quality of the models and to exclude a potential bias in the 
analyses due to the data itself, we advocate elaborating as 
much as possible proper data of presence–absence with a 
design including spatial or temporal replicates to disentan-
gle true absence and non-detection (see also Yackulic et al. 
2013).

Another factor that could explain why AUC and Kappa 
were not higher here relies on the nature of these indices 
themselves. Both indices evaluate how well the predictions 
match the data in terms of presence and absence, ignoring 
the actual probabilities of occurrence. However it has been 
shown that these indices have lower values in cases where 
stochastic processes play a large role (Meynard and Kaplan 
2012), and are best suited for threshold-type of situations 
that arise when pulling occurrence data over long time peri-
ods and large regions (Meynard and Kaplan 2012, 2013). 
Unfortunately there is no equivalent alternative to measure 
the match and mismatch in the predicted probabilities of 
occurrence, which would require large amounts of data (e.g. 
calibration plots suggested in Pearce and Ferrier 2000). This 
is one of the reasons why the SDM literature has been domi-
nated by this type of indices. Here we used our models to 
predict values for a single year, 2011, as our validation pro-
cedure, which will inevitably have more stochasticity in it as 
compared to occurrence data grouped over decades.

Because it allows relaxing the assumption of equilibrium, 
applying a dynamic approach when modeling the invasion 
process represents a powerful tool to prioritize management 
strategies of invasions. Indeed a majority of studies on spe-
cies range shifts use statistical species distribution models 
(SDMs) even if they seriously violate the assumption of 
equilibrium (Elith and Leathwick 2009, Elith et al. 2010). 
While range shifting taxa are often the species for which pre-
dictions of potential distributions are needed the most for 
prioritizing mitigation measures, their usefulness for guiding 
policy making and planning has been questioned (Araújo 
and Guisan 2006). Another property of dynamic model-
ing is its ability to follow and model the diffusion process 
and not only its results, as opposed to just focusing on the 
final maps of potential distribution at equilibrium when 
using niche modeling. A dynamic approach allows predict-
ing and understanding invasion pathways, enabling the 
design and prioritization of strategies to control the spread 
of invasive alien species into their non-native ranges (Hulme 
2009, 2011). Furthermore, because the state of the biologi-
cal system is modeled explicitly, sites being colonized or not 
over time can be predicted as a function of different factors. 
Therefore managers can predict the efficiency of their miti-
gation measures over time, learn from their management 
outcomes and adapt their strategy, which means applying 

A drawback of the above approach is that it is by con-
struction a proxy and therefore it includes any spatially cor-
related factor that impacts the distribution of the species, 
unless such factor is explicitly modeled. In the case of H. 
axyridis, we have included in the model what are known 
to be and what could be major drivers of its distribution 
though we obviously cannot exclude having omitted some. 
A second interest of using a proxy of diffusion is its property 
of measuring the strength of the diffusion and the distance 
to equilibrium. Yackulic et  al. (2012) used simulations to 
show that neighborhood effect can be detected during tran-
sience dynamic. On the other hand, systems with occupancy 
levels close to equilibrium will not show important autolo-
gistic effects. Our results are consistent with this statement. 
We indeed found a clear decrease of the autologistic compo-
nent over time (Fig. 3a), resulting in a strong neighborhood 
effect at the beginning of the invasion in France and a very 
weak one in 2010, the last years of observed data (Fig. 3b). 
This indicates that the population of H. axyridis is reaching 
its equilibrium in France. Therefore H. axyridis invasion is 
expected to at least slow down if not stop, which is illustrated 
with the maps forecasting its distribution in 2020 (Fig. 4d). 
We argue that estimates of successive neighborhood effect 
could be seen as a marker of invasion, indicating how far the 
process is from equilibrium.

We validated our modeling approach by calculating AUC 
and Kappa indices. We found that such indices of model val-
idation were similar to those calculated using a classical static 
model based on boosted regression tree, yet always slightly 
higher. It is worth stressing that this result was obtained 
despite the fact that in our dynamic model we predicted the 
occurrence of 2010 starting with observational data of 2004 
which only includes 20 occupied cells. The small discrepancy 
between the model based on boosted regression tree which 
assumes equilibrium and our dynamic modeling approach 
is another indicator that H. axyridis expansion in France is 
indeed reaching its equilibrium. The apparent difficulty for 
H. axyridis to spread farther south in France is corroborated 
by the lack of success of the species in southern European 
countries such as Spain, Portugal and Greece (Brown et al. 
2008a, 2011). The explicative factors remain unknown, 
but the fact that we found that summer temperature was 
the main environmental factor having a negative impact on 
colonization provides a first clue to these modeling results 
and observations in the field.

Although a value of AUC of 0.792 can be considered as 
fairly good compared to 0.5 as expected under a pure ran-
dom model, the low threshold value of probability of pres-
ence used for calculating both Kappa and KappaBRT indicates 
that the discrimination between colonized and uncolonized 
sites is not obvious and that none of the models captured all 
the determinism of the diffusion process. This could be due 
to major driver(s), whether environmental or anthropogenic, 
not included in our model, although we took special care 
to include the relevant factors known to affect the biology 
of the species and the habitats where H. axyridis has been 
found (Koch 2003, Adriaens et al. 2008, Roy and Wajnberg 
2008). Another factor which might also explain the limited 
performance of the modeling could be the data of presence– 
absence itself. We assumed absence of species when no pres-
ence was recorded. This assumption is probably partially true 
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Figure A1: Method for delimitation of cells included in the spatial expansion analysis of 

Harmonia axyridis: example of modelling transition from 2004 to 2005.  

Note: Dark grey circles are observation data of H. axyridis in 2004; white circles are new 

observation data of H. axyridis in 2005. The cells in light grey around a circle buffer of 50 km 

from observations in 2005 are considered as having the potential to be invaded between 2004 

and 2005 and are thus included in the model. The cells outside this buffer zone are coded as 

non-surveyed to account for the fact that they cannot be invaded. The same process is 

repeated for each transition step (i.e. going from year n to n+1). 
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 Figure A2: Comparison of observed and predicted spatial distribution of Harmonia 
axyridis (HA) in France in 2005 (a-, b-) and 2007 (c-, d-). 
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