

Water, nitrogen and carbon balance of bioenergy crops: impact of crop species and cropping practices

Fabien FERCHAUD and Bruno MARY AgroImpact Unit

24/06/2016

Main objective and hypotheses

Main objective:

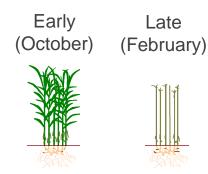
To compare different agricultural systems for bioenergy production in terms of water, N and C balances

Two main hypotheses:

 The functional diversity of candidate crops affects the sinksource relations within the agroecosystem and changes the water, N and C cycles

2) Cropping practices can modify those effects

- N fertilisation
- Harvest date of perennial crops


Experimental treatments

- Field experiment established in 2006 at INRA station in Estrées-Mons
- A wide range of bioenergy crops:
 - Miscanthus × giganteus
 - Switchgrass
 - Fescue Alfalfa
 - Alfalfa Fescue _

In rotation every 3 years

- Sorghum Triticale
- Triticale Sorghum

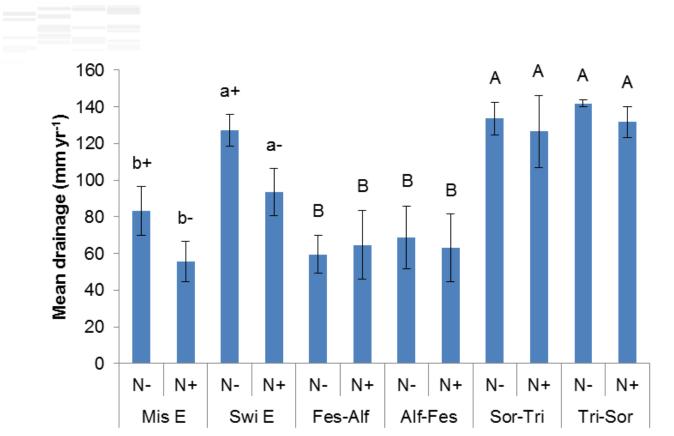
Сгор	Fertiliser-N rate (kg ha ⁻¹)	
	N-	N+
Miscanthus	0	120
Switchgrass	0	120
Fescue	85	170
Alfalfa	0	0
Sorghum	0	120
Triticale	60	120

.03

- Q1: What is the impact of crops and cropping practices on water drainage and evapotranspiration?
- Q2: What is the impact of crops and cropping practices on nitrate leaching?
- Q3: What is the impact of crops and cropping practices on soil organic carbon (SOC) stock changes?

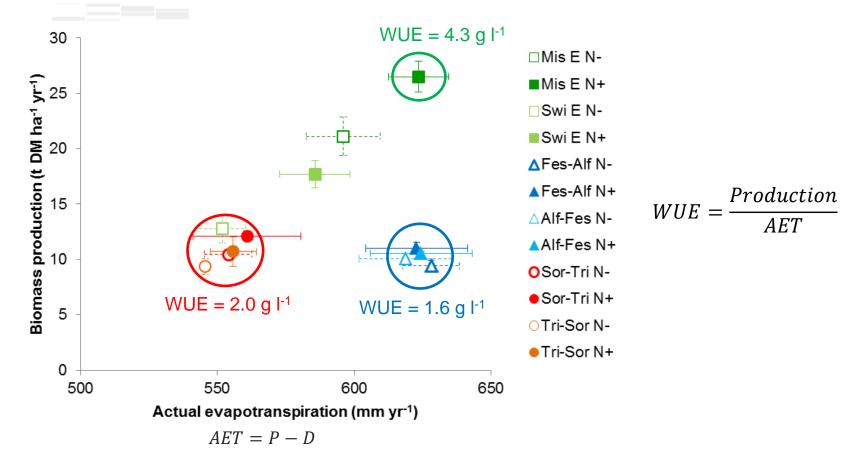
Methods

Water drainage and nitrate leaching 2007-2013


SOC stocks changes2006 and 2011-12

Q1: Impact on water drainage and evapotranspiration

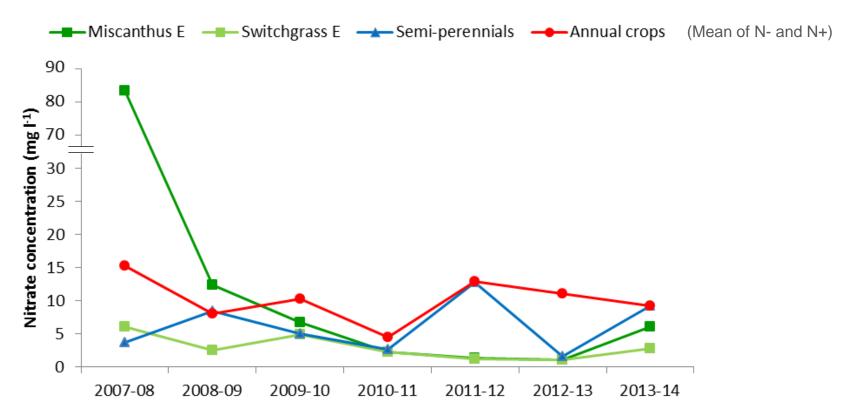
Mean annual drainage over seven years


• Annual crops > semi-perennial crops

Different letters = significant differences between treatments (p<0.05)

• Perennial crops: effect of crop and N fertilisation

Q1: Impact on water drainage and evapotranspiration Water use efficiency of the cropping system



- WUE semi-perennial crops < WUE annual crops
- WUE perennial crops increases with biomass production

Q2: Impact on nitrate leaching

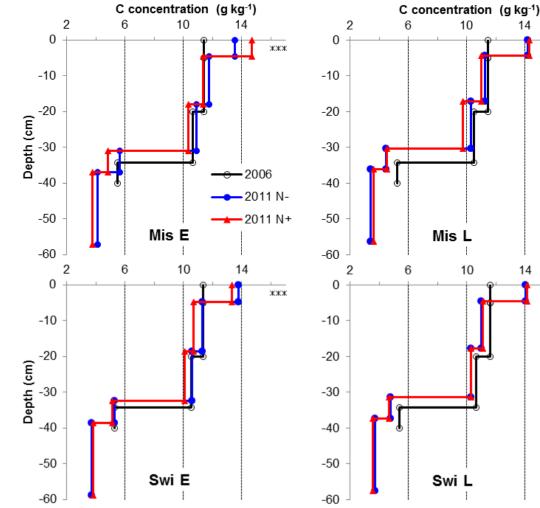
Evolution of the annual mean nitrate concentration in drained water

- Miscanthus E: high nitrate concentration in 2007-08
- Higher nitrate concentration in annual crops 5 years / 7

Q3: Impact on SOC stock changes

Carbon concentrations in 2006 and 2011 (perennial crops)

жжж


жжж

жж

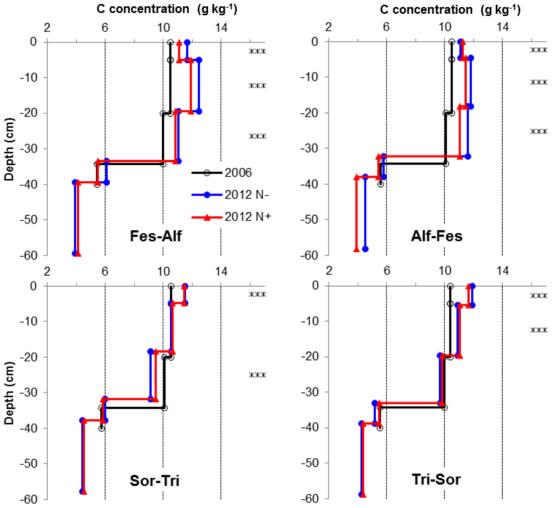
жжж

ж

ж

- Stratification of SOC concentrations under perennial crops:
 - Concentrations in L1 increased between 2006 and 2011 (+ 2.6 g kg⁻¹)

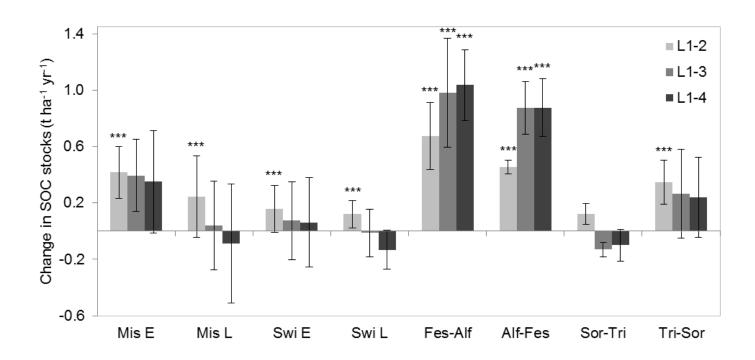
 Lower layers: decreasing trend


No significant effect of crop, N fertilisation or harvest date

Significant changes: * = p<0.05; ** = p<0.01; *** = p<0.001

Q3: Impact on SOC stock changes

Carbon concentrations in 2006 and 2012 (other crops)



- Semi-perennial crops: SOC increased throughout the old ploughed layer (+1.2 g kg⁻¹)
- Annual crops: SOC increased in the upper layers and decreased in L3
- No significant effect of N fertilisation

Q3: Impact on SOC stock changes

Changes in SOC stocks between 2006 and 2011/12

 Significant increase in the old ploughed layer (L1-3 ≈ 0-33 cm) under semi-perennial crops (0.93 ± 0.28 t ha⁻¹ yr⁻¹)

Conclusions and prospects

Perennial and semi-perennial crops had multiple benefits but no crop performed best for all criteria

- Perennial C4 crops:
 - High water use efficiency
 - Low nitrate leaching
 - But: no SOC sequestration on the short term
- Semi-perennial crops:
 - Low nitrate leaching
 - SOC sequestration
 - But: low water use efficiency and low drainage

Results on SOC sequestration need to be confirmed on the long term and the determinism of SOC storage needs to be studied

We thank the staff of AgroImpact Unit!

Nicolas

