Ecosummit 2016

Carbon and nitrogen dynamics after destruction of a 6-year-old perennial bioenergy crop

Marie-Laure Bonis, Fabien Ferchaud, Frida Keuper, Florent Chlébowski, Bruno Mary

30/08/2016

Literature*: beneficial effects of **this perennial crop DURING LIFE-TIME BUT**: how about **AFTER DESTRUCTION**?

- Soil organic carbon, CO₂ emissions?
- Nitrate leaching, N₂O emissions?
- Fertilization requirements for the following crop?

Quantify soil functioning AFTER DESTRUCTION of a 6-year old perennial bioenergy crop in terms of **ecosystem services**:

N-fluxes
N mineralization

N₂O emissions

C-fluxes CO₂ emissions

Experimental plan

- North of France (Estrèes-Mons)
- Deep loamy soil
- SOERE ACBB
 - Long term experiment
 - since 2009

- **Switchgrass destruction** = Superficial tillage and plowing
- After switchgrass destruction (November 2015)
 - Monitoring on bare soil subplots for Post-SWI and Control

Materials and Methods

Monitoring during 9 months

Lower amount of NO₃⁻ in Post-SWI than in Control

* P < 0.05; one-factor ANOVA per sampling date

Higher amount of NH₄⁺ in Post-SWI than in Control

* P < 0.05; one-factor ANOVA per sampling date

LIXIM: 4 times lower N-mineralization in Post-SWI than in Control

More cumulative CO₂ emissions in Post-SWI than in Control

Explanation

 Total biomass returned to soil (belowground + base of stems)
Post-SWI: 31.2 ± 7.3 t DM ha⁻¹
Control: 5 t DM ha⁻¹

.010

Similar cumulative N₂O emissions between Post-SWI and Control

Observed lower NO_3^- content in Post-SWI between 0 and 30 cm

Expected lower N₂O emissions in Post-SWI BUT not observed

Conclusion

Soil functioning after destruction of a 6-year old perennial bioenergy crop in terms of **ecosystem services**:

• N-flux N mineralization: **Post-SWI < Control**

 N_2O emissions: **Post-SWI** \approx **Control**

• C-flux CO₂ emissions: **Post-SWI > Control**

Conclusion and Prospects

Conclusion

Impacts of bioenergy crop destruction on ecosystem services?

Lower N mineralization

→ Less nitrate leaching BUT higher need of N inputs for the following crop

High CO₂ emissions BUT final impact on soil organic carbon unknown

Prospects

N: Yield impact on the following crop with or without N input?

C: Soil organic carbon measurements before and after destruction

