
HAL Id: hal-01603965
https://hal.science/hal-01603965v1

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactions of Water Quality and Integrated
Groundwater Management: Examples from the United

States and Europe
Kelly L. Warner, Fabienne Barataud, Randall J. Hunt, Marc Benoit, Juliette

Anglade, Mark A. Borchardt

To cite this version:
Kelly L. Warner, Fabienne Barataud, Randall J. Hunt, Marc Benoit, Juliette Anglade, et al.. Interac-
tions of Water Quality and Integrated Groundwater Management: Examples from the United States
and Europe. Integrated Groundwater Management, Chapter 14, , 737 p., 2016, 978-3-319-23576-9
(Online). �10.1007/978-3-319-23576-9_14�. �hal-01603965�

https://hal.science/hal-01603965v1
https://hal.archives-ouvertes.fr


Interactions of Water Quality
and Integrated Groundwater Management:
Examples from the United States
and Europe

14

Kelly L. Warner, Fabienne Barataud, Randall J. Hunt, Marc Benoit,
Juliette Anglade, and Mark A. Borchardt

Abstract

Groundwater is available in many parts of the world, but the quality of the water

may limit its use. Contaminants can limit the use of groundwater through

concerns associated with human health, aquatic health, economic costs, or
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even societal perception. Given this broad range of concerns, this chapter

focuses on examples of how water quality issues influence integrated groundwa-

ter management. One example evaluates the importance of a naturally occurring

contaminant Arsenic (As) for drinking water supply, one explores issues

resulting from agricultural activities on the land surface and factors that influ-

ence related groundwater management, and the last examines unique issues that

result from human-introduced viral pathogens for groundwater-derived drinking

water vulnerability. The examples underscore how integrated groundwater man-

agement lies at the intersections of environmental characterization, engineering

constraints, societal needs, and human perception of acceptable water quality.

As such, water quality factors can be a key driver for societal decision making.

14.1 Introduction

Groundwater is commonly found in most parts of the world, but the quality of the

water may be sufficiently poor to preclude or limit its use. Contaminants that affect

groundwater use are related to human health, aquatic health, economic costs, or

even societal perception. In this way, water-quality drivers might be considered

different from factors of integrated groundwater management (IGM) covered in

Chap. 1 and other chapters. For example, in their commentary on defining water

quality, Chapelle et al. (2009) suggest the term “water quality” is inherently based

on human judgments as to how water of given composition fits perceived needs,

where the needs can be those of the individual, group, or ecosystem. At the same

time, human judgments of water quality are dynamic. In the twentieth century water

became cheap, safe, and widely available – something that had not happened before

during the whole of human history (Fishman 2011). Such dynamic views can

become drivers that inform current opinion and perceptions of water quality in

the twenty-first century. In addition, constantly improving technology for water

quality characterization identifies more contaminants at lower detection limits,

which contributes to the dynamic perception of water quality, including whole

new classes of contaminants (e.g., Focazio et al. 2008). How such issues are

handled in a management framework can influence the subjective idea of water

quality. In this way, IGM forms an important intersection of environmental char-

acterization (e.g., water chemical analyses), engineering (e.g., water treatment and

sanitation), societal needs (e.g., food supply), and human perception of water

quality. This intersection of disparate drivers can, in turn, act as a key driver for

societal cost-benefit analyses and other decision making.

How do we judge if water quality is limiting availability? For some

contaminants and uses, objective water-quality criteria are available. For example,

risk-based regulatory limits have set threshold quantities such as a “Maximum

Contaminant Level (MCL)” or, a less stringent, “Preventative Action Limit”

(PAL) used in the United States and similar thresholds in other countries

(Table 14.1). Yet, subjective judgments can also affect perceptions of water quality,

thus making acceptable water quality a dynamic interpretation.
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Table 14.1 Comparison of drinking water-quality standards and guidelines for the World Health

Organization, European Union, Australia, United States, and Canada. All standards and guidelines

in mg/L (modified from Boyd (2006) with updates to United States as of 2013 http://water.epa.

gov/action/advisories/drinking/upload/dwstandards2012.pdf)

Chemical WHO E.U. Australia U.S. CANADA

1,1-Dichloroethylene 0.03 – 0.03 0.007 0.014

1,2-Dichlorobenzene 1 0.0001 1.5 0.6 0.2

1,2-Dichloroethane 0.03 0.003 0.003 0.005 0.005

1,4-Dichlorobenzene 0.3 0.0001 0.04 0.075 0.005

2,3,4,6-tetrachlorophenol – 0.0001 – – 0.1

2,4,6-trichlorophenol 0.2 0.0001 – – 0.005

2,4-D 0.03 0.0001 0.0001 0.07 0.1

2,4-Dichlorophenol – 0.0001 0.2 – 0.9

Aldicarb 0.01 0.0001 0.001 0.003 0.009

Aldrin/Dieldrin 0.00003 0.00003 0.00001 – 0.0007

Antimony 0.02 0.005 0.003 0.006 0.006

Arsenic 0.01 0.01 0.007 0.01 0.01

Atrazine 0.002 0.0001 0.0001 0.003 0.005

Azinphos-methyl – 0.0001 0.002 – 0.02

Barium 0.7 – 0.7 2 1

Bendiocarb – 0.0001 – – 0.04

Benzene 0.01 0.001 0.001 0.005 0.005

Benzo[a]pyrene 0.0007 0.00001 0.00001 0.0002 0.00001

Boron 0.5 1 4 – 5

Bromate 0.01 0.01 0.02 0.01 0.01

Bromoxynil – 0.0001 0.03 – 0.005

Cadmium 0.003 0.005 0.002 0.005 0.005

Carbaryl – 0.0001 0.005 – 0.09

Carbofuran 0.007 0.0001 0.005 0.04 0.09

Carbon tetrachloride 0.004 0.0001 0.003 0.005 0.005

Chloramines-total – – 3 4 3

Chlorpyrifos 0.03 0.0001 0.01 – 0.09

Chromium 0.05 0.05 0.05 0.1 0.05

Cyanazine 0.0006 0.0001 – – 0.01

Cyanide 0.07 0.05 0.08 0.2 0.2

Cyanobacterial toxins – – 0.0013 – 0.0015

Diazinon – 0.0001 0.001 – 0.02

Dicamba – 0.0001 0.1 – 0.12

Dichloromethane 0.02 – 0.004 0.005 0.05

Diclofop-methyl – 0.0001 0.005 – 0.009

Dimethoate 0.006 0.0001 0.05 – 0.02

Dinoseb – 0.0001 – 0.007 0.01

Diquat – 0.0001 0.0005 0.02 0.07

Diuron – 0.0001 0.03 – 0.15

Ethylbenzene 0.3 – 0.3 0.7 –

(continued)
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This chapter will present three examples that demonstrate how water quality

factors can influence groundwater use and related management options. The

examples are intended to present: (1) an overview of mechanisms of how water

quality affects IGM; (2) a short listing of classes of contaminants that have affected

groundwater use; and (3) a description of issues and associated IGM responses that

have been used to address classes of water quality issues. Because the range of

potential societally-relevant water quality issues is large, we focus here on transfer-

able elements contained within the examples. Using the dimensions of integrated

groundwater management outlined in Chap. 1, water quality can be seen as integra-

tion of both natural and human systems across multiple scales of space and time.

Moreover, a definition of adequate water quality is highly dependent on

stakeholders, as well as new methods of identifying and quantifying contaminants.

It should be noted that some water quality topics are also covered separately in

more detail elsewhere in this book, including salinity (Chap. 15).

Table 14.1 (continued)

Chemical WHO E.U. Australia U.S. CANADA

Fluoride 1.5 1.5 1.5 4 1.5

Glyphosate – 0.0001 0.01 0.7 0.28

Lead 0.01 0.01 0.01 0.015 0.01

Malathion – 0.0001 – – 0.19

Mercury 0.001 0.001 0.001 0.002 0.001

Methoxychlor 0.02 0.0001 0.0002 0.04 0.9

Metolachlor 0.01 0.0001 0.002 – 0.05

Metribuzin – 0.0001 0.001 – 0.08

Monochlorobenzene – – – 0.1 0.08

Nitrate 11 11 11 10 10

Nitrilotriacetic acid 0.2 – 0.2 – 0.4

Paraquat – 0.0001 0.001 – 0.01

Parathion – 0.0001 0.01 – 0.05

Pentachlorophenol 0.009 0.0001 – 0.001 0.06

Phorate – 0.0001 – – 0.002

Picloram – 0.0001 0.3 0.5 0.19

Selenium 0.01 – 0.01 0.05 0.01

Simazine 0.002 0.0001 0.0005 0.004 0.01

Terbufos – 0.0001 0.0005 – 0.001

Tetrachloroethylene 0.04 0.01 0.05 0.005 0.03

Toluene 0.7 – 0.8 1 –

Trichloroethylene 0.07 0.01 – 0.005 0.005

Trifluralin 0.02 0.0001 0.0001 – 0.045

Trihalomethanes – 0.1 0.25 0.08 0.1

Uranium 0.015 – 0.02 0.03 0.02

Vinyl chloride 0.0003 0.0005 0.0003 0.002 0.002

Xylenes-total 0.5 – 0.6 10 –
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14.2 Contaminants that Affect Acceptable Water Quality
Determinations

For convenience, contaminants are grouped into two broad categories that affect

groundwater use: naturally occurring contaminants and human-introduced

contaminants. Such a distinction cannot hold universally– for example, human

activities such as high capacity pumping change the aquifer geochemical environ-

ment, which in turn can mobilize contaminants or transform them into different

forms. Likewise, salinity is naturally occurring, but also can be a water quality

concern in areas where it is not naturally occurring as a result of human use such as

application of salt to prevent road icing. Our distinction is more robust, however,

when considering the primary sources of contaminants and how they propagate to

issues of water quality. Therefore, our discussion here follows this overarching

criterion.

Table 14.2 lists a number of naturally occurring and human-introduced

contaminants that can potentially influence groundwater management. Potential

management actions to address water quality may include, but are not limited to,

strategies involving:

• Source removal (e.g., centralized waste digesters, integrated pest management

plans, organic farming)

• Tiered water quality designations that allow reuse of “grey water” or use of

waters naturally having lesser quality (e.g., brackish groundwater)

Table 14.2 Common contaminants listed as a source of poor water quality

A. Naturally occurring contaminants

i. Salinity (Richter and Kreitler 1991; vanWeert et al. 2009)

ii. Radionuclides (Focazio et al. 2000; Szabo et al. 2012)

iii. Manganese (World Health Organization 2011)

iv. Total dissolved solids, iron, and aesthetic contaminants (DeSimone et al. 2009; Warner and

Ayotte 2014)

v. Arsenic (e.g., see Sect. 14.3.1)

B. Human-introduced contaminants

a. Non-pathogen

i. Chloride (Granato 1996; Mullaney et al. 2009)

ii. PCBs/PAHs

iii. Nutrients/nitrate (Dubrovsky et al. 2010)

iv. Pesticides (e.g., see Sect. 14.3.2)

v. Non-Aqueous Phase Liquids (Mayer and Hassanizadeh 2005)

vi. Pharmaceuticals/personal care products (Barnes et al. 2008)

vii. VOCs (Zogorski et al. 2006)

b. Pathogens

i. Bacteria (Hynds et al. 2014)

ii. Viruses (e.g., see Sect. 14.3.3)
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• Blending of water supplies from different sources to meet regulatory limits

• Modifying well open intervals or pumping regimes to minimize poor water

quality

• Artificial aquifer recharge or aquifer storage and recovery systems

• Source minimization (e.g., landuse restrictions in wellfield capture areas, volun-

tary conservation)

• Water treatment at wellhead or point-of-use

• Wastewater treatment

These actions are often used in combination, and span a range of capital cost

incurred during initial implementation as well as on-going cost of operation and

maintenance. As might be expected given the range of cost and range of potential

concerns shown in Table 14.2, there is no single or universally recommended

approach for addressing water quality issues in an integrated groundwater manage-

ment framework. Therefore, examples of groundwater management are used to

illustrate applications where one or more of the actions described above were

considered.

14.3 Three Examples of Water Quality Issues and Integrated
Groundwater Management

In this Sect. 14.3 Case studies are presented here that use one naturally occurring

and two human-introduced contaminants to illustrate the intersection of water

quality and integrated groundwater management. Each will discuss the contaminant

sources, health/aquatic/economic implications, factors affecting contaminant trans-

port and transformation, and management solutions investigated.

14.3.1 Naturally Occurring Contaminant: Arsenic

Arsenic (As) is a contaminant that is commonly derived from natural sources and

has affected the availability or use of groundwater. This case study of arsenic

illustrates the importance of integrating water quality into groundwater manage-

ment. People and policy makers in many parts of the world – but especially in South

Asia and North China Plain–are aware of the dangers of drinking poor quality

groundwater high in arsenic (Mukherjee et al 2006; Sharma et al. 2006; Singh

et al 2014). Other studies predicting the occurrence of arsenic worldwide suggest

that arsenic concentrations of human-health concern can be expected over large

regions (Fig. 14.1) (Welch et al. 2000; Smedley et al. 2002; Amini et al. 2008;

Winkel et al. 2008; Van Halem et al. 2009). Integrated groundwater management
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for arsenic is a function of: (1) understanding the spatial and vertical extent of the

problem by monitoring; and (2) managing human activities, such as pumping or

locating landfills, that can change the geochemical conditions of the aquifer and

mobilize arsenic.

Health effects from exposure to arsenic in drinking water include increased risk

for bladder, skin, kidney, and lung cancers, and increased risk for diabetes and heart

disease (National Research Council 2001). Research on the health effects of low-to-

moderate concentrations of arsenic caused the U.S. Environmental Protection

Agency (USEPA) in 2006 to lower the MCL from 50 to 10 μg/L illustrating how

new research and information can change the perception of acceptable water

quality. Many countries have similar drinking water-quality guidelines for arsenic

and other contaminants (Table 14.1). The United States, European Union, and

World Health Organization consider 10 μg/L of arsenic acceptable for drinking

water (Boyd 2006).

Integrated groundwater management can mean appreciable resources are needed

for monitoring and characterizing the extent and changes in arsenic concentration.

For example, in the United States testing for arsenic in publicly-supplied drinking

water is part of the Safe Drinking Water Act so public supplies are monitored

regularly. Yet over 43 million people in the United States get their drinking water

from privately owned household wells (DeSimone 2009). The quality and safety of

these privately-owned water supplies are not regulated under Federal, or in most

cases state, law. Individual homeowners are responsible for maintaining their water

supply systems and for any routine water-quality monitoring. The U.S. Geological

Survey National Water Quality Assessment Program (NAWQA) included sampling

of more than 2100 privately owned wells in the United States (DeSimone 2009) and

found that about 7 % of privately owned wells contained arsenic greater than 10 μg/
L. In some areas, such as the methanogenic parts of the glacial aquifer system, up to

50 % of the privately owned wells had arsenic concentrations greater than 10 μg/L
(Thomas 2007). The publicly supplied drinking water is managed because routine

Fig. 14.1 Arsenic affected countries (red) of the world (From Van Halem et al. 2009)
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monitoring identifies the high arsenic concentrations that need to be addressed, yet

voluntary self-monitoring of privately owned wells is not routine. Identification of

the problem is a first step for IGM.

Monitoring over time to assess seasonal changes in water-quality concentrations

imply that there is not a one-size-fits-all solution to water-quality management over

a year. A study in Albuquerque, New Mexico, shows that arsenic concentrations

vary spatially and temporally in water from public-supply wells partly because

groundwater with different arsenic concentrations migrates between different parts

of the basin-fill aquifer within the wellbores of idle supply wells (Eberts

et al. 2013). During times when the wells are not pumping, high-arsenic groundwa-

ter from deep within the aquifer moves up and out into the shallow parts of the

aquifer in areas where hydraulic gradients are upward. When pumping resumes,

arsenic-laden water enters these wells from both shallow and deep parts of the

aquifer. Concentrations in the produced water are then elevated until the high-

arsenic water is purged from the shallow parts of the aquifer. Public-supply wells in

this area are pumped less frequently in the winter than in the summer so arsenic

concentrations are highest in winter water samples from the deepest wells in the

parts of the aquifer having upward hydraulic gradients. Well construction (depth),

well operation (duration of pumping), and position within the groundwater-flow

system (location with respect to vertical hydraulic gradients) affect high arsenic

concentrations in water from public-supply wells. Monitoring changes in pumping

and arsenic concentrations over time will enable resource managers to better

manage concentrations in the produced water by pumping existing wells for longer

periods during the winter and by installing new supply wells at shallower depths in

certain areas (Laura Bexfield, U.S. Geological Survey, written commun., 2012).

Naturally occurring contaminants like arsenic are ubiquitous in many aquifer

systems and the identification of the processes that control their mobilization and

transport could help water managers meet compliance standards (e.g., Gotkowitz

et al. 2004). Solid-phase chemistry data are useful in understanding arsenic sources,

but do not always correspond to the relative concentrations in ground water (Brown

et al. 2007). The transport of arsenic to drinking water wells is controlled by

physical and geochemical processes.

Physical processes such as preferential flow paths, human induced and natural,

can result in faster travel times and higher concentrations of arsenic in public-

supply wells. Brown et al. (2007) identified preferential flow paths that include

zones of high permeability in sand and gravel aquifers, conduit flow in karst

aquifers, downward well-bore flow in a public-supply during periods of low or no

pumping, and short-circuit pathways through wells and boreholes open to multiple

aquifer layers. Methods using geophysical techniques, depth-dependent sampling,

and sampling of monitoring wells adjacent to public supplies, improve the under-

standing of preferential flow paths and other factors such as redox chemistry and

competing ions that affect the movement of arsenic to public-supply wells.

Groundwater age information is a tool that adds to our understanding of the

processes resulting in elevated arsenic. For example, in the glacial aquifer system,

arsenic concentrations above the drinking water standard (10 micrograms per liter
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(μg/L)) were most often associated with groundwater that recharged the aquifer

system prior to the 1950s. Similarly, Eberts et al. (2013) found arsenic

concentrations in water from public-supply wells in study areas in California,

Connecticut, Ohio, Nebraska, Nevada, and Utah increased with increasing travel

times to the wells (increasing groundwater age). The groundwater-age mixture for a

well characterizes the complete range of time that it might take contaminants that

are released to the groundwater to reach a well. An estimate for the groundwater-

age mixture for a well is a useful measure of the potential for elevated arsenic in

water from the well. In addition, public-supply well construction and operation

(screen placement, pumping rates and schedules) can lead to differences in the age

mixture of the groundwater pumped from different wells, including wells within the

same aquifer. Many of the public supplies sampled as part of the NAWQA study

showed a mixture of groundwater ages. This indicates that groundwater manage-

ment practices need to consider natural and human-induced changes in the aquifer

geochemistry over time.

Mixing of groundwater from different parts of the aquifer system can change the

chemistry of the groundwater and the potential for elevated arsenic. Ayotte

et al. (2011) show that pumping-induced hydraulic gradient changes and artificial

connection of aquifers by well screens can mix chemically distinct groundwater.

Chemical reactions between these mixed groundwater and solid aquifer materials

can result in the mobilization of arsenic, with subsequent transport to water-supply

wells. For example, near Tampa, Florida, much of the downward movement of

groundwater is along flow pathways that follow natural conduits in the limestone

bedrock (Jagucki et al. 2009). High-volume pumping from the wells in this study

pulled shallow, oxic and low-pH water, which is capable of dissolving arsenic-

bearing minerals, into deeper, anoxic and high-pH parts of the aquifer system where

arsenic can remain in solution. This accelerated mixing of dissimilar waters both

mobilizes arsenic from the rocks and allows it to remain dissolved in the newly

mixed water.

In many areas, dissolved oxygen is an easily determined concentration that

indicates the likelihood of elevated arsenic in the water. In the glacial aquifer

system, United States, geochemical conditions identified by presence or absence

of dissolved oxygen (less than or greater than 0.5 mg/L) is a good indicator of the

likelihood of detecting (or not detecting) arsenic concentrations greater than the

drinking-water standard (10 μg/L) (Warner and Ayotte 2014). Human activities can

alter recharge or change groundwater flow in ways that lead to changes in the

aquifer geochemical conditions (Eberts et al. 2013). These changes result in

chemical reactions between the groundwater and the solid aquifer material, releas-

ing naturally occurring arsenic into the groundwater. As a result, concentrations of

arsenic in water from wells increases. Similarly, Gotkowitz et al. (2004) found that

drawdowns resulting from pumping created conditions that mobilized naturally

occurring mineralized arsenic quickly in drinking water wells that historically were

not characterized as having arsenic contamination.

Other human activities can cause local and regional scale changes in aquifer

geochemical conditions and indirectly increase arsenic concentrations in
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groundwater and in water from public-supply wells. For example, groundwater in

the vicinity of a landfill can have elevated concentrations of arsenic, yet the source

of the arsenic is not the contents of the landfill (Warner and Ayotte 2014). Rather

the source is geologic – part of the solid aquifer material (Delemos et al. 2006). This

type of situation occurs because microorganisms degrade large amounts of organic

carbon derived from the waste within the landfills, creating anoxic conditions in the

groundwater. Arsenic is then released from the solid aquifer material to the

groundwater under the newly anoxic conditions, thus increasing arsenic

concentrations in groundwater downgradient from the landfill.

Water managers who understand how redox conditions are distributed within an

aquifer system are in a position to anticipate which chemical constituents in the

groundwater (for example, nitrate, arsenic, iron, manganese, and certain VOCs or

pesticides) would (or would not) be expected to occur in water from a particular well.

In addition, knowledge about redox conditions in an aquifer system can help water

managers select the most suitable water-treatment methods for water from their

wells. Redox conditions of groundwater also are important because the oxidation

state of some elements affects their toxicity. For example, the oxidized form of

chromium (hexavalent chromium, Cr6+) is more toxic than the reduced form

(trivalent chromium, Cr3+) (Mills and Cobb 2015). Another way that human

activities can affect concentrations of natural contaminants in groundwater is by

altering groundwater flow so that waters with different chemical characteristics mix.

Human-induced alteration of groundwater flow patterns can affect

concentrations of naturally occurring trace elements like arsenic. Adverse water-

quality impacts attributed to human activities are commonly assumed to be related

solely to the release of the various anthropogenic contaminants at the land surface;

yet, human activities including various land uses, well drilling, and pumping rates

and volumes can adversely impact the quality of water in supply wells indirectly,

when associated with naturally-occurring trace elements in aquifer materials

(Ayotte et al. 2011). This occurs because subtle but significant changes in geo-

chemistry are associated trace element mobilization as well as enhancing advective

transport processes.

Sources of natural contaminants like arsenic are largely distributed and not

usually mitigated with source remediation. The cost of treating for arsenic in

large public-water utilities is an economic cost, but the human health cost of not

treating for elevated arsenic in drinking water can be substantial. Costs, like that of

public water suppliers using the glacial aquifer system in the United States, were

estimated at 29 million dollars in 1999 to treat groundwater for a single issue of

concern: elevated arsenic concentrations (Warner and Ayotte 2014). In the United

States in 2006 when the drinking water standard was lowered to 10 μg/L the Illinois

Environmental Protection Agency estimated that the initial cost to reduce arsenic

concentrations to below the MCL of 10 μg/L for 50 of the community water

supplies with elevated arsenic concentrations in Illinois (Fig. 14.2) could reach a

total of $40 million dollars, with the highest costs associated with small community

supplies (Warner and Ayotte 2014; Warner et al. 2003; Warner 2001). On a national

or worldwide scale, this is a large water-quality cost to consider. Understanding the
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processes that affect the mobilization of arsenic in groundwater leads to more

informed and integrated water management decisions in areas where arsenic is a

concern, which in turn can provide cost savings.

14.3.2 Human-Introduced Contaminant (Abiotic): Agricultural
Inputs

The pervasive use of organic and inorganic chemicals in agricultural areas has led

to the deterioration of the quality of groundwater and surface water, and has become

a concern for human consumption over the last decades. Water quality deterioration

by pesticides, for example, is well recognized, for surface or drained water

(Schiavon and Jacquin 1973; White et al. 1967) and groundwater (Muir and

Baker 1978). Since the early identification of the concern, degradation of water

quality by pesticides become widespread in Europe (Capriel et al. 1985; Heydel

et al 1999; Réal et al. 2001, 2004; European Commission 2002, 2010). Many recent

studies have reported the presence of pesticides higher than the European regu-

latory limits of 0.1 μg/L and 0.5 μg/L for surface water and groundwater, respec-

tively. In one survey, total concentration of pesticides was over 0.5 μg/L in 18 % of

surface water samples and 3.8 % of groundwater samples analyzed (SOeS 2010).

With the expected conflicting goals of crop production and preservation of

surface and groundwater quality, an integrated water resources management

approach is needed. Integrated groundwater management, specifically, must

embrace spatial and temporal uncertainty both in the source (due to changing

Fig. 14.2 Cost of treating

drinking water for elevated

arsenic (From Warner and

Ayotte 2014)
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human application rates and chemical properties) and in the groundwater aquifers

that embody a heterogeneous application and transport of that source. Even defining

the groundwater system of interest can be problematic because: 1) groundwa-

tersheds can be difficult to delineate accurately and often do not align with the

easily delineated overlying surface watershed (e.g., Hunt et al. 1998; Winter

et al. 2003); 2) the amount of effort expended on the characterization is likely not

equal in space and time in an area of interest; and 3) the land surface encompasses

different political boundaries, which may change the regulatory agency charged

with the management of the water resource. Integrated groundwater management

must also address the fact that a groundwater system is buffered by an unsaturated

zone that separates the land surface where pesticides are applied from the aquifer

used. This buffering can affect the timing and amount of recharge to the water

table – effects that change as the unsaturated zone thickness changes (e.g., Hunt

et al. 2008). Delays and lags between an activity, or change in activity like Best

Management Practices, at the land surface and its appearance in the groundwater

resource can confound simple cause-and-effect relations that underpin decision

making.

For agricultural contaminants, integrated groundwater management is a function

of: (i) changes in protective areas specified at land surface that can determine and

influence the contaminant source; and (ii) the importance of lags and delays

between the driving forces at the land surface and the change of the groundwater

resource.

14.3.2.1 Changing Protective Areas at the Land Surface
Here we use two French groundwater systems as examples, the Vittel and Lons-le-

Saunier catchments located near the French-Swiss border. Vittel watershed is

managed through voluntary agreements between diverse stakeholders and the

private enterprise Nestlé Water (Benoı̂t et al. 1997). The Vittel catchment has

been the focus of a delineation process since 1925 (Barbier and Chia 2001). The

catchment outline defined during negotiations with farmers and other stakeholders

began in 1987 was 4200 ha. In 1994, new hydrological work increased the catch-

ment to 4500 ha. In the case of Lons-Le-Saunier, the catchment is managed by the

municipality and a group of priority catchment organizations; they are called the

“Grenelle Catchments” because they were designated through the Grenelle Initia-

tive – a collection of political meetings that occurred during the fall of 2007 to make

long-term decisions on sustainable development. The Lons-le-Saunier catchment

also will likely have multiple delineations (Hellec et al. 2013; Barataud

et al. 2014a).

Areas identified for protection within the delineated groundwater resource have

also evolved over time as a result of increasing awareness of contamination,

negotiations with the farmers, and the evolution of the driving regulatory context

(from Public Health Laws to a patrimonial management of water in the recent

Environment Code). Today the management zone is divided into four zones

(Fig. 14.3). The water wells zone (zone I) of about 7 ha, without any agricultural

activity, was bought by the municipality in 1961 at the beginning of the wells’ use.
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A proximity management zone with two sub-divisions was then defined: contracts

between the municipality and the farmers were primarily established on a zone IIa

(63 ha) in 1985 when nitrates and atrazine were noted in the wells; zone IIa was

extended to a zone IIb (220 ha) in 1989 and the contracts were re-negotiated in 2006

as a new French regulatory requirement imposed a more formalized definition of

protection perimeters. In 2006 the zone was again extended to include an additional

1500 ha (zone III). Currently, the protection zones consist of slightly less than

1800 ha, corresponding to about 30 % of the total catchment area. The total

catchment was designated in 2009 as zone IV, defined using the hydrological report

that resulted from the 2009 Grenelle Initiative.

Concurrently, a 1992 French law of the Public Health Code required a manda-

tory “Declaration of Public Utility” for water resources, which included a delinea-

tion of water protection areas in which conservation easements can restrict

agricultural practices. In practice, the delineation of public utility is commonly

delayed. A recent study showed that only two-thirds of catchments in the French

Grenelle priority catchment were in conformity for the delineation of water protec-

tion areas (Barataud et al. 2014b), whereas a deadline of 5 years was given by the

1992 law . Local stakeholders noted a high level of inter-stakeholder conflict caused

by these regulatory requirements. Using the catchments that are in conformity with

the 1992 law, it is clear there is a wide range of management unit size (Fig. 14.4).

The size of the management unit can affect execution of protective measures.

Perhaps most obviously, developing mutually agreeable solutions with the

Fig. 14.3 Example of successive delimitation of the protection perimeters
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agricultural producers and other stakeholders in large catchment areas is more

difficult because there are more entities to include, and is often hindered by simple

organization challenges such as identifying meeting-times and discussion

frameworks. In large catchments, accounting for the interests and wide ranging

viewpoints often requires designation of intermediaries to facilitate discussion that

represent the whole of the stakeholder group. In small catchment areas, protective

practices may be identified but often involve improved agricultural practices over

only small parts of the catchment rather than major farming practice reforms.

Several studies have questioned the effectiveness of partial measures for protecting

and restoring target groundwater resources (Kunkel et al. 2010; Thieu et al. 2010;

Lam et al. 2011; Posen et al. 2011).

14.3.2.2 Temporal Characteristics of Groundwater Management
Clearly the spatial area included or excluded from a protective action will influence

the associated groundwater quality. Temporal aspects can also affect integrated

groundwater management. The temporal aspects covered here include timing of

human implementation of protective measures at the land surface, and time lags that

result from the natural groundwater system itself.

An example of the human dimension is seen in the 2000 European Water

Framework Directive (WFD), which proposed three new articles: preservation of

water bodies as a whole (taking into account non-point pollution and not just point-

source pollution), an imposed schedule for adoption, and objectives defining

quantified results for ecological restoration of the environment. This Directive is

complex and ambitious, but is considered a cornerstone of the European Union’s

environmental policy (Bouleau and Richard 2009). France partially conformed to

this directive 6 years after the Directive was signed through its Law on Water and

Aquatic Environments (Loi sur l’Eau et les Milieux Aquatiques [LEMA], 2006),

where for the first time in French law the definition of non-point pollution appeared.
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However, it was not until the Grenelle Initiative in 2009 and the designation of the

Grenelle priority catchments, that the notion of schedules, deadlines, and quantifi-

able results was written into French law. In the example of Lons-le-Saunier, 9 years

were necessary to partially translate theWFD into application in one area of France,

and the process was considered difficult by most all involved.

The human dimension also can result in unintended parallel protective actions.

Faced with insufficient regulatory frameworks, many local water managers

(municipalities, water utilities, private entities) outside of the Grenelle priority

catchments have set up, or are currently setting up, their own coordination with

farmers to promote protective practices to enhance local water resources quality.

Each protective practice imposes various time frames for adoption, many of them

distant into the future, as can be seen by comparing the timelines for the above

mentioned Lons-le-Saunier and Vittel Catchments to two other European

catchments (Fig. 14.5: La plaine du Saulce in western France and one near Munich,

Germany). The Munich catchment is notable because it is an early example of

protection of water quality internally developed after adoption of organic farming

practices at a near catchment scale. The time from the identification of the problem

and subsequent negotiations to formal protective measures can range between 5 and

20 years. Clearly lags in the adoption of protective measures will result in lags in

obtaining the improved water quality that initially drove the adoption of protective

measures.

Given the competing interests of the multiple stakeholders, problem scoping

activities and protective action negotiations often require many months of discus-

sion. For example, the mobilization of stakeholders, identification of needs and

priorities, negotiations between stakeholders having conflicting interests, defining a

consensus, and constructing adequate institutional forms, are all necessary stages

which require different amounts of time and effort to execute. Even after protective

measures are adopted, it is not uncommon to see delays of several years needed to

coordinate and modify individual practices.

This temporal and spatial complexity of adopted protective measures then must

then filter through the natural system to where the groundwater resource of interest

Fig. 14.5 Timelines of protection activities of catchments in four areas
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is assessed. Nitrate pollution management in the Plaine du Saulce catchment

discussed below exemplifies how the natural system dimensions can delay positive

responses in the groundwater resources resulting from management intervention to

reduce contamination. The water catchment area (86 km2) is situated 10 km south

of the City of Auxerre, on a rural agricultural landscape consisting of 45 farms

(4026 ha). In the early 1990s, high levels in nitrate concentration were recorded in

the Auxerre groundwater wells in the early 1990s supplying one third of the 60000

inhabitants’ water requirements. In 1994, peaks reaching 70 mgNO3
�/L (exceeding

the European drinking standard of 50 mgNO3-/l) precipitated a lively debate on

management strategies to deal with this nitrate contamination. Various managing

entities were brought to bear over the next three decades, with the first contract with

farmers in 2002, 8 years after the first sign of severe degradation. The management

strategy initially operating on a voluntary basis did not result in significant decrease

in the nitrate concentrations. As a result, regulation was proposed in 2011 focusing

on integrated agriculture, where adoption would become a mandatory after a period

of 3 years. The proposed regulatory framework caused major tensions between

stakeholders, made worse by a lack of understanding regarding the absence of

improved water quality after many years of joint protective actions.

During 2012, a scientific committee met twice to update management strategies

to account for the natural delay between changes in agricultural practices at the land

surface and measurable improvements in water quality. One primary conclusion

was that groundwater flow rates in the Sequanian limestone aquifer tapped by the

wells are relatively longer than human timeframes considered in management

actions. Water dating analysis through anthropogenic tracers CFC and SF6
estimated an aquifer residence time of around 25 years (�3 years) at the pumping

wells (Anglade et al. 2013). As a result, nitrate levels observed at the wells reflected

agricultural practices that occurred over two decades ago. Analysis of agricultural

nitrate use also supported this assessment. Nitrogen inputs had sharply increased in

the 1960s before stabilizing in the 1990s (Fig. 14.6); point-to-point comparison

between nitrogen surplus and measured nitrate concentration also suggested an

approximately 25 year lag in response at the wells.

This example underlines that when planning and implementing management

actions, expected time lags need to be communicated to stakeholders and funding

agencies in order to reduce short-term expectations that may impair long-term

political and financial support. At this point in the Plaine du Saulce catchment,

such knowledge has opened up new possibilities for organic farming, with recogni-

tion that changes are needed beyond the catchment borders.

Human-introduced pesticides also represent challenges to integrated groundwa-

ter management. They can affect the quality of drinking water; especially ground-

water close to land surface (e.g., Schreiber et al. 1993). Many pesticides can persist

for long periods in the environment – organochlorine insecticides, for example,

were still detectable in surface waters 20 years after their use had been banned

(Larson et al. 1997). Others studies documented measurable pesticide

concentrations years after their last application on the land surface (Baran
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et al. 2008; Buhler et al. 1993; Jarczyk 1987; Novak et al. 1998; Reiml et al. 1989).

In France, Atrazine was banned in 2003; yet, analysis of the Grenelle priority

catchment area suggests that half of the protected catchments have measurable

atrazine or atrazine degradation product, called a metabolite, in 2011 (Barataud

et al. 2014b).

Site-scale studies have been used to help explain the persistence of pesticides in

groundwater (Perrin-Ganier et al. 1996). In one case study by Schrack et al. (2009,

2012) from the Lorraine region of France, agricultural practices had been recorded

annually for 40 years, including pesticides use during conventional crop manage-

ment (date, product, application rate). From September 2004 to the present, no

pesticides have been used on the study fields as a result of conversion to organic

farming practices. During the 30-year period prior to conversion to organic

practices, many pesticides were applied on crops, including herbicides atrazine

and 2,4-D (2,4-dichlorophenoxy acetic acid). Similar to the observations of

Barataud et al. (2014b), measurable atrazine was documented over 10 years after

atrazine application ceased. 2,4-D concentrations were higher than the regulatory

limits in two water samples from drain tiles (Fig. 14.7), despite low detection

frequency in point samples at the site. Thus it appears that even though the soil

zone can reduce and transform pesticides applied to crops, it can also act as a

diffuse source of groundwater contamination that persists after application ceases.

That is, organic farming initiated in 2004 does not apply pesticides; however, more

than 5 years after conversion to organic farming practices, pesticide concentration

can still exceed the regulatory limit (e.g., 2,4-D drain water in Fig. 14.7).
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Fig. 14.6 (a) and (b) Evolution of harvested nitrogen and total nitrogen inputs (synthetics and

organic fertilizers, atmospheric dry and wet deposition, biological nitrogen fixation) on arable land

since 1950. (c) Calculation of N surplus (Harvested N – Total N inputs). (d) Resulting nitrates

concentration (infiltration flux of 240 mm/year) and comparison with recorded nitrates levels in

the wells (red points)
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14.3.3 Human-Introduced Contaminant (Biological): Human Enteric
Viruses

As shown in Tables 14.1 and 14.2 many types of human-source contaminants can

influence groundwater management, and make an otherwise acceptable groundwa-

ter supply not suitable for an intended use. Agricultural contaminants, presented in

Sect. 14.3.2 are a widely recognized example. Here we discuss a less known human

contaminant – human enteric viruses, a subset of possible biological entities, called

pathogens, that can affect drinking water suitability. Although the importance of

viruses as a groundwater contaminant is primarily restricted to human drinking

water, this example helps illustrate how recent advances in methodologies for

detection and quantification provide new insights into vulnerability of groundwater

supplies not provided by the traditional understanding of water quality

contaminants. The material in this section is taken from Borchardt et al. (2004,

2012) and Hunt et al. (2005, 2010, 2014); the interested reader is directed there for

additional information.

Viruses are infectious particles of nucleic acid wrapped in protein and some-

times an outer layer of lipid that replicate only within cells of living hosts. In the

environment they are metabolically inert. Virus spread is facilitated by

concentrated sources and the very low exposure needed for infection. For example,

a gram of feces from an infected host can contain trillions of infectious viruses, yet

only 1–10 viruses are required to infect a new host. The human health implications

of waterborne virus contamination are multi-fold. Recent studies have

demonstrated occurrence of human enteric viruses in domestic and municipal

wells in the United States (Abbaszadegan et al. 2003; Borchardt et al. 2003; Fout

Fig. 14.7 Concentration of pesticides in experimental field after stopping their spreading on the

experimental field (2,4-D: since 17 years; Ioxynil: since 13 years; Mecoprop: since 21 years;

Dinosèbe: since 15 years; Atrazine: since 23 years; DEA: since 16 years; AMPA-glyphosate: since

17 years)
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et al. 2003; USEPA 2006). Of the 248 recorded drinking water outbreaks caused by

untreated groundwater in the United States between 1971 and 2008, 32 (12.9 %)

had a viral etiology. Moreover, in 135 outbreaks (54.4 %) the etiology was

unidentified (Wallender et al. 2013), but believed to be viral as in the early years

of outbreak surveillance the technology to detect waterborne viruses was less

widely available than it is today. Outbreaks related to virus-contaminated ground-

water have also been documented in other parts of the world (Gallay et al. 2006;

Beller et al. 1997), suggesting widespread hydrologic conditions suitable for virus

survival and transport.

Viruses are much smaller (27–75 nm) than bacterial and protozoan pathogens

and thus are more easily transported through pores that physically filter larger

pathogens. Virus adsorption onto sediment grains is a primary removal mechanism,

although the strength of adsorptive forces depends on sediment and water

chemistries (Borchardt 2006). These factors notwithstanding, viruses may still be

transported some distance, even into confined aquifers at travel rates relevant for

human-health concern (e.g., Borchardt et al 2007; Bradbury et al. 2013). As a result,

the United States Environmental Protection Agency has listed several viruses on the

third drinking water Contaminant Candidate List, emphasizing that waterborne

viruses are a research priority (http://www.epa.gov/ogwdw000/ccl/ccl3.html).

There is also significant public and regulatory interest in understanding the

vulnerability of water-supply wells to contamination by human enteric viruses

(e.g., http://www.epa.gov/safewater/ccl/index.html; Unregulated Contaminant

Monitoring Rule 3 – USEPA 2011). However, assessing well vulnerability to

infectious pathogens is different because pathogen vulnerability assessments

require knowledge of very fast (<3 year) times of travel – a timeframe not

characterized by common groundwater age dating methods (Hunt et al. 2005,

2014). Therefore, a different conceptualization is needed to assess well vulnerabil-

ity to pathogens.

Plume center-of-mass approaches of contaminant transport typically define risk

from non-pathogen contaminants such as those listed in Tables 14.1 and 14.2; they

reflect the bulk properties of the aquifer which control transport to a drinking well

where risk is calculated using long-term exposure relevant for slowly moving

plumes. Pathogen transport to groundwater-supply wells is different because

adverse health effects can only occur while a pathogen is still infectious; viruses

are reported to remain infectious in groundwater for time periods less than 3 years

(Seitz et al. 2011). However, unlike dissolved contaminants, as particles pathogens

tend to follow fast preferential flow pathways with minimal matrix diffusion

(McKay et al. 1993; DeBorde et al. 1999). Thus, rather than well vulnerability

assessment based on decade-scale water movement, it is the fast pathway properties

of the aquifer that are most important for understanding the vulnerability to

pathogens and the risk for disease transmission.

For many groundwater systems, a 1–3 year travel time might be considered of

little importance because distances traveled in many unstressed groundwater

systems in even 3 years are short. But this is not true for all groundwater systems;

large distances can be traveled in short timeframes in karst and fractured rock
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aquifers (e.g., Borchardt et al. 2011). Even in porous media aquifers, high capacity

water-supply wells significantly depressurize local groundwater systems and create

large hydraulic gradients. These gradients, in turn, result in faster local groundwater

velocities than occur in natural groundwater flow systems. This could explain, in

part, why virus contamination frequency tends to be greater in high capacity wells

than in private domestic wells (Borchardt et al. 2003). More surprising, in the

confined aquifer supplying drinking water to Madison, Wisconsin USA, there are

pathways sufficiently fast that virus transport to deep supply wells cased through

the aquitard can occur in several weeks (Bradbury et al. 2013).

Viruses can only be a contaminant of concern, however, if there is an infectious

human fecal source. One common source is leaking sanitary sewers (Hunt

et al. 2010). Reported estimates of sanitary sewer leakage, or “exfiltration”, range

from 1 % to 56 % of the dry weather flow (Rutsch et al. 2008). In the United States,

exfiltration has been estimated as 30 % of system flow as a result of infrastructure

deterioration, and in local areas, sanitary sewer leakage has been reported to be as

high as 50 % of the system flow (USEPA 1989). The exfiltration rate for a European

sanitary sewer has been reported on the order of 1 l/m of sewer line per day (Lerner

and Halliday 1994). Exfiltrated volumes for large municipalities are thought to

reach tens of thousands of cubic meters per day (millions of gallons per day),

exceeding the capacity of the sediments to filter, absorb, and immobilize

contaminants carried therein (Amick and Burgess 2000). Even though more

research is needed to make general system predictions (Rutsch et al. 2008; Tafuri

and Selvakumar 2002), local sanitary sewers have been related to drinking-water

associated outbreaks of gastroenteritis (e.g., see Amick and Burgess 2000; Bishop

et al. 1998). Older, non-maintained systems are thought to be more susceptible to

exfiltration, as well as systems including pressurized by sewage lift stations (Decker

1994a, b). For example, of the wells sampled by Borchardt et al. (2004), the highest

number of positive virus samples was obtained from a drinking water well near a

pressurized lift station. When the water table is below the utility infrastructure,

exfiltrated sewage is often concentrated and transported in the trenches surrounding

sanitary sewers, especially during conditions of rainfall-induced infiltration, such

that they can threaten drinking-water supplies (Tafuri and Selvakumar 2002).

Sanitary sewer infrastructure is often located near municipal wellheads, and carries

a high viral load during periods of infections in a community (e.g., Sedmak

et al. 2003; Bradbury et al. 2013). From an IGM perspective, this presents manage-

ment action options: a groundwater-supplied municipality could work to minimize

sewer contamination of its urban aquifer by integrating its management teams for

wastewater and drinking water, making sure both teams are aware of each other’s

activities that might affect the aquifer.

From a contaminant monitoring perspective, total coliform bacteria and E. coli –
standard microbiological indicators of water sanitary quality – are rarely correlated

with viruses (Wu et al. 2011), likely due to their differences in transport/ filtering

and survival characteristics in an aquifer. Even with direct analysis, virus occur-

rence is commonly temporally sporadic when viruses are analyzed at the wellhead.

Therefore, assessing drinking well vulnerability can involve a multiple samplings,
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perhaps more than might be used for traditional contaminant vulnerability

assessments. Fortunately, water samples for viruses can now be collected inexpen-

sively and routinely (Lambertini et al. 2008; Gibbons et al 2010; Mull and Hill

2012), which allows affordable collecting of larger sample numbers. In the early

2000s, results from viral analysis by conventional polymerase chain reaction (PCR)

usually included only virus identification and presence/absence; virus quantifica-

tion could only be accomplished by culture methods and these are laborious,

expensive, and restricted to only a few virus groups. Now, with the advancement

of real-time quantitative PCR (qPCR), the quantities of many virus types can be

reliably measured with high-throughput, low cost, and less labor. Detailed genetic

information on virus subtypes can also be obtained with high-throughput

sequencers widely available. Therefore, from a practical standpoint, this newly

developed technology has created a capability to assess well vulnerability that was

not available to groundwater managers even 15 years ago.

These available technologies have also allowed the advent of a new concept in

groundwater management, using viruses as tracers of young-age groundwater (Hunt

et al. 2014). Because the maximum survival time for viruses in groundwater is

approximately 3 years, a positive virus signal in mixed-age groundwater, in effect,

zeros-out the contribution of older water and indicates young water must be present.

Moreover, because different virus types infect and then disappear from the host

population over time as the number of susceptible and resistant hosts changes, this

creates a time-varying signal that can be tracked in the environment. When fecal

waste from an infected population is released to the environment, whether from

people, livestock or wildlife, the combination of virus identities and quantities in

the waste becomes a “virus snapshot” for a specific point in time. Measuring this

“snapshot” at suspected virus sources and waiting for it to appear at “downstream”

receptors, such as a supply well, can be used to make inferences about time-of-

travel to the well; wells with very young water are typically considered more

susceptible to all water quality contaminants. Unlike traditional well vulnerability

assessments that are relevant for contaminants carried by “high-yield slow-

pathways” in the aquifer to the well, viruses as tracers for well vulnerability

assessment gives information on the less-studied leading edge and early arrival of

a pathogen contaminant, which is driven by preferential flowpaths that provide

“low-yield fast-pathways” to the well (Hunt et al. 2010).

In areas where groundwater supplies for drinking water are not disinfected, the

economic cost of virus contamination can be considerable. In an epidemiological

study of 14 groundwater-supplied communities in Wisconsin that did not practice

disinfection, Borchardt et al. (2012) determined that 6 % to 22 % of the acute

gastrointestinal illnesses (AGI) in these communities resulted from their virus-

contaminated drinking water. The economic cost of these groundwater-borne

illnesses can be roughly estimated from US data on healthcare utilization and

costs for AGI in young children (Cortes et al. 2009) and extending the assumption

these data apply to the rest of the population. Such an assumption is likely justified

for American adults 18–54 years old because in this age group the prevalence and

severity of gastrointestinal illness is not much lower than that for young children
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(Jones et al. 2006). From Cortes et al. (2009), for children less than 5 years old the

national hospitalization rate for AGI is 0.5 %, the emergency room visit rate is

1.8 %, and the outpatient visit rate is 13.3 %. The United States median payments

for AGI treatment by hospitalization, ER visit, and outpatient is $3135, $332, and

$90 (reported in 2009 USD), respectively. The number of people drinking

non-disinfected municipal groundwater in Wisconsin is about 100,000. If the

baseline AGI rate in Wisconsin is 1 episode/person-year, about the national aver-

age, and using the midpoint of 14 % of AGI attributable to virus-contaminated

groundwater, the healthcare costs in Wisconsin are approximately $500,000 USD

per year. This only includes direct payment to healthcare providers. It does not

include costs to the economy from work lost either by the ill person or their

caregiver, nor does it include the cost of death. It also does not consider the most

disease-vulnerable populations, the immunocompromised and elderly. Moreover,

this estimate can be considered conservatively low because it does not account for

the legal, social, and economic costs if virus-contaminated groundwater resulted in

a disease outbreak. The AGI reported in the study by Borchardt et al (2012) only

measured sporadic non-outbreak illnesses.

Studies by Borchardt et al. (2012) and Lambertini et al. (2011, 2012) were part of

a large United States government funded epidemiological study (the Wisconsin

Water And Health Trial for Enteric Risks, or WAHTER Study), designed to

measure the level of illness in communities that rely on non-disinfected groundwa-

ter as their source for drinking water. Concurrent with the study, the Wisconsin

Department of Natural Resources (DNR), the state agency ceded the authority for

regulation of drinking water quality, was preparing to implement the United States

Federal Groundwater Rule. As it became clear the 14 Wisconsin communities

enrolled in the WAHTER Study had significant virus contamination of their

groundwater supplies, the DNR decided to incorporate into their statewide imple-

mentation plan a change to the State drinking water code to require disinfection for

all groundwater-source municipal drinking water systems in the state. The code

change was approved by the DNR oversight board. However, after a statewide

election in 2010, the State legislature reversed the DNR’s decision and passed a bill

prohibiting the DNR from requiring drinking water disinfection (http://docs.legis.

wisconsin.gov/2011/proposals/ab23, accessed August 12, 2014). The bill was

signed into law in 2011 (http://docs.legis.wisconsin.gov/2011/related/acts/19,

accessed August 12, 2014). This statewide action was taken despite expert testi-

mony describing the WAHTER study results and associated estimated costs to its

citizens.

In an IGM context, there were factors associated with human enteric viruses that

may have influenced the decision making process. A new contaminant, viruses, and

a new technology, qPCR, were unfamiliar to many drinking water utilities and

policymakers. People viewed the traditional pathogen indicators total coliform and

E. coli tests as the “gold standard” for sanitary quality; if these traditional indicators
were negative the water was considered acceptable. Positive tests for traditional

indicators, when they occurred, were interpreted as a distribution system problem

not a quality problem associated with the groundwater source itself. Such
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assumptions were deemed reasonable because non-disinfecting communities were

not required by State code to collect microbiological samples from their drinking-

water production wells, and a common perception is that the groundwater must be

clean because it is filtered by soil and aquifer material, and thus can be considered

microbiologically pure. Waterborne disease may have also been viewed as being

events that only occurred as disease outbreaks as reported by news headlines; the

concept of low-level, but measurable, sporadic disease transmission was unfamil-

iar. Lastly, the actions were consistent with a public view that State government

should not supersede local control of drinking water regulation. A second indepen-

dent study has since corroborated the WAHTER Study findings and showed heavy

precipitation events result in more children seeking medical treatment for AGI in

groundwater-supplied communities in Wisconsin that do not practice disinfection

compared to those communities that do (Uejio et al. 2014). This study prompted

a bill to reverse the disinfection prohibition but it did not move forward

(Wisconsin Assembly Bill 545, https://docs.legis.wisconsin.gov/2013/proposals/

ab545, accessed August 12, 2014).

14.4 Implications for IGM

Groundwater is under increasing threat from over-development, over-extraction

and pollution, due to increasing population pressure, increasing living standards,

industrialization, and a lack of proper management to match the demands and use

patterns (see Chap. 2 for more detail). This is a global trend, although there are

regional differences. The availability of groundwater with adequate quality to meet

ecological and human health needs is often in direct and immediate conflict with

strategies of livelihood. Competing demands for quantity and quality of groundwa-

ter can be result in fragmented management policies. These competing needs

present a problem for researchers and managers to communicate the complexity

of groundwater-quality changes with changing demands and uses. There is a strong

need to close the gap between the perceptions of groundwater quality and

understanding.

The latest technologies and approaches in groundwater modeling, laboratory

analytical methods, engineering design, and economic modeling can all inform

decision-making in an IGM framework, but societal subjective perceptions of water

quality and societal behavior can be equally important in some circumstances. In

the context of an IGM framework, water quality issues can require regulators to

devote appreciable resources to managing societal perceptions and societal behav-

ior – additional resources beyond that needed to perform the more easily recognized

components of IGM such as monitoring, engineering, and risk assessment. More-

over, additional dimensions of acceptable water quality can appear as new technol-

ogy becomes available, which in turn can become important forcing functions on

IGM activities. In addition to changing technology, increasing the sampling fre-

quency used in traditional groundwater monitoring assessments can influence IGM
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activities. For example, infrequent sampling (often once a year) and long-term

exposure risk assessment approaches may not adequately represent the dynamism

of the groundwater system quality – for either pathogen or non-pathogen concerns

(e.g., Hunt et al. 2010). New advances in monitoring continuous water quality, such

as specific conductance and other parameters, show that changes can occur within

hours or days of a precipitation event depending on the system. On the other hand,

the time lag between actions at the land surface and expression in the groundwater

system must also be accounted. Clearly identifying and characterizing potential

water quality drivers is the first step for a successful IGM framework. From such an

understanding associated risks can be estimated, which in turn can form the basis of

societal discussion of costs and benefits that will form the foundation for all IGM

activities that follow.
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