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Abstract  

Mapping out regions of PrP influencing prion conversion remains a challenging issue 

complicated by the lack of prion structure. The portion of PrP associated with infectivity 

contains the alpha-helical domain of the correctly folded protein and turns into a beta-sheet-

rich insoluble core in prions. Deletions performed so far inside this segment essentially 

prevented the conversion. Recently we found that deletion of the last C-terminal residues of 

the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture 

model, using three different infecting strains. This was in agreement with preservation of the 

overall PrPC structure even after removal of up to one-third of this helix. Prions with internal 

deletion were infectious for cells and mice expressing the wild-type PrP and they retained 

prion strain-specific characteristics. We thus identified a piece of the prion domain that is 

neither necessary for the conformational transition of PrPC nor for the formation of a stable 

prion structure. 
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Mammalian prions consist of beta-sheet-rich assemblies of the PrP protein (1, 2). However 

resolution of their structures remains elusive due to the insolubility and heterogeneity of these 

aggregates. While the correctly folded protein (PrPC) contains three helices (3), biophysical 

data indicate that there is no more alpha helical content in prions (PrPSc) (4). Different 

structural models of PrPSc were proposed, most of them postulating an alternation of beta 

strand and loops or turns (5-7). It is thus conceivable that some stretches of the protein 

especially those included in the unstructured regions are not absolutely indispensable for 

mammalian prion. To support this hypothesis, we may recall that deletions inside the loop 

joining the two rungs of beta-sheets of the solenoid were compatible with production of 

functional HET-s prions in Podospora Anserina (8). Whether completeness of the “90-231” 

segment of PrP associated with the infectivity (2, 9) is required for mammalian prions was not 

clearly answered. Indeed although many inside deletions were done, so far they failed to 

generate prion entities still able to convert the wild-type PrPC (10-12). We knew from our 

previous work that the sequence specificity of the C-terminal part of PrP helix H2 was not 

essential for prions, even if this sequence is highly conserved in mammalian PrP. Indeed, 

insertion of eight extra amino acids in the last turns of the helix did not impair prion 

conversion (13). This observation suggested that the C-terminal residues of H2 were not 

involved in the backbone of the prion structure but might rather be, or be included into an 

unstructured or poorly structured part of PrPSc. Other studies indicating that sequence changes 

in this area appear to be compatible with prion conversion support this hypothesis (14-16). It 

was thus appealing to delete the region to determine the impact on PrPC structure and prion 

replication. We performed a series of deletions (Fig. 1) and found that removal of the last five 

residues of the helix H2 did not impair prion conversion (17). This was the first clear-cut 

demonstration that a stretch of residues within the prion-associated domain of PrP is 

dispensable to generate bona fide prions. 

The overall structure of PrPC is maintained even after removal of one-third of helix H2. 

Structural integrity of the PrP deletion mutants was first assessed by perturbation analysis 

based on amide chemical shifts, which are sensitive to conformational changes. Perturbations, 

though wider spread with the ∆190-197 than the ∆193-196 deletion, remain localized in the 

H2-H3 hairpin (Fig. 2A). This was confirmed by comparison of 3D NMR structures of wild-

type and mutant PrPs (Fig. 2B). The ∆193-196 deletion shortened H2 by one turn and a half, 

as expected, but the overall structure of the protein was preserved, which is consistent with 

the ability of the mutant protein to convert into prion (17). Surprisingly, the ∆190-197 

deletion that removes eight highly conserved amino acids and about one third of H2 did not 
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substantially alter the structure of the rest of the protein. The strong lock provided by the 

182C-217C disulfide bond helped maintaining the relative position of the truncated H2 with 

respect to H3, despite the tension induced by shortening of the H2-H3 connection. The 

scaffold formed by aromatic residues was slightly rearranged, but key interactions that drive 

stacking of H1 onto H3 was conserved. The main conclusion was that the 190-197 segment 

was not essential for the integrity of PrP structure. Therefore, failure in converting ∆190-197 

PrPC in cells or in cell-free conversion assay by protein misfolding cyclic amplification 

(PMCA) was not associated with a direct effect of the deletion on the structure of the protein. 

This would be rather associated with the extended size of the deletion that prevents the 

conversion process of PrPC or the establishment of a stable misfolded PrPSc structure. 

The C-terminus of PrP helix 2 is not required for prion conversion.  Ectopic expression of 

PrP from different mammals is known to confer prion susceptibility to RK13 cells (18). 

Populations of stably transfected RK13 cells were selected to express a series of ovine PrP 

with increasing H2 C-terminal deletions. Mutant PrPC were mainly glycosylated and correctly 

routed to the cell surface. Cells were exposed to prions and analysed for proteinase K resistant 

PrPSc content (PrPres) on subsequent passages of the cultures. Ovine PrPC deleted of amino 

acids TTTT (∆193-196) or TTTTK (∆193-197) were successfully converted into PrPSc upon 

infection by each of the prion strains assayed: 127S, LA21K fast, T1Ov and T2Ov. The 127S 

and LA21K fast prions are derived from sheep scrapie isolates and rapidly induce a prion 

disease in tg338 mice overexpressing ovine PrP (19). T1Ov and T2Ov are two prion strains 

isolated on adaptation of a human sporadic CJD case to tg338 mice (20). We found that 

PrP∆193-196 and PrP∆193-197 conferred to RK13 cells the same degree of susceptibility to 

127S infection than the wild-type protein (17). The levels of PrPres accumulated in cells also 

compared at least up to 12 passages of the cultures. The size distribution of cell-formed PrPres 

aggregates was assessed by sedimentation velocity and found to be the same for the wild-type 

and mutant proteins (Fig. 3). However we noted the presence of an additional, more N-

terminally truncated PrPres fragment in cells expressing the deleted PrPs. This might reflect a 

stronger cell processing of ∆PrPSc or the production of some variant structures. However, 

PrPres species with the expected size were always predominant. Populations of cells infected 

by either T1Ov or T2Ov also produced high amounts of mutant PrPres from the first passage 

onwards and at least for eight passages post infection. This was rather unexpected, as 

populations of RK13 cells expressing the wild-type PrPC were not found susceptible to T1Ov 

or T2Ov. Only one subclone selected for its substantially increased susceptibility to prions was 

found to be really permissive to these agents (20). Removal of one additional residue (V192) 
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dramatically reduced replication of 127S prion in RK13 cells but had only a weaker impact on 

T1Ov and T2Ov. Extending further the deletion to generate ∆190-197 conferred resistance to the 

three prion strains. Unpublished results indicate that this is the larger size of the deletion 

rather than the specific absence of the amino acids 190 and 191 that prevented the conversion.  

Altogether we have shown that the 193-196/7 H2 C-terminal part is not necessary for the 

efficient conversion of PrPC into a self-perpetuating protease-resistant form. However we 

noticed that removal of these residues can introduce some effects on PrPres presentation and 

can even favour the replication of certain prion strains difficult to propagate in this cellular 

context, such as T1Ov and T2Ov. Also PrPins193 (13), a mutant with an insertion of eight extra 

amino acids modifying the H2 end was found convertible into PrPSc following T1Ov infection, 

while wild-type PrPC was not. Whether modification or removal of the last turns of helix H2 

facilitates somehow the unfolding of PrPC and thus its conversion by certain prion strains, 

remains to be determined.  

Prions with an internal deletion are infectious and transfer the strain-specific 

information. We further showed that PrPSc lacking residues 193-196 or 193-197 were 

infectious for naïve homologous and wild-type PrP expressing cells. ∆PrPSc were also 

efficient seeds for PMCA. They produced a stereotyped prion disease upon inoculation to 

tg338 mice, which expressed the wild-type ovine PrP. It is commonly thought that prion 

strain-specific characteristics are encoded within differences in PrPSc structures or assemblies. 

∆PrPSc induced a phenotype in tg338 mice that was superimposable to the parental prions 

used for cell culture infections. In particular, PrPres electrophoretic signature and 

neuroanatomical deposition in the infected mouse brain were conserved. Altogether these 

observations indicate that the strain-specific information was not lost through the propagation 

of prions on mutant PrPs. This suggested that the structural determinants of prion strains were 

maintained despite removal of the internal residues.  

Conclusion and perspectives. We have shown that a short portion inside the “90-231” 

segment of PrP is not essential to establish a stable, self-propagating prion structure and to 

allow PrPC to undertake the conformational change. Moreover removal of residues 

corresponding to the H2 C-terminus in PrPC does not impair the encoding of prion strain-

specific information. Are there or not other parts of the infectivity-associated domain of PrP 

that are dispensable for prion structure? The answer to this question is important but 

represents a real challenge as the introduction of significant sequence changes, particularly in 

the globular domain, can alter PrPC structure or routing to the cell surface and thereby may 

prevent conversion even though the area might not be crucial for the structure of prions. New 
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approaches such as the “cell-based mb-PMCA” (21) might overcome some of these 

limitations. 
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Legends 

 

Figure 1. Map of deletions on ovine PrP. 

Amino acid sequence of the C-terminal part of PrP. Residues of the alpha helices are in black 

and those located in unstructured areas are in blue. The two cysteines of the disulfide bridge 

linking H2 to H3 are in purple and asparagines of the two glycosylation sites in bold. 

Deletions are indicated by red lines.  

 

Figure 2. Structural analysis of deletion mutants. 

(A) Perturbation analysis was performed by measuring amide 1H,15N chemical shift deviations 

(∆δ) for PrP∆193-196 (blue) and PrP∆190-197 (red). The results are mapped on the PrP 

structure (in cartoon). Colored spheres represent amide nitrogen atoms with ∆δ>0.1 ppm in 

blue and red for each mutant, in magenta if deviations are observed in both. Yellow and green 

spheres indicate deleted residues in the mutants. 

(B) NMR structure ensembles of wild-type PrP and deletion mutants are shown in cartoon, 

without the disordered N-terminus. The disulfide bond (yellow), Phe (blue) and Tyr (cyan) 

side chains are represented in sticks. Deletions are indicated with a red cylinder. 

 

Figure 3. Size distribution of wild-type and mutant PrPres aggregates accumulated in 

infected cells.  

Lysates of 127S-infected cells were solubilized in detergents, centrifuged on a continuous 10–

25% iodixanol gradient (Optiprep, Axys-shield) and fractionated to separate PrPres assemblies 

by sedimentation velocity (19). Thirty fractions were recovered, PK-treated and analysed of 

PrPres content by immunoblotting. The graph shows quantification of PrPres signals from the 

top to the bottom of the gradient for wild-type (black lane) and ∆193-196 mutant (red line). 
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