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Abstract

Tools from metabolic engineering and synthetic biology are synergistically used in
order to develop high-performance cell factories. However, the number of successful
applications has been limited due to the complexity of exploring efficiently the
metabolic space for the discovery of candidate heterologous pathways. To address this
challenge, retrosynthetic biology provides an integrated framework to formalize and
rationalize the problem of importing biosynthetic pathways into a chassis organism
using methods at the interface from bottom-up and top-down strategies. Here, we
describe step by step the process of implementing a retrosynthetic framework for the
design of heterologous biosynthetic pathways in a chassis organism. The method
consists of the following steps: choosing the chassis and the target, selection of an in
silico model for the chassis, definition of the metabolic space, pathway enumeration,
gene selection, estimation of yields, toxicity prediction of pathway metabolites,
definition of an objective function to select the best pathway candidates, and pathway
implementation and verification.
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Retrosynthetic design of heterologous pathways 

Pablo Carbonell, Anne-Gaëlle Planson, and Jean-Loup Faulon 

Abstract 

Tools from metabolic engineering and synthetic biology are synergistically used in order to 

develop high-performance cell factories. However, the number of successful applications has 

been limited due to the complexity of exploring efficiently the metabolic space for the 

discovery of candidate heterologous pathways. To address this challenge, retrosynthetic 

biology provides an integrated framework to formalize and rationalize the problem of 

importing biosynthetic pathways into a chassis organism using methods at the interface from 

bottom-up and top-down strategies. Here, we describe step by step the process of 

implementing a retrosynthetic framework for the design of heterologous biosynthetic 

pathways in a chassis organism. The method consists of the following steps: choosing the 

chassis and the target; selection of an in silico model for the chassis; definition of the 

metabolic space; pathway enumeration; gene selection; estimation of yields; toxicity 

prediction of pathway metabolites; definition of an objective function to select the best 

pathway candidates; and pathway implementation and verification. 

 Key words: synthetic biology, metabolic engineering, retrosynthesis, metabolic pathway 

1. Introduction 

Production of value-added compounds such as drugs or biofuels in chassis organisms often 

requires importing heterologous genes to build efficient biosynthetic pathways. 

Computational techniques have provided useful methods for the development of such cell 

factories through a streamlined process for modeling and design of a complete pathway at 

each step of its construction. Recent advances in systems and synthetic biology are further 

enabling a systematic practice through an integrated computational framework for rational 
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biosynthetic pathway design. Nowadays, genome-scale metabolic network reconstructions 

providing an accurate in silico model of the metabolism are available for many industrial 

chassis organisms (1). In such models, the effects on steady-state fluxes of metabolic 

interventions like enhancement of substrate uptake, supplements addition, reduction of 

undesirable by-products fluxes, introduction of heterologous pathways, or product export to 

the extracellular medium (2) can be predicted with a remarkable degree of agreement with 

experimental observations (3). Furthermore, an increasingly formalization of the space of 

biochemical transformations in metabolic networks is allowing the designer to explore 

creative ways to implement alternative biosynthetic pathways (4).  

To that end, metabolic modeling for heterologous pathway design can be done from two 

complementary approaches: a topological approach using hypergraphs, where catalytic 

reactions are hyperedges connecting node substrates to products; and a steady-state approach, 

where stoichiometry of reactions is used in order to study the properties of all feasible 

equilibrium states. Knowledge-based comparative analysis, graph search algorithms, and 

constraint-based models are alternative approaches used in order to infer meaningful 

pathways in metabolic networks, even if there is missing information on the enzymes.  

Several metabolic databases with rich information are available: one of the most 

comprehensive is MetaCyc and its associated BioCyc collection of pathway/genome 

databases (5); similarly, KEGG is a database resource that integrates genomics, chemical and 

systemic functional information (6); BRENDA is another database that contains one of the 

most complete collections of enzyme functional data (7). Gaps or incomplete knowledge, 

however, are still present in many cases, especially when looking for novel ways to synthesize 

compounds. In this regard, computational approaches can provide new alternatives by 

predicting putative heterologous pathways producing the target compound. In order to 

successfully handle this challenging task, the design process needs to be rationalized by 
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following the principles of synthetic biology: modeling of the biological system of interest, 

modular design through standardization, goal-oriented optimization, and experimental 

validation. To contribute to this endeavor, we present here a retrosynthetic design approach 

that aims to provide a streamlined methodology for addressing the general problem of 

obtaining successful high-yield production of target compounds in cell factories. 

1.1 The retrosynthetic framework for heterologous pathway design 

Retrosynthesis algorithms are applied to metabolic networks in order to perform a backwards 

search from the target compound to the host metabolites through the iterative application of a 

defined set of biochemical transformation rules. Depending on the level of atomic resolution 

of those rules, recruited enzymes in the biosynthetic pathways may involve novel compound 

intermediates and putative reactions with unknown efficiency. A successful expression of 

those genes in the chassis organism needs to be addressed. Therefore, subsequent 

optimization of the engineered strain through genetic, metabolic and enzyme design 

approaches would be usually necessary in order to maximize production yields of the target. 

We present here a unified framework that combines several techniques involved in the design 

of heterologous biosynthetic pathways through a retrosynthetic biology approach, enabling by 

these means the flexible design of industrial microorganisms for the efficient on-demand 

production of chemical compounds of interest. The method for retrosynthetic design of 

heterologous pathways consists of the following steps: 

1. First, the problem is defined by choosing the chassis organism and the target compound. 

2. Second, an in silico reconstructed model of the organism containing at least the 

stoichiometric reactions involved in its metabolism is defined from biological databases 

and literature. 
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3. Third, the metabolic space is constructed from all known metabolic reactions and 

expanded to putative promiscuous reactions. 

4. Fourth, heterologous pathways producing the target compound from endogenous 

metabolites in the chassis are enumerated using a retrosynthetic algorithm. 

5. Fifth, gene sequences encoding heterologous enzymes are chosen in order to maximize 

gene expression and enzyme performance in the chassis organism. 

6. Sixth, steady state fluxes for each pathway are estimated through flux balance analysis. 

7. Seventh, toxicity of intermediate metabolites are estimated by using a QSAR model. 

8. Eight, a cost function is defined for the pathway and the best pathways are chosen. 

9. Ninth, selected pathways are implemented and their efficiency is verified.  

2. Materials 

The following list provides a review of the main metabolic engineering tools used at each step 

of the heterologous pathway design, including some specific tools for retrosynthesis design: 

1. Choosing the chassis: a host organism optimized for metabolic engineering, such as 

strains from Escherichia coli, Bacillus subtilis or Saccharomyces cerivisiae. 

2. Selecting an in silico model of the chassis organism: from repositories of in silico 

model organisms like the databases BIGG (8) or BioModels (9). 

3. Construction of the metabolic space: metabolic databases such as MetaCyc (5) or 

KEGG (6) and enzymatic activity databases such as Brenda (7). 

4. Pathway enumeration: software MetaHype (10). 

5. Gene selection: genomics databases (e.g. UniProt, NCBI Entrez) focused on protein 

(enzyme) families. 
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6. Flux balance analysis: metabolic analysis software (e.g.  COBRA (11), OptFlux (12), 

COPASI (13)). 

7. Metabolite toxicity data for the chassis, either experimental or predicted (e.g. EcoliTox 

(14)). 

8.  Definition of a final cost function (e.g. RetroPath (15)). 

9. Experimental implementation: 

a) Molecular biology reagents for PCR and cloning. 

b) Bacterial strains for cloning and expression. 

c) Expression vectors. 

d) Growth media. 

e) Analytical techniques for protein identification (electrophoresis gel). 

f) Chromatography system. 

g) Analytical system for metabolite identification. 

3. Methods 

The design methodology for any metabolic engineering application starts with the selection of 

a chassis organism along with an associated genome-scale in silico model of its metabolic 

network (see Note 1). The retrosynthetic approach offers as well the possibility of performing 

an additional preliminary modeling step to expand the starting metabolic reaction space and, 

thus, increasing the possibility of discovering novel biosynthetic routes. These prior steps will 

provide the designer with a detailed knowledge base about the metabolic system that can be 

used advantageously at later stages of the design. In the same fashion, target compounds need 

to be defined at this stage. 

A basic methodology for retrosynthetic design of heterologous pathways will consist of the 

following steps (Fig. 1): 1) choosing the chassis; 2) selecting an in silico model for the 
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chassis; 3) definition of the metabolic space; 4) pathway enumeration; 5) gene selection; 6) 

estimation of yields; 7) toxicity prediction of pathway metabolites; 8) definition of an 

objective function to select the best pathway candidates; 9) pathway implementation and 

verification. 

3.1. Choosing the chassis 

An early decision that necessarily influences the rest of the retrosynthetic design process is 

the choice of the chassis organism where the desired compound will be produced. For 

example, in order to increase the production of a compound naturally produced in plants, its 

biosynthetic pathway, if known, is imported into an industrial chassis organism. Factors that 

need to be considered when choosing the chassis include the following: 

1. The extent and level of curation of the organism’s metabolic pathways in databases. 

2. The availability of a genome-wide reconstructed in silico model that has been 

experimentally verified (16), and that is ready to be used in constraint-based modeling 

to quantitatively estimate steady-state fluxes (see Note 2). 

3. The availability of information about toxicity effects of heterologous metabolite 

intermediates in the organism. 

4. The fact that biosynthetic pathways may involve large enzymatic complexes (such as 

polyketide synthases or non-ribosomal synthases for secondary metabolite synthesis) 

(17). 

5. Similarly, specific redox reactions catalyzed by the CYP450, which is often needed in 

the last steps of metabolite synthesis, add another layer of complexity because of the 

difficulty to model these reactions and often a need to optimize further its catalytic 

activity through protein engineering (18). 
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3.2. Selecting an in silico model for the chassis 

In silico organisms models are currently available for many industrial strains, including 

strains evolved for efficient production in Escherichia coli, Saccharomyces cerevisiae or 

Bacillus Subtilis (19-21). Most of them have been deposited in open databases such as BIGG 

(8) or BioModels (9) and numerous tools exist for their analysis and simulation (3). 

Example of chassis selection for production of resveratrol in E. coli. Resveratrol (3,5,4’-

trihydroxy-trans-stilbene) is a plant phenolic compound with important associated health 

benefits like prevention of cardiovascular diseases, cancer and promotion of longevity in 

several animal systems (22). Resveratrol, however, is only found in a limited number of plant 

species, including grape (Vitis sp.) and peanut (Aracis hypogaea). Because of its beneficial 

properties, there is an increasing interest in the optimization of the production of resveratrol in 

microorganisms (23,24). Interestingly, E. coli provides an industrial chassis organism with 

one of the best characterized in silico models (19). As shown in Fig. 2, production of 

resveratrol is derived from phenylalanine that is transformed into cinnamic acid by 

phenyalanine ammonia lyase (PAL, EC 4.3.1.24). Next, cinnamic acid is transformed into 4-

coumaric acid by cinnamate-4-hydroxylase (C4H, EC 1.14.13.11), which is further 

transformed into coumaroyl-CoA by the 4-coumarate:coenzyme A (CoA) ligase (4CL, EC 

6.2.1.12). Then, the stilbene synthase (STS, EC 2.3.1.95) condenses the coumaroyl-CoA and 

three units of malonyl-CoA to form resveratrol (23). In the rest of this chapter, we will present 

the different steps of a retrosynthetic design methodology for metabolic engineering of 

resveratrol production in E. coli. 

3.3. Definition of the retrosynthetic metabolic space  

The power of retrosynthesis for heterologous pathway design resides in the way 

representations of chemical biotransformations can provide a generalization of important 
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chemical features. The most valuable information (but also the most challenging) obtained 

from retrosynthesis analysis is the identification of putative metabolic pathways involving 

promiscuous biochemical transformations that often had not yet been well annotated. Several 

techniques have been proposed in order to expand the metabolic reaction space to contain 

such putative reactions. The basic idea is to use a set of reaction rules from which not only 

known reactions can be generated but also novel reactions. To define reaction rules, several 

representations have been used, such as those derived from bond-electron matrices (25) (see 

Note 3), or on the smallest molecular substructure that can be modified through the 

transformation (26). The combinatorial complexity associated with such representations is a 

major issue that we have recently addressed by proposing a tradeoff solution based on 

molecular signatures (15). The main advantage of the molecular signature method relies on 

the control of the complexity of the pathway search through the selection of the level of 

specificity in the reaction representation. 

For any reaction found through reaction rules, there are two essential questions to consider: a) 

Is it a putative reaction or has it been reported previously in the databases? b) Is there any 

known enzyme sequence annotated for such biochemical transformation? In addition, as much 

information as possible about the selected reaction needs to be collected, including if it has 

been observed for some enzyme as a promiscuous or side reaction, or what are their kinetics 

constants, cell localization, or phylogenetic diversity. Main sources for such information are 

enzymatic databases like BRENDA (7) and metabolic databases like MetaCyc (5) or KEGG 

(6). 

Example of metabolic space expansion. 4-coumarate:CoA ligase (4CL), an enzyme 

involved in the phenylpropanoid biosynthesis, attaches 4-coumaric acid to the pantetheine 

group of Coenzyme-A (CoA) to produce 4-coumaroyl-CoA, the precursor of resveratrol. 

Besides this native reaction, however, 4CL is reportedly able to catalyze promiscuously, 
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among others, reactions producing caffeoyl-CoA from caffeate, feruloyl-CoA from ferulate, 

sinapoyl-CoA from sinapate, cinnamoyl-CoA from cinnamic acid (27). Interestingly, 

substrate cinnamic acid is transformed into cinnamoyl-CoA, which may also serve as a 

precursor for the production of resveratrol. As shown in Fig. 3, both reactions can be derived 

from a single reaction rule, since the net balance of bonds that are formed and broken is 

identical for both reactions. 

3.4. Enumerating heterologous pathways 

The metabolic space that has been defined in the previous step consists of both endogenous 

and heterogeneous reactions. In order to produce exogenous compounds, the corresponding 

metabolic routes containing heterologous enzymes that start from endogenous metabolites 

must be found (see Note 4). Two methods can be applied in order to list all possible pathways 

leading to the target compound (10) (see Note 5): steady state and topological methods. 

Pathway enumeration through the steady-state approach. The problem of enumerating 

heterologous pathways can be approached by using the well-known metabolic engineering 

technique of computing elementary modes in a metabolic network (28). By definition, any 

pathway producing a target compound can be formed by some positive linear combination of 

the elementary modes. Here, we are focusing on a specialized version of elementary modes 

studies. Namely, we are interested in finding all pathways connecting endogenous metabolites 

to the target compound through heterologous enzymes. In particular, it is essential to correctly 

define what are the inputs, outputs, and the stoichiometric matrix of the metabolic system as 

follows: 

1. Input: any metabolite that can be produced in the chassis organism; 

2. Output: any metabolite that is produced and is not further consumed by the 

heterologous network; 
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3. Stoichiometric matrix: it is given by the reactions that are heterologous to the chassis 

organism. 

Special care needs to be taken with those endogenous metabolites that are also produced in 

the heterologous network (usually co-factors and currency metabolites such as ATP, NAD 

and protons, which participate in a large number of reactions (29), but also by-products of the 

biosynthesis), since they will appear in the system defined above as both inputs and outputs, 

generating thus elementary modes containing loops. An easy way to prevent the enumeration 

of these return loops is by replacing endogenous products by a generic end node sink (see 

Note 6). 

Under this set up, each elementary mode will correspond to a pathway that produces 

heterologous compounds. Because the number of pathways needs to be kept minimal, all 

pathways of interest producing a target compound should be contained in the elementary 

modes. In addition, elementary modes containing loops should not be considered as pathway 

candidates. Several software packages are available that compute the elementary modes of a 

given metabolic network. A popular implementation is Metatool (28). 

Pathway enumeration through the topological approach. In the topological approach, each 

reaction is represented by a node of a hypergraph that is connected through hyperedges to the 

substrates (see Note 7). The strategy used in the hypergraph approach for pathway 

enumeration is the application of a recursive backward algorithm that traverses the network 

starting from the target in order to search for all possible pathways connecting the target to the 

source (see Note 8).  

The main advantage of this approach is computational efficiency. Another remarkable feature 

of the topological approach is that it allows for supplements and bootstraps molecules 

identification. Supplements are compounds that provide new biosynthetic pathways if added 

to the medium because they act as precursors of the target compounds. Bootstraps are 
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compounds that are needed to be present in the medium at least in small amounts in order to 

allow the reactions in the pathway to start producing the target compound. A software tool for 

enumerating pathways using the topological approach is Metahype (10). 

Example of pathway enumeration of resveratrol producing pathways in E. coli. Starting 

from precursors in E. coli, five alternative viable pathways producing resveratrol are 

identified by the retrosynthetic approach (shown in Fig. 4). One of the pathways consists of 

three enzymatic steps, while the rest contain four enzymes. The question that is investigated 

about these pathways in the next sections is how to prioritize them depending on their 

expected performance, as a preliminary step before selecting the ones that would eventually 

be implemented.  

3.5. Gene compatibility for expression in the host 

Heterologous enzymes of the pathway need to be successfully expressed. Gene compatibility 

with the expression host is crucial, although it remains still a challenging task. Facilities 

proposing gene synthesis with codon optimization (30) have been developed in the past few 

years and are often used for metabolic engineering. In order to select the gene, several 

strategies are possible: 

1. Rare codons, and GC content are known parameters that can influence gene expression, as 

well as RNA secondary structure (30). In addition, other parameters such as sequence 

length or hydrophobicity might also influence a successful gene expression. 

2. Homology search of heterologous genes: A blast search of the National Center of 

Biotechnology Information (NCBI) nucleotide data bank can identify sequences predicted 

to encode the enzyme having the desired activity. Phylogenetic trees can be built to 

identify groups of the different enzymes identified (31). Minimizing the phylogenetic 
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distance between the chassis organism and the organism where the gene is endogenous 

can also help in order to choose the homologue enzyme. 

3. Scoring gene compatibility: An adequate strategy for gene sequence selection is to 

associate a score to each sequence, so that only sequences with top score are further 

considered. In a simple approach, the score can be built as a weighted sum of the 

considered factors, such as GC content or phylogenetic distance. Because of the 

multiplicity of factors that can influence enzyme expression, it might be difficult to 

blindly assign weighting priorities to each factor. One possible approach to address this 

issue is to build a statistical learning predictor based on techniques such as multilinear 

regression, support vector machines, or decision trees (32). The training set consists of the 

selected sequence properties with positive data formed by the list of enzyme sequences in 

the chassis, while the negative set has to be chosen as a significantly diverse selection of 

heterologous enzyme sequences (see Note 9). 

Example of gene selection in resveratrol production. Besides its production from stilbene 

synthase (STS), production of resveratrol has also been observed as a cross-reaction from 

chalcone synthase (CHS, EC 2.3.1.74) (33). Interestingly, CHS is ubiquitous in plants and is 

also found in bacteria, while STS is only found in plant species that accumulate resveratrol 

and other related compounds (22). Selecting a prokaryotic CHS gene from an organism closer 

to E. coli could, thus, ease its successful expression. To that end, the retrosynthesis 

methodology can be applied in order to select best gene candidates expressing CHS enzyme, 

with the goal of converting it into an efficient resveratrol-producing factory. Table 1 provides 

the score of CHS genes as candidates for promiscuously producing resveratrol in E. coli. 
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3.6. Estimating yield and drains 

The next step in pathway design corresponds to metabolic analysis of the enumerated 

pathways in order to get an estimation of growth and yield of the target product associated 

with each metabolic intervention. This step is typically performed for the steady state through 

flux balance analysis (FBA) (3). To that end, an in silico model of the metabolic network of 

the chassis organism, normally given in SBML representation, needs to be obtained from the 

literature or from databases such as BIGG. Several software packages for FBA like the 

COBRA toolbox (11) are available. The following steps should be followed to perform flux 

balance analysis of the heterologous pathways: 

1. Consistency check between the in silico SBML model and the metabolic database: 

Because they contain only reactions reconstructed from high-throughput omics data, 

genome-wide reconstructed in silico models do not contain such level of detail in the 

pathways as the one in metabolic databases like MetaCyc or KEGG. Therefore, a 

minimum level of consistency needs to be guaranteed between the metabolic network 

model from databases described in Section 3.3 and the in silico SBML model for FBA, 

since it might happen otherwise that the heterologous pathway obtained from pathway 

enumeration in Section 3.4 is fully or partially disconnected from the chassis in the in 

silico model. Therefore, it is necessary to verify that the endogenous precursors in the 

pathway are present in the in silico model, either because they are being produced by 

some enzymatic reaction or by adding the ones missing to the medium. 

2. Inserting the heterologous pathway and their corresponding transport and exchange 

processes: Next, the heterologous pathway has to be imported into the model by adding as 

many reactions as enzymatic steps are present in the pathway. The target product is 

exported out of the cell through the use of the relevant transport reactions (see Note 10). 

In addition, any side product of the reaction steps, which is not being further degraded by 
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any reaction has to be exported out of the cell. In silico models generally make distinction 

between the exchange reaction between the extracellular medium and the periplasmic 

space, and the net exchange reaction of the metabolite with the system (see Note 11). For 

all reactions present in the model, constraints need to be defined by placing bounds in 

their reaction fluxes. For a nonreversible reaction, a bound between 0 and infinity might 

suffice, although more accurate constraints could be used based on empirical data. 

Similarly, bounds in exchange reactions have to be defined. 

3. Setting the objective of the flux balance analysis: Constraint-based FBA is a technique 

that allows computing the optimal steady state fluxes in the in silico once bounds in fluxes 

and an overall objective function has been established. Generally, the objective function is 

defined by a linear combination of fluxes experimentally determined to correlate with 

biomass growth. In the case of organisms engineered through genetic modification to 

produce a target compound in order to estimate the effect of the pathway insertion several 

goals can be established: a) comparison of the optimal growth before and after pathway 

insertion; b) computation of maximum yield (generally leading to zero growth) by setting 

the goal to produce the desired compound; c) computation of the optimal biomass-product 

coupled yield goal (34). These optimal values provide an overall overview of what can be 

achieved by the modified strain as a cell factory of the desired compound. 

Example of yield estimation of resveratrol in E. coli. Using the COBRA toolbox, fluxes 

maximizing resveratrol and biomass yields were computed for the 5 alternative pathways in 

Fig. 4, as shown in Table 2. Optimal flux for biomass in wild type strain is 0.737 (a.u.). A 

similar value is obtained in the strain that has been engineered with Pathway 1, while the 

maximum yield for resveratrol is 1.951. The strain with Pathway 2 shows an increase in 

biomass (1.111), indicating that some of the by-products can be used to increase growth. 

Maximum production of resveratrol (3.589) is significantly increased in this pathway. 
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Pathway 3 and 4 correspond to biomass and resveratrol yields that are in between the 

maximum values obtained by Pathway 1 and 2. Finally, Pathway 5 is the one that yields the 

maximum production of resveratrol (3.951). 

3.7. Toxicity effects of heterologous pathways 

In metabolic engineering, the importance of compound toxicity has been pointed it out by 

several authors (35,36). Indeed, for pathway performance the less toxic molecule is usually 

desired, while conversely the highly toxic molecule is wanted when producing therapeutics 

such as antimicrobials. In both cases, detailed information on compound toxicity is important 

in the design of metabolic pathways and toxicity is a parameter that should be included in the 

computer-aided pathway design framework (15). In order to establish a reference database of 

toxicity data in the chassis organism, a library of MIC (minimal inhibitory concentration) or 

IC50 (half maximal inhibitory concentration) experimental values should be built (14). These 

experimental values can then be used to develop a quantitative structure-activity relationship 

(QSAR) (37) model for toxicity of chemicals towards the chassis organism. The process 

consists of the following steps: 

1. Firstly, a library should be designed in a way to provide a representative set of chemicals 

with maximal chemical diversity. The selection of compounds can be done using a 

method based on the optimal clustering of the chemical space determined by the distances 

defined as the chemical dissimilarity between compounds (see Note 12). A significant 

region of the chemical space has to be covered in order to maximize the spectrum of 

toxicity values. 

2. The bacteria used for the toxicity assay must have been identified at the genus and species 

level. Standardization for accuracy of results and reproducibility is crucial, and as an 
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example one important parameter to control is the inoculum size (usually 5.10
5
 colony-

forming units (cfu) ml
-1

 for broth dilution).  

3. A fresh pure culture of E. coli strain (such as E. coli ATCC 25922 usually chosen for 

toxicity assay) is used for the inoculum. Bacteria are grown in liquid medium at 37°C, and 

bacterial growth determined at the stationary phase after incubation for a defined period 

(for example 18 hours). Toxicity assay can be performed in 96-well microtiter plates. The 

chemicals are screened by serial dilution to assess their toxicity towards E. coli. Controls 

are important to add for each experiment. A positive control (as a triplicate) consists to 

bacterial culture without any chemical, and a negative control (as a triplicate) to monitor 

the absence of contamination consists to the media only.  

4. Bacterial cell growth is monitored by measuring the turbidity (at 600 nm) at the stationary 

phase and then data analyses are carried out to determine MIC or IC50. Dose-response 

curves are built for each compound and fit using the sigmoidal equation: 

      

! 

y =
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1+
C

IC
50

" 

# 
$ 

% 

& 
' 

p
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where the ODmax represents the maximal OD600nm, C is the concentration of the compound, 

IC50 is the molecule concentration that inhibits 50% of the bacterial growth, and p the Hill 

slope describing the steepness of the curve. Only IC50 extracted from the curve fitting having 

a coefficient of determination R
2
>0.9 should be used in the training set. The Levenberg-

Marquardt least squares fitting algorithm for the sigmoidal curve can be used.  

5. In order to predict toxicity values of intermediates, a quantitative structure-activity 

relationship (QSAR) model of toxicity has to be developed from the experimental dataset 

by using a statistical software package like the pls library in R (38). Descriptors for the 

compounds in the dataset might be chosen in the same fashion as the ones selected for 
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performing the clustering of chemicals. For regularization purposes, IC50 values should be 

transformed into log(IC50). Two basic statistical methods can then be applied in order to 

build the QSAR model: 

a) Principal component analysis (PCA) in order to reduce the dimension of the signature 

vectors, by keeping only components whose variance is above some given cutoff ratio 

of the total variance in the set. 

b) Model fitting by the partial least squares (PLS) regression method (38). PLS 

decomposes the principal components of the molecular signature descriptors into 

several latent variables that correlate best with the toxicity values log(IC50). 

6. Validation of the QSAR is typically accomplished through two steps: 

a) Internal validation through the leave-one-out method; 

b) External validation by using a list of experimental values that have not been used 

before for training and validation. 

Example of toxicity estimation of resveratrol intermediates in E. coli. Table 3 lists 

predicted toxicity values for the intermediate heterologous metabolites involved in the 

production of resveratrol, as computed by the QSAR model of the EcoliTox web server for 

prediction of toxicity in E. coli (14). Typically, inhibition values for E. coli endogenous 

metabolites are found between IC50 = 0.1 g/1 and 50 g/l. Predicted values for the resveratrol 

intermediates were also found within this range. Based on these estimations, high inhibition 

effects might not be expected due to the insertion of the pathways. Cinnamoyl-CoA, the 

heterologous intermediate of Pathway 4 and Pathway 5 in Fig. 4, is the most toxic compound 

in the list. 
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3.8. Defining a cost function for the pathways 

As presented in previous sections, several aspects are to be considered when estimating the 

cost of pathway insertion. A quantitative definition of a cost function associated with the 

pathway provides the possibility of ranking enumerated pathways, so that top pathways can 

be selected by the designer for implementation. The process is as follows: 

1. A simplified scheme consists on dividing the effects of pathway insertion into three main 

factors: enzyme compatibility and reaction efficiency (Section 3.3 and Section 3.5), 

expected yield (Section 3.6), and metabolite toxicity (Section 3.7). A possible definition 

of the pathway cost function is as follows (15): 

     

! 

W (c,") = #$ fluxvc(") + $ path K (S(r))

r%"

N

& + $tox T ( p)

p%r

&
r%"

N

&

$ flux ,$ path,$tox ' 0

$ flux + $ path + $tox = 1
 

(2) 

where νc(r) is the flux for pathway r producing compound c, as described in Section 3.6, 

K(S(r)) is the cost associated with sequence S of the enzyme catalyzing the reaction r in the 

pathway r, and T(p) is the toxicity (-log10(IC50)) associated with the metabolite p product of 

reaction r, as defined in Section 3.7.  

2. The cost for the sequence K(S(r)) has to take into account the fact of whether reaction is 

found annotated in databases for the given sequence or it is found based on a prediction as 

described in Section 3.3. In the case of a putative reaction, a penalty is added to the cost 

as follows: 

   

! 

K (S(r)) ="pred (r) +#(S)
 (3)

  

where   

! 

"(S)  is the compatibility for sequence S as defined in Section 3.5, and 
  

! 

"pred (r)  is 

defined in order to assign an additional cost to those enzyme sequences S where the 



 19 

corresponding reaction r is either catalyzed as a promiscuous or side reaction or its 

assignment is only putative. Therefore: 

  

    

! 

"pred (r) =
"penalty promiscuous/predicted

0 annotated

# 
$ 
%  (4)

  

with penalty constant Gpenalty arbitrarily set to a value that is a upper bound for the score of 

sequence compatibility: 
  

! 

"(S) # $penalty.  

3. The choice of values for parameters (lflux, lpath, ltox, Gpenalty) depends on each experimental 

set up as well as on the preferences set up by expert designers. A first approach is to set 

the values so that the cost function assigns less cost to that pathways that contain only 

enzymes annotated in databases (no putative enzymes). In (15), parameters were fitted in 

this way to (0.025,1.0,0.398,5.0). 

Example of ranking resveratrol pathways. For the resveratrol pathways, gene costs have 

been computed from the RetroPath server (15) and their values are shown in Table 4. The 

total cost associated with each pathway, according to Equation 2 and to the weighting 

parameters is shown in Table 5. From these results, Pathway 2 appears finally as the best 

candidate pathway to engineer in E. coli for the production of resveratrol, a result that is due 

both to the fact that the pathway contains less putative enzymatic steps and to the higher 

expected yield. Pathway 1 appears as the second ranked pathway because even if it involves 

only three enzymes in comparison with the four enzymes from the other pathways, it contains 

two predicted or putative reactions (cinnamic acid production from PAL and again STS). 

Pathway 3, which is similar to Pathway 2 except for the first step (2-enoate reductase), 

predicted as a promiscuous reaction, appears next in the ranking. Finally, Pathways 5 and 4, 

containing three out of four predicted reactions (promiscuous activity predicted for 4CL and 

CH4, and STS), appear at the end of the ranking. 
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3.9. Pathway implementation 

Validation of the retrosynthetic design is performed through pathway implementation of the 

top ranked heterologous pathways. The process consists typically of the following steps (Fig. 

1):  

1. Gene amplification: Genes can be amplified from genomic DNA, when available, or 

synthesized. The ability to synthesize genes in whole novel genetic pathways is now 

routinely used for metabolic engineering. Software and websites to facilitate the 

execution of oligonucleotide assembly into long custom sequences are available (39). 

Chemical synthesis allows synthesizing oligonucleotides of up to 120–150 nucleotides 

in length. Numerous methods have been developed to assemble relatively short 

synthetic oligonucleotides into longer gene sequences through ligation or PCR-

mediated assembly. Also, codon usage varies by organism and has implications for 

heterologous expression of proteins. Codon optimization, which consists to render a 

nucleotide sequence with suitable codon usage for the expression host, might also help 

the gene expression but will not necessarily maximize the protein expression level.  

2. Expression strain: Common expression strains are obtained from resources such as E. 

coli genetic Stock Center (New Haven, CT) or companies as Life TechnologiesTM 

(Paisley, UK) and New England Biolabs (Ipswich, MA, USA). E. coli strains specially 

developed for gene expression are chosen according to the expression system needed: 

tightly-controlled expression or expression level modulation, and depending on the 

type of the promoter used.  

3. Promoter selection: Popular promoters are the lac-promoter, allowing gene expression 

modulation, and the promoters pBAD of the arabinose operon and pRHA of the 

rhamnose operon that offer a tight control of gene expression. Tight expression control 

prior to target protein induction can be crucial for expression of host-toxic proteins to 
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avoid deleterious events ending in mutations that may affect target protein function, or 

cell death.  

4. Plasmid construction: Constructing a multiple enzyme biosynthetic pathway implies to 

combine several genes into a single plasmid or to use compatible expression plasmids. 

Commercially available plasmids as pETDuet-1, pACYCDuet-1 and pCDFDuet-1 

(Novagen, (40)) are widely used in metabolic engineering. Other systems allowing the 

cloning of multiple genes into one single plasmid such as pQlink vectors are also 

available (41) from repository sources such as Addgene (Cambridge, MA, USA).  

Gene assembly methods are also an alternative to combine multiple genes into a 

plasmid that have their expression under the control of their own promoter (42,43). 

Nowadays, a wide selection of expression vectors is available, which differ in their 

origins of replication, promoters, translation initiation regions, antibiotic resistance 

markers and transcription terminators. 

5. Bacterial culture: Bacterial culture is commonly carried out at 30°C or 37°C in rich 

medium, although optimization might be needed. It might be necessary, however, to 

address problems related to protein misfolding and solubility. For example, to limit 

protein aggregation the temperature can be decreased to 25°C, and the use of minimal 

medium can be more favorable for metabolite production (44). Optimization of growth 

temperature and induction conditions, chaperone-coexpression system, and fusions to 

solubilizing partners are among numerous solutions to increase product yields. 

6. Verification of protein expression: Preparation of total cell protein samples is followed 

by the separation of protein samples by SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) and eventually western-blot if antibodies 

recognizing the protein target are available. For high-throughput screening for protein 

expression, fluorescent partners can be used. Fluorescent proteins can be used to 
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monitor the expression level of soluble or membrane-embedded proteins (45) and 

coupled with flow cytometry allow large fluorescence-based library screening. 

7. Identification of the target compound: Once the protein expression has been 

successful, the target compound must be identified using analytical techniques. 

Chemical production can be determined using the intrinsic spectroscopic properties of 

the chemical. Metabolites contain a high chemical diversity and the two main 

analytical methods that can provide structural data are the nuclear magnetic resonance 

(NMR) and mass spectrometry (MS) with different ion sources and mass detectors 

(46). To detect the metabolite of interest, MS is a robust technique when coupled with 

chromatography. Gas chromatography (GC-MS) has the main advantage of providing 

high separation efficiency. However, a major drawback of GC-MS is that the 

compound must be volatile. Liquid-chromatography coupled to mass spectrometry 

(LC-MS) represents an attractive alternative to GC-MS because of its versatile 

separation technique (hydrophilic interaction liquid chromatography (HILIC) MS, 

reverse phase LC-MS) (46,47). LC/MS has emerged as a popular and powerful tool. 

Following this step, preparative methods such as HPLC coupled with spectrometry are 

usually used to quantify the metabolite production. For example, metabolite can be 

specifically separated on a C18 column with a determined acetonitrile/water gradient. 

A large number of purification methods exist and need to be optimized for each 

compound. 

4. Notes 

1. The in silico model should contain at least a reconstructed stoichiometric network of the 

organism substantially covering their main metabolic routes. Transcription regulation, 
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thermodynamics, kinetics as well as other information is increasingly becoming available in 

these models and will bring in the future the design to finer levels of detail. 

2. There is a basic difference between the information that is required in the model in order to 

design heterologous metabolic pathways and to estimate steady-state fluxes. In the former 

case, the most essential information is the knowledge about the metabolites that are 

endogenous to the organism and therefore can be used as precursors in the heterologous 

pathway. In the latter case, the accuracy of the stoichiometric relationship between those 

reactions that directly influence the pathway is required, while partial knowledge about 

upstream reactions with low influence into the pathway can be tolerated. 

3. In bond-electron matrices (BEM), each row and column correspond to one atom of the 

compound, and each entry is the order of the covalent bond between the atoms. The BEM of a 

reaction is defined as the difference between the end (right) and begin (left) BEMs. 

4. The reason why we need to enumerate all pathways instead of searching for the shortest 

one is because not always the shortest is the best in terms of the cost associated to the 

pathway, as described in Section 3.8. 

5. We are only interested in enumerating minimal hyperpaths, loosely meaning cycle-free 

hyperpaths (see (10) for proper definitions). 

6. The basic limitation of the elementary modes approach is its computational complexity, 

which can make slow the computation in case of large heterologous networks. 

7. The hypergraph representation is used in order to require all substrates to be present for the 

reaction to be activated. 
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8. The hypergraph approach can lead to solutions that are not stoichiometrically balanced, 

since stoichiometry is not taken into account. These solutions need to be filtered out from the 

output of the algorithm. 

9. A detailed description of such type of predictor can be found in (15) as well as in the 

patented method from DNA 2.0 (30). 

10. As in silico models become more detailed, higher attention needs to be paid in order to 

describe accurately the process inside the cell. Cell compartmentalization, for instance, might 

imply the need for enzyme co-localization in order for the pathway to proceed. This aspect is 

especially relevant for plant metabolism. Similarly, exporting the metabolite out of the cell 

might involve several transport processes through different cell compartments (11). 

11. The flux balance might require for metabolites to be taken outside of the extracellular 

medium in order to make the net flux zero, avoiding accumulation. 

12. Several clustering methods can be applied, depending first on the type of molecular 

descriptors used to define molecular similarity and on the clustering algorithm. Hierarchical 

agglomerative clustering should be preferred, since it allows building libraries of variable 

size. 
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Figure Captions 

Fig. 1. Flowchart of the retrosynthetic methodology for heterologous pathway design. The 

process consists of nine steps: it starts by choosing the chassis organism and the target 

compound, followed by a selection of an in silico model of the chassis, and the definition of 

the metabolic space. The process continues with pathway enumeration, for each reaction in 

the pathway, genes are selected based on their compatibility to the host and a penalty is added 

if the reaction appears as a putative promiscuous reaction. Next, steady state yields are 

estimated, as well as toxicity of reaction products. These values are combined in order to 

score and select the best pathway(s), which are finally implemented for verification. 

Fig. 2. Outline of phenylpropanoid alternative pathways producing resveratrol. In the center, 

the backbone of the native pathway is shown, consisting of phenyalanine ammonia lyase 

(PAL), cinnamate-4 hydroxylaxe (C4H), 4-coumarate-CoA ligase (4CL) and stilbene 

synthase (STS), the last step. 4-coumarate can be produced by an alternative pathway with the 

tyrosine ammonia lyase (TAL), a promiscuous reaction of PAL. Other predicted alternative 

routes are 2-enoate reductase (2ER) producing cinnamic acid from phenylpropanoic acid, and 

4CL and C4H using alternative substrates cinnamic acid and cinnamoyl-CoA, respectively. 

Fig. 3. Example of two promiscuous reactions generated by the same reaction rule defined by 

the 4CL enzyme (EC 6.2.1.12). In the first case, substrate 4-coumaric acid is converted into 4-

coumaroyl-CoA, while in the second case cinnamic is converted into cinnamoyl-CoA. Both, 

substrates and products, differ in the 4-hydroxy group, but the net balance of bonds that are 

formed or broken is identical for both reactions. 

Fig. 4. Five alternative resveratrol biosynthetic pathways computed by the Metahype server. 

1) Pathway 1 contains three enzymes leading to the target. The L-phenylalanine/tyrosine 

ammonia lyase (PAL/TAL, EC 4.3.1.25) produces the precursor 4-coumarate from L-
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tyrosine, the 4CL (EC 6.2.1.12) produces 4-coumaroyl-CoA that is converted into resveratrol 

by STS (EC 2.3.1.95). 2) In Pathway 2, which contains 4 enzymes, PAL produces cinnamic 

acid from L-phenylalanine. Cinnamic acid is then converted by 4CH (EC 1.14.13.11) into the 

precursor 4-coumarate, which is further processed into resveratrol as in Pathway 1. 3) 

Pathway 3 differs from Pathway 2 only in the first step producing cinnamic acid , which in 

this case in accomplished by a promiscuous reaction of found in 2-enoate reductase (EC 

1.3.1.31) that produces cinnamic acid from phenylpropanoic acid. 4) In Pathway 4, cinnamic 

acid produced as in Pathway 2 from PAL is used to synthetize cinnamoyl-CoA, which is 

further transformed into 4-coumaroyl-CoA through promiscuous reactions from 4CL and 

C4H, as discussed in Section 3.2.1. 5) Pathway 5 uses 2-enoate reductase to produce the 

precursor cinnamic acid, which is processed downstream through cinnamoyl-CoA into 

resveratrol in the same way as in Pathway 4.  
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Table Captions 

Table 1. Sequence features and organism compatibility for top CHS genes according to 

RetroPath for gene insertion in E. coli. Input features consisted of sequence length, GC 

content, probability to be expressed as inclusion bodies, isoelectric point (pI), hydrophobicity, 

secondary structure distribution, and distance to prokaryotes. 

Table 2. Optimal steady state fluxes for the five pathways in Fig. 3 maximizing biomass (first 

column) or the production of resveratrol (second column). 

Table 3. Predicted toxicity in E. coli of metabolite intermediates of the resveratrol pathways 

in Fig. 3. 

Table 4. Gene costs K(S(r)) associated with each gene in the pathway in Fig. 3. 

Table 5. Cost of each of the five resveratrol pathways according to the cost function in 

Equation 2. 



 33 

 

gene_id Cost L GC ibody pI hyd helix sheet turns coil d Organism 

Bind_3897 0.99 406 63.79 0.54 6.4 -86.9 41.5 22.6 17.2 22.8 0 Beijerinckia indica 

Bind_2602 1.02 354 68.46 0.6 45.4 10.2 32.0 28.1 16.0 28.7 0 Beijerinckia indica 

Ping_0256 1.29 362 63.4 40.52 6.6 -10.4 56.9 15.9 13.9 17.9 0 Psychromonas 

ingrahamii  

Gbem_1028 1.47 349 68.86 0.66 6.5 54.5 42.0 30.0 15.6 17.1 0 Geobacter 

bemidjiensis 

Psyc_0421 1.66 362 63.44 0.56 6.3 -5.1 63.3 14.5 12.7 14.2 0 Psychrobacter 

arcticum 

Mrad2831 

_4712 

1.94 357 69.47 0.58 7.5 19.5 46.9 24.9 13.8 19.1 0 Methylobacterium 

radiotolerans 

Msil_3391 2.27 360 70.46 0.57 6.5 78.6 44.8 27.9 12.8 19.2 0 Methylocella 

silvestris 

sce2182 2.87 371 71.16 0.63 6.8 95.2 46.2 25.1 11.0 22.3 0 Sornagium 

cellulosum 

RB8853 3.27 367 69.6 60.5 34.6 38.8 31.1 29.9 20.2 23.4 1 Rhodopirellula 

baltica 

Table 1 
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Strain Biomass (a.u.) Resveratrol (a.u) 

WT 0.737 - 

Path 1 0.737 1.591 

Path 2 1.111 3.589 

Path 3 0.798 1.907 

Path 4 1.110 1.959 

Path 5 0.830 3.951 

Table 2 
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Pathway Compound Predicted toxicity (IC50) 

1,2,3 4-Coumarate 0.69 g/l 

4,5 4-Coumaroyl-CoA 0.25 g/l 

1,2,3,4,5 Resveratrol 0.42 g/l 

2,3,4,5 Cinnamic acid 0.18 g/l 

4,5 Cinnamoyl-CoA 0.16 g/l 

Table 3 
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Pathway EC Gene Organism Substrate Product Penalt

y 

Cost 

1 4.3.1.25 RSP_3574 Rhodobacter 

sphaeroides 

tyrosine 4-coumarate 5.0 5.20 

1,2,3 6.2.1.12 RPA4421 Rhodopseudomonas 

palustris CGA009 

4-coumarate 4-

coumaroyl-

CoA 

0.0 0.99 

2,3 1.14.13.11 4338409 Oryza sativa 

japonica 

cinnamic acid 4-coumarate 0.0 4.77 

2,4 4.3.1.25 4336415 Oryza sativa 

japonica 

phenylalanine cinnamic 

acid 

0.0 4.64 

3,5 1.3.1.31 CKL_1689 Clostridium 

kluyveri DSM 55 

phenylpropanoate cinnamic 

acid 

5.0 3.84 

4,5 6.2.1.12 RPA4421 Rhodopseudomonas 

palustris CGA009 

cinnamic acid cinnamoyl-

CoA 

5.0 0.99 

4,5 1.14.13.11 4336415 Oryza sativa 

japonica 

cinnamoyl-CoA 4-

coumaroyl-

CoA 

5.0 4.65 

1,2, 

3,4,5 

2.3.1.95 Bind_3897 Beijerinckia indica 4-coumaroyl-CoA resveratrol 5.0 1.00 

Table 4  
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 Sequence 

compatibility 

Expected yield Metabolites 

toxicity 

Total cost 

Pathway 1 7.19 1.640 1.110 17.603 

Pathway 2 11.40 2.350 1.290 16.858 

Pathway 3 10.60 1.353 1.290 21.080 

Pathway 4 11.28 1.535 1.010 26.644 

Pathway 5 10.48 2.391 1.010 25.822 

Table 5 

 


