DIC and other model selection criteria in risk mapping

Ioana Molnar¹

in collaboration with Sylvain Coly^{1,2}, Myriam Charras-Garrido¹, David Abrial¹ et Anne-Françoise Yao-Lafourcade²

1 : Unité d'Épidémiologie Animale (EPIA), Centre INRA Auvergne – Rhône-Alpes 2 : Laboratoire de Mathématiques, Université Blaise Pascal, Clermont-Ferrand

48^{èmes} Journées de Statistique

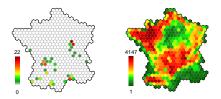
30 may – 3 june 2016 Montpellier, 31 may, 2016

 \rightarrow tool used in spatial statistics for the analysis of the **risk underlying the observed incidence** of a disease.

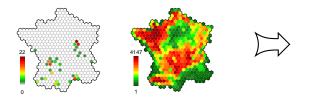
• Risk estimation: Bayesian methods

- Risk estimation: Bayesian methods
- A priori information:
 - case data
 - population data
 - parametric distribution of cases
 - risk structure

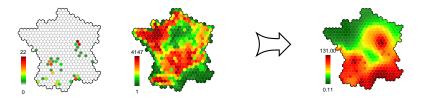
- Risk estimation: Bayesian methods
- A priori information:
 - case data
 - population data
 - parametric distribution of cases
 - risk structure



- Risk estimation: Bayesian methods
- A priori information:
 - case data
 - population data
 - parametric distribution of cases
 - risk structure



- Risk estimation: Bayesian methods
- A priori information:
 - case data
 - population data
 - parametric distribution of cases
 - risk structure
- Risk representation: smooth maps



Model selection in risk mapping

- Properties of a good model?
 - fits well on the data
 - is parsimonious
 - performs data smoothing
 - has a good explicative (and predictive) power
- Properties of a good model selection criterion?
 - identifies the *best* models
 - filters out the unsuitable models
 - ranks the pertinent ones
 - easily implementable, easy-to-use
 - robust

Model selection in risk mapping

- Properties of a good model?
 - fits well on the data
 - is parsimonious
 - performs data smoothing
 - has a good explicative (and predictive) power
- Properties of a good model selection criterion?
 - identifies the *best* models
 - filters out the unsuitable models
 - ranks the pertinent ones
 - easily implementable, easy-to-use
 - robust

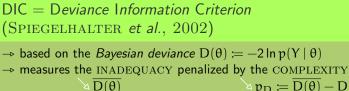
frequently related

Model selection in risk mapping

- Properties of a good model?
 - fits well on the data
 - is parsimonious
 - performs data smoothing
 - has a good explicative (and predictive) power
- Properties of a good model selection criterion?
 - identifies the *best* models
 - filters out the unsuitable models
 - ranks the pertinent ones
 - easily implementable, easy-to-use
 - robust

frequently related

The DIC in risk mapping

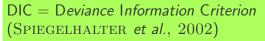


 $p_{D} \coloneqq \overline{D(\theta)} - D(\overline{\theta})$ effectif # of parameters

Definition:

$$\mathsf{DIC} \coloneqq 2\overline{\mathsf{D}(\theta)} - \mathsf{D}(\overline{\theta}).$$

The DIC in risk mapping



→ based on the Bayesian deviance $D(\theta) \coloneqq -2 \ln p(Y \mid \theta)$ → measures the INADEQUACY penalized by the COMPLEXITY $\searrow \overline{D(\theta)} \qquad \qquad \Rightarrow p_D \coloneqq \overline{D(\theta)} - D(\overline{\theta})$

Definition:

effectif
$$\#$$
 of parameters
DIC := $2\overline{D(\theta)} - D(\overline{\theta})$.

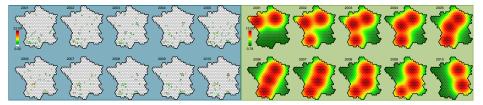
Advantages

- No need to compute the number of parameters
- Easy computation using MCMC samples
- Lack of a strong competitor

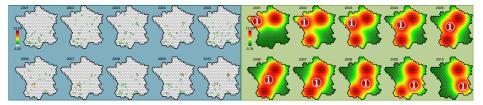
SHORTCOMINGS

- p_D sometimes negative
- Favors overfitted models
- Lacks invariance to re-parametrization, and others

- $_{\mathcal{P}}$ real data of bovine tuberculosis in France: overdispersed
- ▲ <u>simulated data</u> from a known risk: by BN

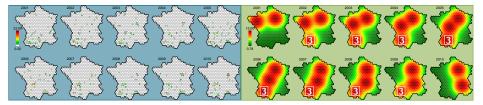


- $_{\mathcal{P}}$ real data of bovine tuberculosis in France: overdispersed
- ▲ <u>simulated data</u> from a known risk: by BN



- $_{\mathcal{P}}$ real data of bovine tuberculosis in France: overdispersed
- ▲ <u>simulated data</u> from a known risk: by BN

- $_{\mathcal{P}}$ real data of bovine tuberculosis in France: overdispersed
- ▲ <u>simulated data</u> from a known risk: by BN



Two types of data:

- $_{\mathcal{P}}$ real data of bovine tuberculosis in France: overdispersed
- ▲ simulated data from a known risk: by BN

Goal: select the models for which the risk maps:

- \rightarrow fit the data
- \rightarrow are smooth enough consistence with Moran's I?
- \rightarrow show well-delimited structures

 \rightarrow are close to the real underlying risk – consistence with MSE / Spearman's ρ ?

 \rightarrow spatio-temporal, three-level hierarchical Bayesian models

Data:
$$Y_i^j = \#$$
 of cases in region i and period j
i = 1, ..., n := 448, j = 1, ..., m := 10.

Modeling

$$\begin{array}{ll} \mathcal{I}^{\textit{st}} \textit{ Level} - \textit{the distribution of the cases:} \\ Y^{j}_{i} \sim \mathcal{P}(\lambda^{j}_{i}) & \textit{or} \end{array} \begin{cases} Y^{j}_{i} \sim \mathcal{P}(\lambda^{j}_{i}) \\ \lambda^{j}_{i} \sim \gamma(\alpha^{j}_{i},\beta^{j}_{i}) \end{cases} \end{array}$$

Parameter of interest: $\lambda_i^j \approx$ relative risk R_i^j .

• 2nd Level - relative risk structure:

$$\begin{cases}
\ln R_i^j = \underbrace{a \cdot U_i^j}_{\text{spatial}} + \underbrace{b \cdot T_i^j}_{\text{component}} + \underbrace{c \cdot V_i^j}_{\text{spatio-temporal}} + \underbrace{d \cdot \varepsilon_i^j}_{\text{white noise}} \\
U_i^j, T_i^j, V_i^j \rightarrow \text{CAR-type process} \\
a, b, c, d \rightarrow \text{ weights: } a, b, c \in \{0, 1\} \text{ or } a, b, c \sim \gamma(5, 5), d \in \{0, 1\}.
\end{cases}$$

 3rd Level – specification of the precision parameters of the normal distributions of ε^j_i, U^j_i, T^j_i, V^j_i: γ(0.01, 0.01).

→ spatio-temporal, three-level hierarchical Bayesian models **Data**: $Y_i^j = \#$ of cases in region i and period j i = 1, ..., n := 448, j = 1, ..., m := 10.**Modeling**:

• 1st Level – the distribution of the cases:
$$\begin{split} Y_{i}^{j} \sim \mathcal{P}(\lambda_{i}^{j}) & \text{or} \\ \begin{cases} Y_{i}^{j} \sim \mathcal{P}(\lambda_{i}^{j}) \\ \lambda_{i}^{j} \sim \gamma(\alpha_{i}^{j}, \beta_{i}^{j}) \end{cases} \end{split}$$

Parameter of interest: $\lambda_i^j \approx$ relative risk $R_i^j.$

• 2nd Level - relative risk structure:

$$\begin{cases}
\ln R_i^j = \underbrace{a \cdot U_i^j}_{spatial} + \underbrace{b \cdot T_i^j}_{temporal} + \underbrace{c \cdot V_i^j}_{spatio-temporal} + \underbrace{d \cdot \varepsilon_i^j}_{component} \\
U_i^j, T_i^j, V_i^j \rightarrow CAR-type \text{ process} \\
a, b, c, d \rightarrow weights: a, b, c \in \{0, 1\} \text{ or } a, b, c \sim \gamma(5, 5), d \in \{0, 1\}
\end{cases}$$

3rd Level – specification of the precision parameters of the normal distributions of ε^j_i, U^j_i, T^j_i, V^j_i: γ(0.01, 0.01).

 \twoheadrightarrow spatio-temporal, three-level hierarchical Bayesian models

Data:
$$Y_i^j = \#$$
 of cases in region i and period j
i = 1, ..., n := 448, j = 1, ..., m := 10

Modeling:

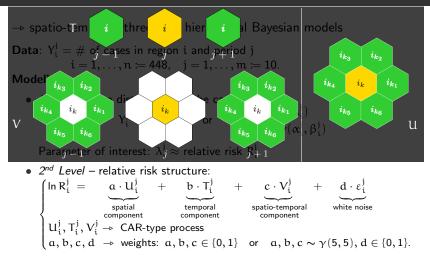
• 1st Level – the distribution of the cases: $\begin{array}{c} Y_i^j \sim \mathcal{P}(\lambda_i^j) & \text{or} \\ \lambda_i^j \sim \gamma(\alpha_i^j, \beta_i^j) \end{array}$

Parameter of interest: $\lambda_i^j \approx$ relative risk $R_i^j.$

•
$$2^{nd}$$
 Level - relative risk structure:

$$\begin{cases}
\ln R_i^j = \underbrace{a \cdot U_i^j}_{spatial} + \underbrace{b \cdot T_i^j}_{component} + \underbrace{c \cdot V_i^j}_{spatio-temporal} + \underbrace{d \cdot \varepsilon_i^j}_{white noise} \\
U_i^j, T_i^j, V_i^j \rightarrow CAR-type \text{ process} \\
a, b, c, d \rightarrow weights: a, b, c \in \{0, 1\} \text{ or } a, b, c \sim \gamma(5, 5), d \in \{0, 1\}.
\end{cases}$$

3rd Level – specification of the precision parameters of the normal distributions of ε^j_i, U^j_i, T^j_i, V^j_i: γ(0.01, 0.01).



 3rd Level – specification of the precision parameters of the normal distributions of ε^j_i, U^j_i, T^j_i, V^j_i: γ(0.01, 0.01).

 \rightarrow spatio-temporal, three-level hierarchical Bayesian models

Data:
$$Y_i^j = \#$$
 of cases in region i and period j
i = 1,..., n := 448, j = 1,..., m := 10

Modeling:

• 1st Level – the distribution of the cases:
$$\begin{split} Y^j_i \sim \mathcal{P}(\lambda^j_i) & \text{or} \\ \begin{cases} Y^j_i \sim \mathcal{P}(\lambda^j_i) \\ \lambda^j_i \sim \gamma(\alpha^j_i,\beta^j_i) \end{cases} \end{split}$$

Parameter of interest: $\lambda_{\iota}^{j}\approx$ relative risk $R_{\iota}^{j}.$

• 2nd Level - relative risk structure:

$$\begin{cases}
\ln R_i^j = \underbrace{a \cdot U_i^j}_{spatial} + \underbrace{b \cdot T_i^j}_{component} + \underbrace{c \cdot V_i^j}_{spatio-temporal} + \underbrace{d \cdot \varepsilon_i^j}_{white noise} \\
U_i^j, T_i^j, V_i^j \rightarrow CAR-type \text{ process} \\
a, b, c, d \rightarrow weights: a, b, c \in \{0, 1\} \text{ or } a, b, c \sim \gamma(5, 5), d \in \{0, 1\}.
\end{cases}$$

• 3^{rd} Level – specification of the precision parameters of the normal distributions of $\varepsilon_i^j, U_i^j, T_i^j, V_i^j$: $\gamma(0.01, 0.01)$.

of models: 60, depending on the choice of

 \twoheadrightarrow the 1^{st} level distribution: ${\mathfrak P}$ or ${\mathfrak B}{\mathfrak N}.$

 \twoheadrightarrow the random effects included aU, bT, cV and / or $\epsilon.$

of data sets: 1 (real data); 100 (simulated data).

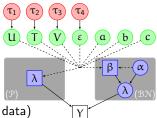
of estimation replications: 100 (real data); 1 (simulated data).

of parameters: up to \approx 22400, depending on the model.

Estimation: by MCMC under OpenBUGS.

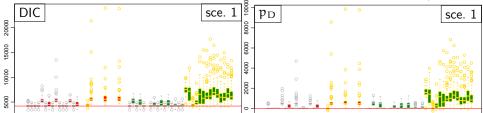
BUGS parameters:

random seed: from 1 to 14 (real data) (P) burn-in step: from 10 000 to 80 000 (real data) thinning step: 10 sample length: 10 000.



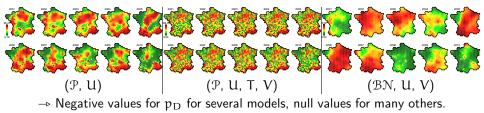
The DIC for the simulated data

Boxplots of the values of the DIC and of the effective number of prameters p_D :



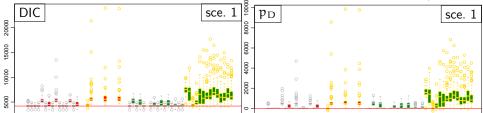
Comments:

 \rightarrow Identical values for 16 of the models (those with no weights nor noise).



The DIC for the simulated data

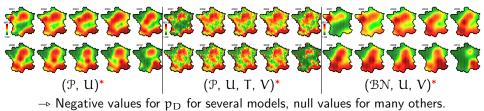
Boxplots of the values of the DIC and of the effective number of prameters p_D :



Comments:

mean over replicats

 \rightarrow Identical values for 16 of the models (those with no weights nor noise).



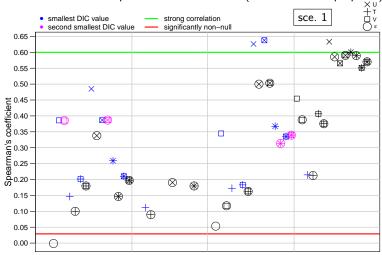
Other classical comparison methods

- Accuracy measures (MSE related)
- Accuracy measure
 Spearman's rank correlation coefficient ρ
 - \rightarrow applied on the relative risk (not the count data)
 - → may be used only on simulation studies
 - \rightarrow measure the adequacy of the model
 - → miss the notion of parsimony
 - Spatio-temporal association indicators (Moran's I, Geary's c)
 - → standard spatial association indices, extended to the spatio-temporal context
 - → may be used on real data
 - \rightarrow evaluate the smoothness of the risk maps
 - → lack the idea of adjustment
 - * Naturally, they won't favor the same models as the DIC (they have different purposes)
 - * However, we can use them to evaluate **some aspects** of the DIC's performance in choosing "good" models.
 - ***** They can be used to set up a better selection tool.

The DIC vs. Spearman's ρ (simulated data)

Spearman's rho:

 \rightarrow used to evaluate the performance of the DIC (even if different purposes)

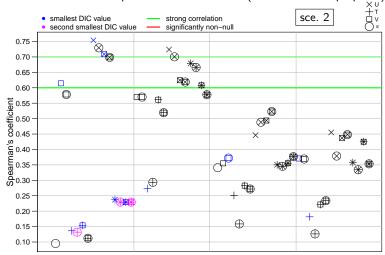


* Models with good DIC values show highly variable ρ 's.

The DIC vs. Spearman's ρ (simulated data)

Spearman's rho:

 \rightarrow used to evaluate the performance of the DIC (even if different purposes)



* Models with good DIC values show highly variable ρ 's.

Proposition of new selection methods

- Criteria coupling: C(C₁, C₂)
 - \twoheadrightarrow Filters out models that are "bad" according to $C_1,$ and selects one good model according to C_2
 - → Order matters
 - \rightarrow Easy to apply, but needs some post-hoc analysis
- A new deviance criterion: Smoothness Deviance Criterion (SDC)
 - \rightarrow Replaces the penalization by the **complexity** measure p_D with a penalization for the **lack of smoothness**

$$SDC = (\overline{D(\theta)} + \xi) \left(1 + \frac{1}{I \cdot \mathbb{1}_{[0,1]}} \right)$$

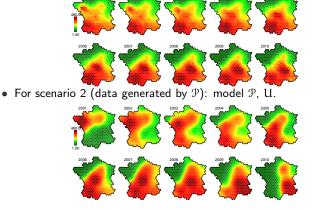
where $\xi > 0 \mbox{ s.t. } \overline{D(\theta)} + \xi > 0$ for all compared models.

- \rightarrow Multiplicative penalization \Longrightarrow the hierarchy defined by the goodness of fit measure $\overline{D(\theta)}$ is modified only if the models have very poor smoothness coefficient
- \twoheadrightarrow The parsimony idea is contained in I
- → Easy to implement

Application of the new methods on the simulated data

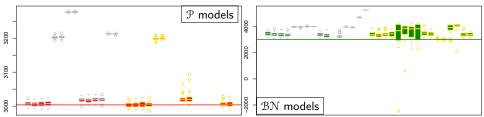
For both scenarios, the model selected *via* the coupling **C(Moran's** I, **DIC)** and that selected *via* the **SDC** are the same.

• For scenario 1 (data generated by \mathcal{BN}): model \mathcal{BN} , V.

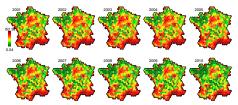


The DIC for the real data

Boxplots of the values of the DIC:



→ Smallest DIC values obtained for several models (all of them \mathcal{P} models). Example: (\mathcal{P} , U, T, V).

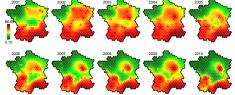


DIC and other model selection criteria in risk mapping

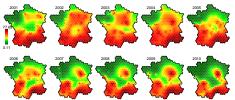
Application of the new methods on the real data

The models selected *via* the coupling **C(DIC, Moran's** I), and that selected *via* the **SDIC** are different, but very similar.

• C(DIC, Moran's I): model (\mathcal{BN} , U, V).



• SDC: model (BN, U).



Summary:

- Weaknesses of the DIC specific to disease mapping:
 - lack of smoothness of the risk maps
 - identical ranking of models producing very different risk maps
 - too much divergence between the DIC and the accuracy measures
- The systematic application of the DIC in disease mapping is not justified.
- The modification of the DIC to take into account the smoothness (crucial point in risk mapping) through *Criteria Coupling* and *SDC* shows promising results.

Some work to follow:

- confirm the utility of the proposed models on different data sets and simulation scenarios
- investigate the properties of the proposed method (robustness)

Summary:

- Weaknesses of the DIC specific to disease mapping:
 - lack of smoothness of the risk maps
 - identical ranking of models producing very different risk maps
 - too much divergence between the DIC and the accuracy measures
- The systematic application of the DIC in disease mapping is not justified.
- The modification of the DIC to take into account the smoothness (crucial point in risk mapping) through *Criteria Coupling* and *SDC* shows promising results.

Some work to follow:

- confirm the utility of the proposed models on different data sets and simulation scenarios
- investigate the properties of the proposed method (robustness)