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Abstract 

Accurate estimation of leaf chlorophyll content (Cab) from remote sensing is of tremendous significance 

to monitor the physiological status of vegetation or to estimate primary production. Many vegetation 

indices (VIs) have been developed to retrieve Cab at the canopy level from meter- to decameter-scale 

reflectance observations. However, most of these VIs may be affected by the possible confounding 

influence of canopy structure. The objective of this study is to develop methods for Cab estimation 

using millimeter to centimeter spatial resolution reflectance imagery acquired at the field level. 

Hyperspectral images were acquired over sugar beet canopies from a ground-based platform in the 

400-1000 nm range, concurrently to Cab, green fraction (GF), green area index (GAI) ground 

measurements. The original image spatial resolution was successively degraded from 1 mm to 35 cm, 

resulting in eleven sets of hyperspectral images.  Vegetation and soil pixels were discriminated, and 

for each spatial resolution, measured Cab values were related to various VIs computed over four sets 

of reflectance spectra extracted from the images (soil and vegetation pixels, only vegetation pixels, 

50% darkest and brightest vegetation pixels). The selected VIs included some classical VIs from the 

literature as well as optimal combinations of spectral bands, including simple ratio (𝑆𝑅), modified 
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normalized difference (𝑚𝑁𝐷) and structure insensitive pigment index (𝑆𝐼𝑃𝐼). In the case of 𝑚𝑁𝐷 and 

𝑆𝐼𝑃𝐼, the use of a blue reference band instead of the classical near-infrared one was also investigated. 

For the eleven spatial resolutions, the four pixel selections and the five VI formats, similar band 

combinations are obtained when optimizing VI performances: the main bands of interest are generally 

located in the blue, red, red-edge and near-infrared domains. Overall, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] defined as 

(𝑅440 − 𝑅728) (𝑅440 + 𝑅850)⁄  and computed over the brightest green pixels obtains the best 

correlations with Cab for spatial resolutions finer than 8.8 cm with a root mean square error of 

prediction better than 2.6 µg/cm². Conversely, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] poorly correlates with variations 

in GF and GAI, thus reducing the risk of deriving non-causal relationships with Cab that would actually 

be due to the covariance between Cab and these canopy structure variables. As 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] 

can be calculated from most current multispectral sensors, it is therefore a promising VI to retrieve Cab 

from millimeter- to centimeter-scale reflectance imagery. 

Keywords : Leaf chlorophyll content, Millimeter to centimeter spatial resolutions, mNDblue, Reflectance 

imagery, Vegetation index. 

1. Introduction 

Photosynthesis is one of the most important biological processes, allowing life on Earth through 

production of oxygen and organic matter (Ustin et al., 2009). Chlorophyll is one of the major plant 

pigments that contribute to the absorption of photosynthetically active radiation. Quantifying 

chlorophyll temporal dynamics is therefore critical to monitor the vegetation physiological status or to 

estimate primary production (Blackburn, 2007, 1998). For this purpose, non-destructive estimation of 

leaf chlorophyll content (denoted Cab hereafter) based on optical measurements has proven to be 

effective since Cab drives most of the leaf reflectance and transmittance variabilities in the visible 

domain. A high Cab retrieval accuracy is usually obtained at the leaf scale under controlled experimental 

conditions, e.g., using dedicated leaf clips measuring transmittance at a few wavelengths (Cerovic et 
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al., 2012), or using hemispherical reflectance and/or transmittance measurements to invert physical 

models such as PROSPECT (Jacquemoud and Baret, 1990) or to apply spectral indices (Gitelson et al., 

2003; Féret et al., 2011; le Maire et al., 2004; ). The estimation of Cab is more challenging at the canopy 

scale: soil reflectance and canopy architecture interact with leaf scattering properties to generate 

canopy reflectance. As a consequence, the effect of leaf composition may be confounded with those 

of canopy structural properties, making the inversion of canopy reflectance models an ill-posed 

problem (Baret and Buis, 2008; Combal et al., 2003): several combinations of green area index (GAI) 

and Cab values may indeed correspond to similar canopy reflectance spectra in the visible domain, 

which increases the uncertainty of Cab retrieval (Baret and Buis, 2008). Further, non-causal 

relationships between canopy reflectance and the targeted variable may be observed when structural 

and biochemical variables are correlated as reported by Knyazikhin et al. (2013). Effects of canopy 

structure and leaf composition should therefore be disentangled with great care when relating 

remote-sensing observations to foliar biochemistry (Knyazikhin et al., 2013; Latorre-Carmona et al., 

2014; Ustin, 2013). 

A first approach has been proposed to improve the Cab estimation performance at the canopy 

level by maximizing the spectral sensitivity to foliar biochemistry while minimizing the effects of soil 

and vegetation structure. It consists in using a ratio vegetation index (VI), where the numerator is a 

Cab-sensitive VI such the Modified Chlorophyll Absorption Reflectance Index (MCARI) (Daughtry et al., 

2000), and the denominator is a VI sensitive to canopy structure such as the Optimized Soil-Adjusted 

Vegetation Index (OSAVI) (Rondeaux et al., 1996). MCARI/OSAVI (Daughtry et al., 2000), TCARI/OSAVI 

(Haboudane et al., 2002) and derived versions of these two VIs (Wu et al., 2008) are examples of such 

combined indices, which have been demonstrated to provide accurate Cab estimation results at the 

canopy level (Kooistra and Clevers, 2016). 

Alternatively, a second approach consists in increasing the sensitivity to foliar biochemistry by 

optimizing the sun-sensor geometry: off-nadir measurements are generally more sensitive to leaf 
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properties than nadir measurements (Baret et al., 2010; Comar et al., 2012; Dorigo, 2012; Jacquemoud 

et al., 2009; Jay et al., n.d.). This is not only due to the  higher proportion of vegetation seen by the 

sensor, but also to the large fraction of photons that have interacted with leaves before reaching the 

sensor (Jacquemoud et al., 2009). Further, the relative viewing azimuth angle affects the canopy 

reflectance sensitivity: measurements acquired in the backward direction, where shadows are 

minimized, generally exhibit a higher sensitivity to leaf biochemistry (Dorigo, 2012; Jacquemoud et al., 

2009; Jay et al., n.d.). 

Finally, a third approach consists in focusing on the illuminated vegetation pixels when the spatial 

resolution is sufficient: this limits the detrimental influences of soil and canopy architecture and 

consequently strengthens the sensitivity to Cab (Moorthy et al., 2008; Zarco-Tejada et al., 2004, 2001). 

Multi- and hyperspectral cameras operated from ground-based or low-altitude platforms provide 

a very high spatial resolution, ranging from a few millimeters to a few decimeters. However, most 

current retrieval methods do not fully exploit the new possibilities offered by such high spatial 

resolution imagery, thereby stimulating the need for new algorithms (Elarab et al., 2015; Houborg et 

al., 2015). The large variability of leaf orientation and illumination conditions observed at this scale 

induces strong variations in leaf radiance. For example, Jay et al. (2016) have proposed to invert the 

PROSPECT+COSINE (ClOse-range Spectral ImagiNg of lEaves) model to map Cab over individual leaves 

when the influence of surrounding elements is negligible. However, when individual leaves are 

submitted to the radiative transfer conditions that prevail in the canopy, the problem was not yet 

addressed. Most current VIs have been designed for leaf and canopy levels, and may therefore be 

suboptimal to handle the above-mentioned variations in leaf reflectance (Bånkestad and Wik, 2016). 

This study focuses on Cab estimation in sugar beet canopies using millimeter- to centimeter-resolution 

reflectance imagery. Hyperspectral images were acquired from a ground-based platform and 

concurrent measurements of GAI and Cab were completed. These data were used to design VIs 

dedicated to Cab estimation that take advantage of such high spatial resolution imagery. Performances 
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were compared to those obtained with several VIs of the literature for the range of spatial resolutions 

investigated. 

2. Materials and methods 

2.1. Field experiments 

 

Figure 1: Locations of the three study sites and photographs of sugar beet canopies illustrating the 
encountered soil types (loamy soil for site 1 and chalky soil for sites 2 and 3). 

 

Field experiments were conducted in France in 2015 and 2016. Three study sites with different soil 

properties were considered as illustrated in Fig. 1. A chalky soil was present at the ”Vaucogne” 

(48°31′N, 4°21′E, denoted site 2) and ”Viapres” (48°35′N, 4°2′E, denoted site 3) sites, while the ”La 

Selve” site (49°35’N, 4°01’E, denoted site 1) was characterized by a loamy soil. The details of these 

field experiments are summarized in Table 1. Seven sugar beet cultivars exhibiting differences in plant 

structure were submitted to variable levels of nitrogen fertilization. Rows were spaced 45 cm apart 

and plant population density was between 10 to 12 plants per square meter. So as to further increase 

the representativeness and heterogeneity of the data set, various phenological stages were considered 

during the 2015 and 2016 growing seasons, i.e., on June, 2-3 2015, June, 23-24 2015 and July, 26-27 
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2016. In particular, the crops considered in the 2016 experiment were carefully chosen so as to 

decorrelate Cab and canopy structural properties. In total, the overall data set included 55 samples and 

encompassed a large variability due to differences in cultivars, nitrogen fertilizations, development 

stages, and soil and weather conditions. 

 

Table 1: Characteristics of field experiments. Ɵs is the sun zenith angle at the time of measurements. 

Date Site Ɵs (°) Illumination Cultivar No. 
Number of 

samples 

06/02/2015 2 36 Clear 1-3 9 

06/03/2015 1 31 Cloudy 1-3 9 

06/23/2015 1 29 Partly cloudy 1-3 9 

06/24/2015 2 29 Clear 1-3 9 

07/26/2016 3 33 Clear 4-6 8 

07/27/2016 3 33 Partly cloudy 7 11 
 

 

2.2. Reflectance measurements 

 

Figure 2: Ground-based platform used for hyperspectral measurements 

 

For each plot, an area corresponding to five consecutive plants along a row was imaged using a HySpex 

VNIR-1600 hyperspectral camera (Norsk Elektro Optikk, Norway) set up on a ground-based platform 
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as shown in Fig. 2. The push-broom camera pointed vertically downward from a 1.15 m distance to the 

bare soil. It measured the reflected radiation in 160 spectral bands ranging from 415 to 994 nm with 

a 3.7 nm spectral sampling interval and 4.5 nm full width at half maximum, and acquired successive 

scans of 1600 pixels along the row. The across-track field of view (FOV) was about 35 cm per scan at 

the ground level, providing a 0.02 cm across-track sampling distance. A 40% diffuse reflectance 

reference panel (Spectralon®, Labsphere) was used to measure the incoming solar irradiance while 

limiting possible saturation of the sensor. The reference panel was placed horizontally above the 

canopy to reduce the influence of possible vicinity effects. The HDRF (Hemispherical-directional 

Reflectance Factor) was finally computed by dividing the signal measured for each band and each pixel 

over the target by that measured over the reference panel and multiplying it by the reflectance of the 

reference panel provided by Labsphere (assuming the panel to be Lambertian). Completion of the 

scans over the 5 plants took a few seconds during which the incoming radiation was supposed to be 

stable. Measurements were collected around solar noon with solar zenith angle always lower than 36°. 

Illumination conditions differed between experiments, ranging from a clear blue sky to a fully overcast 

sky (Table 1). 

2.3. Cab and canopy structure measurements 

The leaf chlorophyll content was estimated for each plot after image acquisition over the same five 

plants. Six measurements per plant were made using a Dualex scientific+TM (Force-A, Orsay, France). 

This leafclip measures leaf transmittance in a few wavebands from which Cab is estimated using the 

relationship proposed by Cerovic et al. (2012) for dicotyledons, achieving an accuracy of around 

4 µg.cm−2. Measurements were performed at different leaf levels to better consider the possible 

Cab vertical gradient between leaves of different age or differently located in the canopy.  These thirty 

Cab values were averaged to provide a single Cab value per plot. After Cab measurements, the five plants 

were collected and the area of each individual leaf measured using a photography-based technique. 

The GAI was finally obtained by multiplying the average leaf area per plant by the plant population 
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density. In addition, the green fraction (GF, the fraction of green elements seen by the sensor in its 

view direction) was estimated from hyperspectral images using the discrimination method detailed in 

Section 2.4.2. 

Inspection of the co-distributions between Cab and GAI, and between Cab and GF shows very poor 

correlations in both cases (Fig. 3). Incidentally, note the importance of the 2016 data that enable these 

correlations to be significantly reduced. The independency between Cab and GAI (resp. GF) distributions 

prevents from obtaining spurious empirical relationships between VIs and Cab that may be inherited 

from a more causal relationship between VIs and GAI (resp. GF). 

 

Figure 3: Cab, GAI and GF reference measurements. 
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2.4. Processing of radiometric data 

2.4.1. Image spatial subsampling 

The performance of Cab estimation was evaluated over a range of spatial resolutions. The original 

spatial resolution of 0.02 cm was degraded to 0.1, 0.2, 0.4, 0.9, 1.8, 3.5, 4.4, 7, 8.8, 17.5 and 35 cm 

by averaging over cells of NxN pixels. This resulted in eleven sets of hyperspectral images as 

illustrated in Fig. 4. 

 

Figure 4: Gradual degradation of spatial resolution. Illustration for (a) 0.1 cm, (b) 1.8 cm, (c) 4.4 cm, (d) 8.8 cm, 
(e) 17.5 cm and (f) 35 cm. 

 

2.4.2. Discrimination of soil and vegetation 

VIs were not only used to estimate Cab, but also to discriminate green vegetation from senescent 

elements and soil. Preliminary tests (not further developed here for the sake of brevity, but illustrated 

in the figure provided in supplementary material) demonstrated that the modified version of MCARI 
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proposed by Wu et al. (2008) and defined as MCARI[705,750] = [(𝑅750 − 𝑅705) − 0.2(𝑅750 −

𝑅550)]
𝑅750

𝑅705
 provided the best discrimination performance as compared to the other VIs investigated 

(Table 2). MCARI[705,750] is designed to minimize the effects of soil and non-photosynthetic 

materials, and its discrimination capacity appeared to be little dependent on soil properties and 

illumination conditions. Further, as illustrated in Fig. 5b and Fig. 5g for strongly different soil properties 

and illumination conditions, a single threshold value of MCARI[705,750] = 0.34 ensured accurate 

discrimination performance at the 0.1 cm spatial resolution, for which the fraction of mixed pixels was 

negligible (note that GF was estimated at this resolution). The fraction of mixed pixels significantly 

increased when the resolution degraded, making the classification more difficult. The 

MCARI[705,750] threshold value was thus adjusted for each resolution investigated to keep the GF 

similar to that computed with the 0.1 cm spatial resolution. The threshold value was therefore 

increased as the spatial resolution degraded in order to compensate for the increase in the number of 

mixed pixels (Fig. 5).  

 

Figure 5: Discrimination results obtained from two contrasted situations, i.e., low GF with chalky soil and under 
sunny conditions (a), and large GF with loamy soil and under cloudy conditions (f). The same MCARI[705,750] 
threshold value is used for the finest (0.1 cm) spatial resolution (b,g). This threshold is then adjusted for 
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coarser resolutions to keep the same GF (e). The resulting discrimination results are presented for 3.5 (c,h) 
and 7 cm (d,i) spatial resolutions. Masked soil pixels are colored in cyan.  

 

2.5. Cab estimation 

2.5.1. Selection of vegetation indices 

Several VIs were selected from the literature to estimate Cab. All of them are ratios based on two or 

three wavebands located in the 400-900 nm spectral domain (Table 2). They are potentially sensitive 

to Cab, GF, and GAI. VIs computed as ratios of linear combinations of bands present the advantage to 

minimize the possible influence of multiplicative factors, including slope effects and variations in 

illumination conditions when the radiance measurements on the reference panel and on the target 

are not performed concurrently. These ratio VIs may be split into three different categories as 

presented in Table 2.  

The simplest one, SR (Simple Ratio), corresponds to the ratio of reflectance in two wavebands: a band, 

hereafter denoted 𝜆1, that is sensitive to both absorption by chlorophyll and scattering by leaf, and a 

reference band, denoted 𝜆𝑟𝑒𝑓, that is only sensitive to scattering in order to correct from this effect 

(Blackburn, 2007). For example, 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 (Gitelson et al., 2006, 2005, 2003) are based 

on simple ratios, and combine a near-infrared reference band with a band located in medium 

chlorophyll absorption domains to avoid saturation in Cab. Both 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 have been 

found to provide accurate estimates of Cab at the leaf level (Gitelson and Merzlyak, 1994; Gitelson et 

al., 2003, 2006; Schlemmer et al., 2013) and canopy chlorophyll content at the canopy level (Gitelson 

et al., 2005; Clevers and Kooistra, 2012; Clevers and Gitelson, 2013; Schlemmer et al., 2013).  

VIs from the second category are based on modified Normalized Difference ratios (𝑚𝑁𝐷), for which a 

third waveband, denoted 𝜆2, can be introduced at the denominator. Note that SR and 𝑚𝑁𝐷 are 

functionally related when 𝜆1 = 𝜆2, since 𝑚𝑁𝐷 = (1 − 𝑆𝑅)/(1 + 𝑆𝑅). Alternatively, taking 𝜆2 ≠ 𝜆1 

may increase the sensitivity to Cab while reducing the impact of canopy structure and soil background 
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properties. 𝑁𝐷550 (Gitelson et al., 1996), 𝑁𝐷705 (Gitelson and Merzlyak, 1994) and 𝑁𝐷𝑉𝐼 (Rouse et 

al., 1973) are examples of 𝑚𝑁𝐷 indices.  

A simple modification of 𝑚𝑁𝐷 indices, i.e., 𝑆𝐼𝑃𝐼 (Structure Insensitive Pigment Index) was proposed 

by Rondeaux and Vanderbilt (1993) and Penuelas et al. (1995) to decrease the confounding influence 

of leaf surface as well as canopy structure effects (Bousquet et al., 2005; Vigneau et al., 2011; Comar 

et al., 2014; Jay et al., 2016). For 𝑆𝐼𝑃𝐼-like indices, various reference bands have been proposed: for 

example, Sims and Gamon (2002) have demonstrated that using a blue saturating waveband as 

reference within 𝑚𝑆𝑅 (modified Simple Ratio) may increase the Cab estimation performance as 

compared to 𝑆𝑅 indices. 𝑀𝑇𝐶𝐼 (MERIS Terrestrial Chlorophyll Index) proposed by Dash and Curran 

(2004) is also a SIPI-like index, where the three bands used are conveniently located in the red-edge 

spectral domain, the reference band (709 nm) being close to the red one. 

Because of the diversity of bands used to compute the three types of VIs as outlined in Table 2, the 

data set presented in Section 2 was used to find optimal sets of wavebands in the case of millimeter- 

to centimeter-scale reflectance imagery of sugar beet canopies. Similarly to Penuelas et al. (1995) and 

Inoue et al. (2012), Cab prediction performance of these three VIs were evaluated for every possible 

combination of 𝜆1 and 𝜆2 bands between 415 and 900 nm by 3.7 nm step. Cab prediction performances 

were assessed using the Spearman’s rank correlation coefficient, denoted 𝜌. As compared to using the 

usual Pearson’s coefficient, 𝑅, using 𝜌 reduces the influence of possible non-linearities between VIs 

and Cab as well as between Dualex readings and actual Cab values. In the case of 𝑆𝑅 that uses only two 

wavebands, the reference band was also varied systematically from 415 to 900 nm, and 𝑆𝑅 indices 

were thus noted 𝑆𝑅[𝜆1, 𝜆2]. In the cases of 𝑚𝑁𝐷 and 𝑆𝐼𝑃𝐼 indices, as the reference waveband should 

be insensitive to Cab variations over the considered Cab range, it was set either to near infrared (850 

nm) or to blue (440 nm). The corresponding VIs were thus noted respectively 𝑚𝑁𝐷𝑛𝑖𝑟[𝜆1, 𝜆2] and 

𝑆𝐼𝑃𝐼𝑛𝑖𝑟[𝜆1, 𝜆2] if 𝜆𝑟𝑒𝑓 = 𝜆𝑛𝑖𝑟 = 850 nm, and 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[𝜆1, 𝜆2] and 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[𝜆1, 𝜆2] if 𝜆𝑟𝑒𝑓 = 𝜆𝑏𝑙𝑢𝑒 =

440 nm. Note that, although the atmosphere has lesser influence on the measured signal when using 
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low altitude sensors (e.g., ground- or tower-based, or embedded on unmanned aerial vehicles (UAVs)) 

instead of classical satellite- and airborne sensors, the reflected radiation in the blue domain may 

strongly vary with changes in illumination conditions caused by atmospheric absorption and scattering. 

This implies that the use of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[𝜆1, 𝜆2] and 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[𝜆1, 𝜆2] requires a particular attention to 

properly convert the measured radiance into reflectance. Also, if necessary due to the lower sensitivity 

of CCD sensors in the blue region, the signal-to-noise ratio may be increased by aggregating a few 

wavebands around 440 nm. 

Table 2: Vegetation indices selected from the literature and their generic formulation. 

Generic 

VI name 

VI 

formulation 
𝜆𝑟𝑒𝑓 𝜆1 𝜆2 Actual VI name References 

𝑆𝑅 
𝑅𝜆1

𝑅𝜆𝑟𝑒𝑓

 
780 550 - 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 = 𝑆𝑅 − 1 Gitelson et al. (2005, 

2003, 2006) 780 710 - 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 = 𝑆𝑅 − 1 

𝑚𝑁𝐷 
𝑅𝜆𝑟𝑒𝑓

− 𝑅𝜆1

𝑅𝜆𝑟𝑒𝑓
+ 𝑅𝜆2

 

800 670 670 𝑁𝐷𝑉𝐼 Rouse et al. (1973) 

750 550 550 𝑁𝐷550 Gitelson et al. (1996) 

750 705 705 𝑁𝐷705 

Gitelson and Merzlyak 

(1994)  

𝑆𝐼𝑃𝐼 
𝑅𝜆𝑟𝑒𝑓

− 𝑅𝜆1

𝑅𝜆𝑟𝑒𝑓
− 𝑅𝜆2

 

850 445 680 𝑆𝐼𝑃𝐼 Penuelas et al. (1995) 

445 750 705 𝑚𝑆𝑅 Sims and Gamon (2002) 

709 754 681 𝑀𝑇𝐶𝐼 Dash and Curran (2004) 

 

 

2.5.2. Estimation procedure 

Every tested VI was related to the measured Cab values using the 55 images, the strength of the 

relationship being quantified based on the squared Spearman’s correlation coefficient, 𝜌2. This process 

was applied for each spatial resolution using four subsets of reflectance spectra. (1) For the first subset, 

all pixels were used, i.e., including both soil and vegetation parts. (2) In the second subset, only green 
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pixels were used. These vegetation pixels were then sorted according to their brightness level 

computed as the average reflectance value in the 770-900 nm spectral domain. This allowed us to 

define the two last subsets, corresponding to (3) the 50% darkest green pixels, and (4) the 50% 

brightest green pixels. Such pixel selections influence the impact of canopy structure on VIs as reported 

by Zarco-Tejada et al. (2001). Furthermore, two strategies were considered to compute the VI average 

value over selected pixels: either (1) reflectance spectra were first averaged over all pixels of the subset 

and the VI was then calculated, or (2) the VI was first computed for each pixel of the subset and the 

resulting VI values were then averaged. As VIs are generally non-linear functions of reflectance, these 

two strategies may lead to different results if the images are heterogeneous (Steven et al., 2015). The 

performance of Cab estimation were thus evaluated for the eleven spatial resolutions, the four subsets 

of pixels and the two VI averaging strategies, resulting into 88 regressions for each VI. Ultimately, linear 

and best non-linear relationships between Cab and best VIs were determined. Prediction performances 

for each relationship were then quantified based on the coefficient of determination (R²) and the root 

mean square error of prediction (RMSEP), both being estimated using a leave-one-out cross-validation 

process because of the relatively small number of images available.  

In addition, the same procedure was applied for GF and GAI estimations since the considered VIs are 

also potentially sensitive to these structural variables.  

 

3. Results and discussion 

In the following, the selection of optimal sets of wavebands to compute the VIs is first investigated. 

These optimized VIs are then compared to the classical ones presented in Table 2 based on their 

relationships with Cab, GF and GAI, especially emphasizing the effects of spatial resolution and pixel 

selections. 

3.1. Optimal band selection for Cab estimation from vegetation indices 
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Because of the multidimensional aspect of this study and the associated complexity for reporting the 

results in an exhaustive way, emphasis is put on 0.9 cm and 17.5 cm spatial resolutions that illustrate 

two contrasted situations. Further, only the results obtained by computing VIs from average 

reflectance spectra of vegetation pixels are presented. Very similar results were observed for the other 

spatial resolutions, subsets of pixels and when computing VIs by averaging pixel-level VI values. For 

the sake of brevity, these results are not presented in this article.  

For every VI, similar patterns of 𝜌2 squared Spearman’s correlation coefficient are observed for the 

two spatial resolutions investigated (Fig. 6). The maximum values are obtained for very similar 

combinations of [𝜆1, 𝜆2] wavebands. However, the 0.9 cm spatial resolution provides generally higher 

𝜌2 values as well as slightly broader patterns of high correlations as compared to the 17.5 cm 

resolution. The largest difference between the two spatial resolutions occurs for the 𝑆𝐼𝑃𝐼𝑛𝑖𝑟 in the 

yellow to red domains where soil and vegetation reflectances show the largest contrast. In this case, 

the higher proportion of mixed pixels significantly degrades the correlations with Cab. Symmetrical 

patterns are observed for 𝑆𝑅 and 𝑆𝐼𝑃𝐼 indices, since 𝑆𝑅[𝜆1, 𝜆2] = 1/𝑆𝑅[𝜆2, 𝜆1] and 𝑆𝐼𝑃𝐼[𝜆1, 𝜆2] =

1/𝑆𝐼𝑃𝐼[𝜆2, 𝜆1]. Conversely, non-symmetrical patterns are observed for 𝑚𝑁𝐷 indices that do not verify 

this property. 

For 𝑆𝑅[𝜆1, 𝜆2], the best performances are obtained taking 𝜆1 in the red-edge (between 710 and 735 

nm) and 𝜆2 having a longer wavelength. The highest correlation is observed for 𝑆𝑅[732,884], which 

is close to the 𝐶𝐼𝑟𝑒𝑑 𝑒𝑑𝑔𝑒 proposed by Gitelson et al. (2005, 2003, 2006). Selecting a red-edge band 

actually increases the sensitivity to Cab variation for high Cab values, i.e., it minimizes the saturation 

effect. For 𝑚𝑁𝐷𝑛𝑖𝑟[𝜆1, 𝜆2], the best performances are obtained choosing λ1 in the red-edge and λ2 in 

the red-edge and near infrared domains, i.e., 𝑅𝜆2
≈ 𝑅𝜆𝑛𝑖𝑟

. For such waveband combinations, we have 

𝑚𝑁𝐷𝑛𝑖𝑟[𝜆1, 𝜆𝑛𝑖𝑟] ≈ 1 − 𝑆𝑅[𝜆1, 𝜆𝑛𝑖𝑟] ≈ 𝐶𝐼𝑟𝑒𝑑 𝑒𝑑𝑔𝑒. A convergence is thus reached between these two 

generic VIs when optimizing the set of wavebands for Cab estimation. Anyway, the highest correlation  
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Figure 6: Squared Spearman’s correlation (𝜌2) obtained between VIs and Cab as a function of 𝜆1 and 𝜆2 
wavebands. VIs are computed from average reflectance spectra of vegetation pixels for the 0.9 cm (left-
hand column) and 17.5 cm (right-hand column) spatial resolutions. The five generic VIs are considered, 
i.e., 𝑆𝑅[𝜆1, 𝜆2], 𝑚𝑁𝐷𝑛𝑖𝑟[𝜆1, 𝜆2], 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[𝜆1, 𝜆2], 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[𝜆1, 𝜆2], and 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[𝜆1, 𝜆2] from top to bottom. 
The color scale is the same for the five VIs and the two spatial resolutions.  
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is obtained for 𝑚𝑁𝐷𝑛𝑖𝑟[732,850]. For 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[𝜆1, 𝜆2], the best performances are observed for 𝜆1 in 

the red-edge and 𝜆2 in the green to red domains, the optimal combination being 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670]. 

This VI is similar to the original SIPI (Penuelas et al., 1995) with the exception of the use of a red-edge 

band at the numerator instead of a blue band, which reduces possible saturation effects for the 

considered Cab range. Note that no bands are selected in the near-infrared range since the reference 

band is already in this domain. For 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[𝜆1, 𝜆2], the best performances are observed for 𝜆1 in the 

red-edge and 𝜆2 in the red-edge and near-infrared domains. Note that taking 𝜆1 in the green range 

(around 533 nm) also provides strong correlations, especially at 0.9 cm spatial resolution. In addition 

to the blue band used as a reference, the bands showing the largest contrast in chlorophyll absorption 

coefficients are selected. Unlike the other VIs tested, the best Cab-sensitive waveband slightly differs 

between the two spatial resolutions, ranging from 728 nm at 0.9 cm to 717 nm at 17.5 cm. Since the 

best performances are obtained for 𝜆1 = 728 nm, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] is selected for further analysis. 

Finally, for 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[𝜆1, 𝜆2], the maximum correlations are obtained taking 𝜆1 in the red-edge and 𝜆2 

in the NIR plateau for the same reasons as those involved for 𝑚𝑁𝐷𝑏𝑙𝑢𝑒. The optimal waveband 

combination is 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[728,888], whose expression mainly differs from the 𝑚𝑆𝑅 index proposed by 

Sims and Gamon (2002) by the use of a longer Cab-sensitive waveband. 

3.2. Sensitivity to Cab 

The VI sensitivity to Cab (in terms of 𝜌2) is shown in Fig. 7 for the classical VIs presented in Table 2 as 

well as the five optimized VIs designed in Section 3.1. These VIs are computed for the eleven spatial 

resolutions, the four subsets of pixels and the two strategies to compute the VIs.  
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Figure 7: Squared Spearman’s correlation (𝜌2) between VIs and Cab measured over the 55 plots as a function 
of spatial resolution. In the left-hand column, VIs are computed from the average reflectance spectra of 
considered pixels (strategy (1)), while in the right-hand column, VIs are computed by averaging pixel-level 
VI values (strategy (2)). For both strategies, the four subsets of pixels are tested (vegetation and soil pixels, 
vegetation pixels, 50% darkest and brightest vegetation pixels). 
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Comparing the two strategies for computing VI values from images shows that the differences mainly 

depend on the level of heterogeneity within the considered pixels. The heterogeneity increases as the 

spatial resolution increases and the pixel selection becomes less restrictive (in order, 50% darkest or 

brightest green pixels, green pixels, all the pixels). When the level of heterogeneity is the largest, as 

when considering all the pixels in the case of high resolution (Fig. 7, line 1), averaging first the 

reflectance values over the pixels and then computing the VI (Strategy 1) provides better Cab estimation 

performances than Strategy 2 (averaging the VI values computed for each individual pixel). This may 

be due to the fact that averaging the reflectances put more weight on the brightest pixels that bear 

more reliable information on Cab as demonstrated later. Conversely, computing first the VIs at the pixel 

level may lead to unrealistic VI values when the pixels have low reflectance values: since VIs are 

computed as ratios, low values in the denominator will provide unstable values. Note that, since the 

average reflectance value in the image does not depend on spatial resolution, the performances do 

not change with spatial resolution when computing VIs from the average reflectance spectra over all 

the pixels (Fig. 7, top left-hand plot). When the distribution of pixel values is reduced as in the case of 

medium to coarse spatial resolution for a restricted selection of pixels (green pixels, 50% darkest or 

brightest green pixels), the two strategies lead to very similar results (Fig. 7, lines 2-4). 

Only Strategy 1 will therefore be considered in the following since it provides either best or equal Cab 

estimation performances as Strategy 2. 

When all the pixels are considered (Fig. 7, line 1), the best-performing VI is 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] (𝜌2 =

0.77), followed by 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[728,888] and 𝑀𝑇𝐶𝐼 (𝜌2 = 0.69). A substantial improvement is observed 

for every VI except 𝑁𝐷𝑉𝐼 when considering only vegetation pixels, especially for spatial resolutions 

finer than 8.8 cm. 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] obtains significantly higher correlations than other VIs with 𝜌2 

ranging from 0.84 to 0.87 for resolutions finer than 8.8 cm. Again, the 𝑆𝐼𝑃𝐼 VIs show good correlations, 

with 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[728,888], 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] and 𝑀𝑇𝐶𝐼 achieving 𝜌2 close to 0.74 for the finest 

resolutions. Incidentally, it is worth noting that, even if 𝑀𝑇𝐶𝐼 was originally designed for estimating 

Author-produced version of the article published in Remote Sensing of Environment, 2017, N°198, p.173-186.
The original publication is available at http://www.sciencedirect.com 

Doi: 10.1016/j.rse.2017.06.008



20 
 

canopy chlorophyll content from low-resolution satellite sensors (Dash and Curran, 2004), the good 

performances obtained here are consistent with those observed in previous studies dealing with leaf 

chlorophyll content estimation from higher resolution remote sensing (Haboudane et al., 2008; Hunt 

et al., 2012; Jay et al., n.d.). While the performances obtained with most VIs remain nearly stable when 

the resolution degrades, those obtained with 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] drop down to 𝜌2 = 0.42 at 35 cm 

spatial resolution. This indicates that 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] is very sensitive to the soil influence 

observed in mixed pixels. In the case of coarse spatial resolutions for which vegetation and soil cannot 

be accurately discriminated, using a shorter wavelength more sensitive to Cab for 𝜆1 is expected to 

improve the performances by mitigating the soil influence as discussed earlier (Fig. 6).  

Considering the 50% brightest green pixels (Fig. 7, line 4) generally improves the performances of Cab 

estimation for every resolution as compared to using all the green pixels (Fig. 7, line 2). In particular, 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] reaches 𝜌² = 0.88 for resolutions finer than 4.4 cm, while 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[728,888] and 

𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] led to 𝜌2 = 0.76 and 𝜌2 = 0.74 respectively. The benefit of considering only the 

brightest green pixels for Cab estimation is in agreement with previous findings (Moorthy et al., 2008; 

Zarco-Tejada et al., 2004, 2001). Conversely, using the 50% darkest pixels results in lower correlations, 

especially for the highest spatial resolutions. For those pixels, the incoming radiation contains a higher 

proportion of photons that have already interacted with the canopy before reaching the considered 

leaves. This may make the illumination conditions locally very variable, leading to lower correlations 

with Cab. 
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Figure 8: Relationships between Cab and (a) 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850], (b) 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670], (c) 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[728,888], 
and (d) 𝑀𝑇𝐶𝐼. The spatial resolution is 3.5 cm, and VIs are computed from average reflectance spectra of 
the 50% brightest vegetation pixels. For each VI, the prediction performances obtained using linear (in black) 
and best non-linear (second-degree polynomials, in red) regressions are shown. 

 

The best cases are analyzed in more detail to better quantify their performances (Fig. 8). They 

correspond to 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850], 𝑆𝐼𝑃𝐼𝑏𝑙𝑢𝑒[728,888], 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] and 𝑀𝑇𝐶𝐼 computed from 

the average reflectance spectra of the 50% brightest green pixels observed at the 3.5 cm spatial 

resolution. 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] achieves the best performances with 𝑅2 = 0.83 and 𝑅𝑀𝑆𝐸𝑃 = 2.45 

µg/cm² (i.e., 9.6 % of Cab range) using a linear regression model, while the non-linear regression model 

does not improve the results. The three other best VIs lead to significantly lower estimation 

performances, ranging from 𝑅2 = 0.67 and 𝑅𝑀𝑆𝐸𝑃 = 3.41 µg/cm² (13.4 %) for 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] to 

𝑅2 = 0.65 and 𝑅𝑀𝑆𝐸𝑃 = 3.55 µg/cm² (14.0 %) for 𝑀𝑇𝐶𝐼. These RMSEP values are about 40 % higher 

than that obtained with 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850]. Note that these RMSEP values should be reassessed by 

using more accurate Cab measurements as obtained from a pigment extraction method instead from 

transmittance-based Dualex measurements. 
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3.3. Sensitivity to GF and GAI 

As mentioned earlier, VIs may be simultaneously sensitive to variations in Cab and canopy structural 

variables such as GF or GAI. The effect of leaf biochemical composition must therefore be carefully 

disentangled from that of structural variables.  

For this purpose, the correlation between the tested VIs and GF (Fig. 9) or GAI (Fig. 10) was 

investigated. For both structural variables, the performances of the two strategies to compute the VIs 

similarly depend on the level of heterogeneity in the pixel selection. However, unlike for Cab, when the 

heterogeneity is the largest, as when considering all the pixels at the highest resolutions, averaging the 

pixel-level VI values (Strategy 2) generally provides slightly better correlations with both GF and GAI 

than computing the VI from the average reflectance spectra (Strategy 1). As observed for Cab (Fig. 7), 

Strategy 2 enhances the influence of the heterogeneity: the latter contains little information about Cab 

variations while being strongly driven by the canopy structure, e.g., through the proportion of soil and 

vegetation pixels as well as that of shaded and illuminated pixels. This explains why Strategy 2 provides 

more accurate retrievals of these structural variables as compared to Strategy 1. However, when the 

distribution of pixels is reduced, very similar results are obtained for the two strategies (Fig. 9 and 

Fig. 10, lines 2-4), similarly to what is observed for Cab. Only Strategy 2 will therefore be considered in 

the following since it provides either best or equal GF and GAI estimation performances as Strategy 1. 

In the case of GF estimation, strong correlations (𝜌2 ≥ 0.6) are generally obtained with all tested VIs 

except 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] and 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] when all the pixels are considered (Fig. 9, line 1). 

𝑁𝐷𝑉𝐼 achieves the best performances for spatial resolutions close to 8 cm (𝜌2 = 0.93). Unlike for Cab, 

no further improvement is observed when using only vegetation pixels (Fig. 9, lines 2-4) since, by 

definition, GF relates to the relative proportions of vegetation and soil. 

In the case of GAI estimation when considering all the pixels, the best VIs are 𝑁𝐷𝑉𝐼 (𝜌2 = 0.86) 

followed by 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝑁𝐷550 (𝜌2 = 0.83) for spatial resolutions finer than 1.8 cm because of the 

beneficial influence of pure soil pixels (Fig. 10, line 1). For similar reasons as for GF estimation, focusing 
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on green pixels generally decreases the performances for most resolutions and tested VIs (Fig. 10, 

lines 2-4), especially when considering the 50% brightest green pixels at the finest resolutions for which 

the impact of canopy structure is minimum. The main exceptions occur for resolutions around 8 cm 

with 𝑁𝐷𝑉𝐼, 𝐶𝐼𝑔𝑟𝑒𝑒𝑛, 𝑁𝐷550 and 𝑆𝐼𝑃𝐼, whose performances achieved when considering the 50% 

darkest green pixels improve as compared to using all the pixels. The best correlation over all pixel 

selections is actually obtained by 𝑁𝐷𝑉𝐼 at the 7 cm spatial resolution (𝜌2 = 0.88). This may be due to 

the fact that this combination resolution/pixel selection offers the best compromise to maximize the 

sensitivity to canopy structure variations (maximum for the finest resolutions) while minimizing 𝑁𝐷𝑉𝐼 

saturation (minimum for the coarsest resolutions). 

These results thus demonstrate the specificities associated with each VI: most tested VIs appear to be 

mainly related to GF and GAI while 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] and to a lesser extent 𝑆𝐼𝑃𝐼𝑛𝑖𝑟[728,670] are 

strongly related to Cab and almost not sensitive to the structural variables. Such a result is of 

tremendous importance since it demonstrates that the sensitivity of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] to Cab will 

not derive from non-causal relationships due to possible covariance between Cab and canopy structure 

observed over the training dataset. 
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Figure 9: Squared Spearman’s correlation (𝜌2) between VIs and GF measured over the 55 plots as a function 
of spatial resolution. In the left-hand column, VIs are computed from the average reflectance spectra of 
considered pixels (strategy (1)), while in the right-hand column, VIs are computed by averaging pixel-level 
VI values (strategy (2)). For both strategies, the four subsets of pixels are tested (vegetation and soil pixels, 
vegetation pixels, 50% darkest and brightest vegetation pixels). 
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Figure 10: Squared Spearman’s correlation (𝜌2) between VIs and GAI measured over the 55 plots as a function 
of spatial resolution. In the left-hand column, VIs are computed from the average reflectance spectra of 
considered pixels (strategy (1)), while in the right-hand column, VIs are computed by averaging pixel-level 
VI values (strategy (2)). For both strategies, the four subsets of pixels are tested (vegetation and soil pixels, 
vegetation pixels, 50% darkest and brightest vegetation pixels). 
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Figure 11: Relationships between 𝑁𝐷𝑉𝐼 and GF when considering all the pixels at the 8.8 cm resolution (a), 
and between 𝑁𝐷𝑉𝐼 and GAI when considering the 50% darkest green pixels at the 7 cm resolution (b). In both 
cases, VIs are computed by averaging pixel-level VI values. Prediction performances obtained using linear (in 
black) and best non-linear (in red, power function for GF and exponential function for GAI) regressions are 
shown. 

 

The best cases observed in Fig. 9 and Fig. 10 are further detailed in Fig. 11 to quantify their 

performances. In the case of GF estimation, the best case corresponds to 𝑁𝐷𝑉𝐼 computed from all the 

pixels observed at the 8.8 cm resolution (Fig. 11.a). It obtains 𝑅2 = 0.94 and 𝑅𝑀𝑆𝐸𝑃 = 4 % (5.4 % of 

the GF range) using either linear or non-linear regression models. In the case of GAI estimation, the 

best case corresponds to 𝑁𝐷𝑉𝐼 computed over the 50% darkest green pixels observed at the 7 cm 

resolution (Fig. 11.b).  While using a linear model leads to reasonable estimation results (𝑅2 = 0.79 

and 𝑅𝑀𝑆𝐸𝑃 = 0.35 m²/m² corresponding to 11.8 % of the GAI range), using an exponential model 

significantly improves the performance to take into account the saturation occurring for high GAI 

values, as suggested by Baret and Guyot (1991) (𝑅2 = 0.89 and 𝑅𝑀𝑆𝐸𝑃 = 0.25 m²/m² corresponding 

to 8.4 % of the GAI range). 

4. Conclusions and perspectives 

This study focuses on the estimation of leaf chlorophyll content from reflectance observations using 

an empirical approach applied to sugar beet crops. It is clearly demonstrated that computing the 

spectral indices over the well-illuminated green pixels of the image improves the sensitivity to 

chlorophyll content and decreases the possible impact of variations in canopy structure. Further, the 
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𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] index performs significantly better than every other index tested. This index has 

two interesting properties: (1) as a ratio index, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] is by construction independent to 

any factor that affects the radiance reflected by the canopy in a multiplicative way, including slope 

effects and variations in illumination conditions due to slight cloud coverage; (2) the particular 

selection of wavebands enhances the sensitivity of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] to leaf chlorophyll content 

while minimizing the impact of canopy structure. It is symptomatic to observe that the best-performing 

index for chlorophyll content estimation (𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850]) is the poorest one for canopy structure 

retrieval. Reciprocally, the best index for canopy structure retrieval (𝑁𝐷𝑉𝐼) offers the poorest 

performances for chlorophyll content estimation. The main drawback of this type of spectral index 

based on a blue band is its sensitivity to variations in the spectral distribution of incident light: the 

latter may be indeed strongly influenced by changing illumination conditions that affect the scattering 

by aerosols, water droplets or crystals. Great attention should therefore be paid either to the stability 

of irradiance conditions (using potentially artificial light sources), or to the radiometric calibration that 

will require frequent measurements over reference panels or corrections from ancillary information. 

Alternatively, the use of a red reference located in the domain of maximum chlorophyll absorption 

(i.e., around 680 nm) may decrease the sensitivity to atmospheric conditions while providing 

interesting results if the spatial resolution and Cab range are such that this band nearly saturates for 

every sample. Incidentally, another drawback of using a blue reference is that poor estimation 

performances may be expected for very low values of leaf chlorophyll content, as in this case, the blue 

waveband does not reach saturation and varies with chlorophyll content (Sims and Gamon, 2002). 

Studying the impact of spatial resolution on Cab estimation shows that 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] may be 

quite sensitive to the soil influence. In the case of sugar beet crops, similar results are obtained for all 

the spatial resolutions finer than 4.4 cm, but these results deteriorate for coarser resolutions. In the 

context of UAV-based remote sensing, this means that a resolution of about 4 cm offers a good 

compromise between accuracy and efficiency, the latter improving as spatial resolution decreases and 

flight altitude increases. This compromise should, however, be defined for each situation: for example, 
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time constraints may be such that efficiency can be improved by reasonably decreasing spatial 

resolution and, therefore, accuracy (note that this decrease can somehow be compensated by 

choosing a shorter Cab-sensitive waveband so as to mitigate the soil influence). 

These results are derived from a comprehensive set of experiments including several locations, years, 

cultivars and levels of nitrogen fertilization. Good robustness properties are thus expected for sugar 

beet crops.  However, these results need to be further evaluated for other species. In particular, the 

spatial resolution to be retained should be adapted to each crop to limit the fraction of mixed pixels in 

the computation of the spectral index. Also, the influence of the pixel subset used to compute the VIs 

should also be questioned for vegetation species exhibiting strong leaf surface effects, although this is 

already the case for the glossy sugar beet leaves. Ultimately, the proposed principles to derive optimal 

spectral indices could be extended to the estimation of other leaf biochemical constituents such as 

leaf water content: for example, the Cab-sensitive waveband (728 nm) could be replaced by a water-

sensitive one. 

The rapid emergence of UAVs has opened a new era of Earth observation for vegetation monitoring 

(Houborg et al., 2015). Multi- and hyperspectral cameras are now becoming efficient and affordable 

sensors, and their combination with UAVs enables the acquisition of spectral data with the required 

high spatial resolution while providing a significant spatial coverage capacity in a reasonable time. This 

is particularly interesting for agricultural applications (Duan et al., 2014; Verger et al., 2014; Zarco-

Tejada et al., 2013) that require a timely revisit capacity to sample the crop at the optimal development 

stage (Inoue et al., 2012). The VIs developed in this study take advantage of such high spatial resolution 

data to improve the estimation of leaf chlorophyll content in sugar beet canopies as compared to 

classical VIs of the literature. In particular, the use of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒[728, 850] based on UAV observations 

is promising to accurately estimate leaf chlorophyll content over larger areas. 
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