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Introduction

Photosynthesis is one of the most important biological processes, allowing life on Earth through production of oxygen and organic matter [START_REF] Ustin | Retrieval of foliar information about plant pigment systems from high resolution Author-produced version of the article[END_REF]. Chlorophyll is one of the major plant pigments that contribute to the absorption of photosynthetically active radiation. Quantifying chlorophyll temporal dynamics is therefore critical to monitor the vegetation physiological status or to estimate primary production [START_REF] Blackburn | Hyperspectral remote sensing of plant pigments[END_REF][START_REF] Blackburn | Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales[END_REF]. For this purpose, non-destructive estimation of leaf chlorophyll content (denoted Cab hereafter) based on optical measurements has proven to be effective since Cab drives most of the leaf reflectance and transmittance variabilities in the visible domain. A high Cab retrieval accuracy is usually obtained at the leaf scale under controlled experimental conditions, e.g., using dedicated leaf clips measuring transmittance at a few wavelengths (Cerovic et Author-produced version of the article published in Remote Sensing of Environment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008

al., 2012), or using hemispherical reflectance and/or transmittance measurements to invert physical models such as PROSPECT [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF] or to apply spectral indices [START_REF] Gitelson | Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[END_REF][START_REF] Féret | Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling[END_REF][START_REF] Le Maire | Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[END_REF]). The estimation of Cab is more challenging at the canopy scale: soil reflectance and canopy architecture interact with leaf scattering properties to generate canopy reflectance. As a consequence, the effect of leaf composition may be confounded with those of canopy structural properties, making the inversion of canopy reflectance models an ill-posed problem [START_REF] Baret | Estimating canopy characteristics from remote sensing observations: review of methods and associated problems[END_REF][START_REF] Combal | Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem[END_REF]: several combinations of green area index (GAI) and Cab values may indeed correspond to similar canopy reflectance spectra in the visible domain, which increases the uncertainty of Cab retrieval [START_REF] Baret | Estimating canopy characteristics from remote sensing observations: review of methods and associated problems[END_REF]. Further, non-causal relationships between canopy reflectance and the targeted variable may be observed when structural and biochemical variables are correlated as reported by [START_REF] Knyazikhin | Hyperspectral remote sensing of foliar nitrogen content[END_REF]. Effects of canopy structure and leaf composition should therefore be disentangled with great care when relating remote-sensing observations to foliar biochemistry [START_REF] Knyazikhin | Hyperspectral remote sensing of foliar nitrogen content[END_REF][START_REF] Latorre-Carmona | On hyperspectral remote sensing of leaf biophysical constituents: Decoupling vegetation structure and leaf optics using CHRIS-PROBA data over crops in barrax[END_REF][START_REF] Ustin | Remote sensing of canopy chemistry[END_REF].

A first approach has been proposed to improve the Cab estimation performance at the canopy level by maximizing the spectral sensitivity to foliar biochemistry while minimizing the effects of soil and vegetation structure. It consists in using a ratio vegetation index (VI), where the numerator is a Cab-sensitive VI such the Modified Chlorophyll Absorption Reflectance Index (MCARI) [START_REF] Daughtry | Estimating Corn Leaf Author-produced version of the article published in Remote Sensing of Environment[END_REF], and the denominator is a VI sensitive to canopy structure such as the Optimized Soil-Adjusted Vegetation Index (OSAVI) [START_REF] Rondeaux | Optimization of soil-adjusted vegetation indices[END_REF]. MCARI/OSAVI [START_REF] Daughtry | Estimating Corn Leaf Author-produced version of the article published in Remote Sensing of Environment[END_REF], TCARI/OSAVI [START_REF] Haboudane | Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[END_REF] and derived versions of these two VIs [START_REF] Wu | Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[END_REF] are examples of such combined indices, which have been demonstrated to provide accurate Cab estimation results at the canopy level [START_REF] Kooistra | Estimating potato leaf chlorophyll content using ratio vegetation indices[END_REF].

Alternatively, a second approach consists in increasing the sensitivity to foliar biochemistry by optimizing the sun-sensor geometry: off-nadir measurements are generally more sensitive to leaf

Author-produced version of the article published in Remote Sensing of Environment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008

properties than nadir measurements [START_REF] Baret | GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops[END_REF][START_REF] Comar | A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results[END_REF][START_REF] Dorigo | Improving the robustness of cotton status characterisation by radiative transfer model inversion of multi-angular CHRIS/PROBA data[END_REF][START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF][START_REF] Jay | Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping[END_REF]. This is not only due to the higher proportion of vegetation seen by the sensor, but also to the large fraction of photons that have interacted with leaves before reaching the sensor [START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF]. Further, the relative viewing azimuth angle affects the canopy reflectance sensitivity: measurements acquired in the backward direction, where shadows are minimized, generally exhibit a higher sensitivity to leaf biochemistry [START_REF] Dorigo | Improving the robustness of cotton status characterisation by radiative transfer model inversion of multi-angular CHRIS/PROBA data[END_REF][START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF][START_REF] Jay | Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping[END_REF].

Finally, a third approach consists in focusing on the illuminated vegetation pixels when the spatial resolution is sufficient: this limits the detrimental influences of soil and canopy architecture and consequently strengthens the sensitivity to Cab [START_REF] Moorthy | Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level[END_REF][START_REF] Zarco-Tejada | Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[END_REF][START_REF] Zarco-Tejada | Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[END_REF].

Multi-and hyperspectral cameras operated from ground-based or low-altitude platforms provide a very high spatial resolution, ranging from a few millimeters to a few decimeters. However, most current retrieval methods do not fully exploit the new possibilities offered by such high spatial resolution imagery, thereby stimulating the need for new algorithms [START_REF] Elarab | Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture[END_REF][START_REF] Houborg | Advances in remote sensing of vegetation function and traits[END_REF]. The large variability of leaf orientation and illumination conditions observed at this scale induces strong variations in leaf radiance. For example, [START_REF] Jay | A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy[END_REF] have proposed to invert the PROSPECT+COSINE (ClOse-range Spectral ImagiNg of lEaves) model to map Cab over individual leaves when the influence of surrounding elements is negligible. However, when individual leaves are submitted to the radiative transfer conditions that prevail in the canopy, the problem was not yet addressed. Most current VIs have been designed for leaf and canopy levels, and may therefore be suboptimal to handle the above-mentioned variations in leaf reflectance [START_REF] Bånkestad | Growth tracking of basil by proximal remote sensing of chlorophyll fluorescence in growth chamber and greenhouse environments[END_REF].

This study focuses on Cab estimation in sugar beet canopies using millimeter-to centimeter-resolution reflectance imagery. Hyperspectral images were acquired from a ground-based platform and concurrent measurements of GAI and Cab were completed. These data were used to design VIs dedicated to Cab estimation that take advantage of such high spatial resolution imagery. Performances were compared to those obtained with several VIs of the literature for the range of spatial resolutions investigated. Field experiments were conducted in France in 2015 and 2016. Three study sites with different soil properties were considered as illustrated in Fig. 1. A chalky soil was present at the "Vaucogne" (48°31′N, 4°21′E, denoted site 2) and "Viapres" (48°35′N, 4°2′E, denoted site 3) sites, while the "La

Materials and methods

Field experiments

Selve" site (49°35'N, 4°01'E, denoted site 1) was characterized by a loamy soil. For each plot, an area corresponding to five consecutive plants along a row was imaged using a HySpex as shown in Fig. 2. The push-broom camera pointed vertically downward from a 1.15 m distance to the bare soil. It measured the reflected radiation in 160 spectral bands ranging from 415 to 994 nm with a 3.7 nm spectral sampling interval and 4.5 nm full width at half maximum, and acquired successive scans of 1600 pixels along the row. The across-track field of view (FOV) was about 35 cm per scan at the ground level, providing a 0.02 cm across-track sampling distance. A 40% diffuse reflectance reference panel (Spectralon®, Labsphere) was used to measure the incoming solar irradiance while limiting possible saturation of the sensor. The reference panel was placed horizontally above the canopy to reduce the influence of possible vicinity effects. The HDRF (Hemispherical-directional Reflectance Factor) was finally computed by dividing the signal measured for each band and each pixel over the target by that measured over the reference panel and multiplying it by the reflectance of the reference panel provided by Labsphere (assuming the panel to be Lambertian). Completion of the scans over the 5 plants took a few seconds during which the incoming radiation was supposed to be stable. Measurements were collected around solar noon with solar zenith angle always lower than 36 °.

Reflectance measurements

Illumination conditions differed between experiments, ranging from a clear blue sky to a fully overcast sky (Table 1).

Cab and canopy structure measurements

The leaf chlorophyll content was estimated for each plot after image acquisition over the same five plants. Six measurements per plant were made using a Dualex scientific+ TM (Force-A, Orsay, France).

This leafclip measures leaf transmittance in a few wavebands from which Cab is estimated using the relationship proposed by [START_REF] Cerovic | A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids[END_REF] density. In addition, the green fraction (GF, the fraction of green elements seen by the sensor in its view direction) was estimated from hyperspectral images using the discrimination method detailed in Section 2.4.2.

Inspection of the co-distributions between Cab and GAI, and between Cab and GF shows very poor correlations in both cases (Fig. 3). Incidentally, note the importance of the 2016 data that enable these correlations to be significantly reduced. The independency between Cab and GAI (resp. GF) distributions prevents from obtaining spurious empirical relationships between VIs and Cab that may be inherited from a more causal relationship between VIs and GAI (resp. GF). 

Processing of radiometric data

Image spatial subsampling

The performance of Cab estimation was evaluated over a range of spatial resolutions. The original spatial resolution of 0.02 cm was degraded to 0. 1, 0.2, 0.4, 0.9, 1.8, 3.5, 4.4, 7, 8.8, 17.5 and35 cm by averaging over cells of NxN pixels. This resulted in eleven sets of hyperspectral images as illustrated in Fig. 4. 

Discrimination of soil and vegetation

VIs were not only used to estimate Cab, but also to discriminate green vegetation from senescent elements and soil. Preliminary tests (not further developed here for the sake of brevity, but illustrated in the figure provided in supplementary material) demonstrated that the modified version of MCARI provided the best discrimination performance as compared to the other VIs investigated (Table 2). MCARI [705,750] is designed to minimize the effects of soil and non-photosynthetic materials, and its discrimination capacity appeared to be little dependent on soil properties and illumination conditions. Further, as illustrated in Fig. 5b and Fig. 5g for strongly different soil properties and illumination conditions, a single threshold value of MCARI[705,750] = 0.34 ensured accurate discrimination performance at the 0.1 cm spatial resolution, for which the fraction of mixed pixels was negligible (note that GF was estimated at this resolution). The fraction of mixed pixels significantly increased when the resolution degraded, making the classification more difficult. The [705,750] threshold value was thus adjusted for each resolution investigated to keep the GF similar to that computed with the 0.1 cm spatial resolution. The threshold value was therefore increased as the spatial resolution degraded in order to compensate for the increase in the number of mixed pixels (Fig. 5).

MCARI

Figure 5: Discrimination results obtained from two contrasted situations, i.e., low GF with chalky soil and under sunny conditions (a), and large GF with loamy soil and under cloudy conditions (f). The same MCARI[705,750] threshold value is used for the finest (0.1 cm) spatial resolution (b,g). This threshold is then adjusted for coarser resolutions to keep the same GF (e). The resulting discrimination results are presented for 3.5 (c,h) and 7 cm (d,i) spatial resolutions. Masked soil pixels are colored in cyan.

Cab estimation

Selection of vegetation indices

Several VIs were selected from the literature to estimate Cab. All of them are ratios based on two or three wavebands located in the 400-900 nm spectral domain (Table 2). They are potentially sensitive to Cab, GF, and GAI. VIs computed as ratios of linear combinations of bands present the advantage to minimize the possible influence of multiplicative factors, including slope effects and variations in illumination conditions when the radiance measurements on the reference panel and on the target are not performed concurrently. These ratio VIs may be split into three different categories as presented in Table 2.

The simplest one, SR (Simple Ratio), corresponds to the ratio of reflectance in two wavebands: a band, hereafter denoted 𝜆 1 , that is sensitive to both absorption by chlorophyll and scattering by leaf, and a reference band, denoted 𝜆 𝑟𝑒𝑓 , that is only sensitive to scattering in order to correct from this effect [START_REF] Blackburn | Hyperspectral remote sensing of plant pigments[END_REF]. For example, 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼 𝑟𝑒𝑑-𝑒𝑑𝑔𝑒 [START_REF] Gitelson | Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[END_REF][START_REF] Gitelson | Remote estimation of canopy chlorophyll content in crops[END_REF][START_REF] Gitelson | Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[END_REF] are based on simple ratios, and combine a near-infrared reference band with a band located in medium chlorophyll absorption domains to avoid saturation in Cab. Both 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼 𝑟𝑒𝑑-𝑒𝑑𝑔𝑒 have been found to provide accurate estimates of Cab at the leaf level [START_REF] Gitelson | Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus-hippocastanum L. and Acer-platanoides L. Leaves -Spectral Features and Relation to Chlorophyll Estimation[END_REF][START_REF] Gitelson | Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[END_REF][START_REF] Gitelson | Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[END_REF][START_REF] Schlemmer | Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[END_REF] and canopy chlorophyll content at the canopy level [START_REF] Gitelson | Remote estimation of canopy chlorophyll content in crops[END_REF][START_REF] Clevers | Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content[END_REF][START_REF] Clevers | Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on sentinel-2 and-3[END_REF][START_REF] Schlemmer | Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[END_REF].

VIs from the second category are based on modified Normalized Difference ratios (𝑚𝑁𝐷), for which a third waveband, denoted 𝜆 2 , can be introduced at the denominator. Note that SR and 𝑚𝑁𝐷 are functionally related when 𝜆 1 = 𝜆 2 , since 𝑚𝑁𝐷 = (1 -𝑆𝑅)/(1 + 𝑆𝑅). Alternatively, taking 𝜆 2 ≠ 𝜆 1 may increase the sensitivity to Cab while reducing the impact of canopy structure and soil background properties. 𝑁𝐷 550 [START_REF] Gitelson | Use of a green channel in remote sensing of global vegetation from EOS-MODIS[END_REF], 𝑁𝐷 705 [START_REF] Gitelson | Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus-hippocastanum L. and Acer-platanoides L. Leaves -Spectral Features and Relation to Chlorophyll Estimation[END_REF] and 𝑁𝐷𝑉𝐼 [START_REF] Rouse | Monitoring vegetation systems in the great plains with ERTS[END_REF] are examples of 𝑚𝑁𝐷 indices.

A simple modification of 𝑚𝑁𝐷 indices, i.e., 𝑆𝐼𝑃𝐼 (Structure Insensitive Pigment Index) was proposed by [START_REF] Rondeaux | Specularly modified vegetation indices to estimate photosynthetic activity[END_REF] and [START_REF] Penuelas | Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[END_REF] to decrease the confounding influence of leaf surface as well as canopy structure effects [START_REF] Bousquet | Leaf BRDF measurements and model for Author-produced version of the article[END_REF][START_REF] Vigneau | Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat[END_REF][START_REF] Comar | ACT: A leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface[END_REF][START_REF] Jay | A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy[END_REF]. For 𝑆𝐼𝑃𝐼-like indices, various reference bands have been proposed: for example, [START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF] have demonstrated that using a blue saturating waveband as reference within 𝑚𝑆𝑅 (modified Simple Ratio) may increase the Cab estimation performance as compared to 𝑆𝑅 indices. 𝑀𝑇𝐶𝐼 (MERIS Terrestrial Chlorophyll Index) proposed by [START_REF] Dash | The MERIS terrestrial chlorophyll index[END_REF] is also a SIPI-like index, where the three bands used are conveniently located in the red-edge spectral domain, the reference band (709 nm) being close to the red one.

Because of the diversity of bands used to compute the three types of VIs as outlined in Table 2, the data set presented in Section 2 was used to find optimal sets of wavebands in the case of millimeterto centimeter-scale reflectance imagery of sugar beet canopies. Similarly to [START_REF] Penuelas | Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[END_REF] and [START_REF] Inoue | Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements[END_REF], Cab prediction performance of these three VIs were evaluated for every possible combination of 𝜆 1 and 𝜆 2 bands between 415 and 900 nm by 3.7 nm step. Cab prediction performances were assessed using the Spearman's rank correlation coefficient, denoted 𝜌. As compared to using the usual Pearson's coefficient, 𝑅, using 𝜌 reduces the influence of possible non-linearities between VIs and Cab as well as between Dualex readings and actual Cab values. In the case of 𝑆𝑅 that uses only two wavebands, the reference band was also varied systematically from 415 to 900 nm, and 𝑆𝑅 indices were thus noted 

Estimation procedure

Every tested VI was related to the measured Cab values using the 55 images, the strength of the relationship being quantified based on the squared Spearman's correlation coefficient, 𝜌 2 . This process was applied for each spatial resolution using four subsets of reflectance spectra.

(1) For the first subset, all pixels were used, i.e., including both soil and vegetation parts.

(2) In the second subset, only green pixels were used. These vegetation pixels were then sorted according to their brightness level computed as the average reflectance value in the 770-900 nm spectral domain. This allowed us to define the two last subsets, corresponding to (3) the 50% darkest green pixels, and (4) the 50% brightest green pixels. Such pixel selections influence the impact of canopy structure on VIs as reported by [START_REF] Zarco-Tejada | Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[END_REF]. Furthermore, two strategies were considered to compute the VI average value over selected pixels: either (1) reflectance spectra were first averaged over all pixels of the subset and the VI was then calculated, or (2) the VI was first computed for each pixel of the subset and the resulting VI values were then averaged. As VIs are generally non-linear functions of reflectance, these two strategies may lead to different results if the images are heterogeneous [START_REF] Steven | Toward Standardization of Vegetation Indices[END_REF]. The performance of Cab estimation were thus evaluated for the eleven spatial resolutions, the four subsets of pixels and the two VI averaging strategies, resulting into 88 regressions for each VI. Ultimately, linear and best non-linear relationships between Cab and best VIs were determined. Prediction performances for each relationship were then quantified based on the coefficient of determination (R²) and the root mean square error of prediction (RMSEP), both being estimated using a leave-one-out cross-validation process because of the relatively small number of images available.

In addition, the same procedure was applied for GF and GAI estimations since the considered VIs are also potentially sensitive to these structural variables.

Results and discussion

In the following, the selection of optimal sets of wavebands to compute the VIs is first investigated.

These optimized VIs are then compared to the classical ones presented in Table 2 based on their relationships with Cab, GF and GAI, especially emphasizing the effects of spatial resolution and pixel selections.

Optimal band selection for Cab estimation from vegetation indices

Author Because of the multidimensional aspect of this study and the associated complexity for reporting the results in an exhaustive way, emphasis is put on 0.9 cm and 17.5 cm spatial resolutions that illustrate two contrasted situations. Further, only the results obtained by computing VIs from average reflectance spectra of vegetation pixels are presented. Very similar results were observed for the other spatial resolutions, subsets of pixels and when computing VIs by averaging pixel-level VI values. For the sake of brevity, these results are not presented in this article.

For every VI, similar patterns of 𝜌 2 squared Spearman's correlation coefficient are observed for the two spatial resolutions investigated (Fig. 6). The maximum values are obtained for very similar combinations of [𝜆 1 , 𝜆 2 ] wavebands. However, the 0.9 cm spatial resolution provides generally higher 𝜌 2 values as well as slightly broader patterns of high correlations as compared to the 17.5 cm resolution. The largest difference between the two spatial resolutions occurs for the 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 in the yellow to red domains where soil and vegetation reflectances show the largest contrast. In this case, the higher proportion of mixed pixels significantly degrades the correlations with Cab. is obtained for 𝑚𝑁𝐷 𝑛𝑖𝑟 [732,850]. For 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [𝜆 1 , 𝜆 2 ], the best performances are observed for 𝜆 1 in the red-edge and 𝜆 2 in the green to red domains, the optimal combination being 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670].

This VI is similar to the original SIPI [START_REF] Penuelas | Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[END_REF] with the exception of the use of a red-edge band at the numerator instead of a blue band, which reduces possible saturation effects for the considered Cab range. Note that no bands are selected in the near-infrared range since the reference band is already in this domain. For 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ], the best performances are observed for 𝜆 1 in the red-edge and 𝜆 2 in the red-edge and near-infrared domains. Note that taking 𝜆 1 in the green range (around 533 nm) also provides strong correlations, especially at 0.9 cm spatial resolution. In addition to the blue band used as a reference, the bands showing the largest contrast in chlorophyll absorption coefficients are selected. Unlike the other VIs tested, the best Cab-sensitive waveband slightly differs between the two spatial resolutions, ranging from 728 nm at 0.9 cm to 717 nm at 17.5 cm. Since the best performances are obtained for 𝜆 1 = 728 nm, 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] is selected for further analysis.

Finally, for 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ], the maximum correlations are obtained taking 𝜆 1 in the red-edge and 𝜆 2 in the NIR plateau for the same reasons as those involved for 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 . The optimal waveband combination is 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [728,888], whose expression mainly differs from the 𝑚𝑆𝑅 index proposed by [START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF] by the use of a longer Cab-sensitive waveband.

Sensitivity to Cab

The VI sensitivity to Cab (in terms of 𝜌 2 ) is shown in Fig. 7 for the classical VIs presented in Table 2 as well as the five optimized VIs designed in Section 3.1. These VIs are computed for the eleven spatial resolutions, the four subsets of pixels and the two strategies to compute the VIs.

Author canopy chlorophyll content from low-resolution satellite sensors [START_REF] Dash | The MERIS terrestrial chlorophyll index[END_REF], the good performances obtained here are consistent with those observed in previous studies dealing with leaf chlorophyll content estimation from higher resolution remote sensing [START_REF] Haboudane | Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data[END_REF][START_REF] Hunt | A visible band index for remote sensing leaf chlorophyll content at the canopy scale[END_REF][START_REF] Jay | Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping[END_REF]. While the performances obtained with most VIs remain nearly stable when the resolution degrades, those obtained with 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] drop down to 𝜌 2 = 0.42 at 35 cm spatial resolution. This indicates that 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] is very sensitive to the soil influence observed in mixed pixels. In the case of coarse spatial resolutions for which vegetation and soil cannot be accurately discriminated, using a shorter wavelength more sensitive to Cab for 𝜆 1 is expected to improve the performances by mitigating the soil influence as discussed earlier (Fig. 6).

Considering the 50% brightest green pixels (Fig. 7, line 4) generally improves the performances of Cab estimation for every resolution as compared to using all the green pixels (Fig. 7, line 2). In particular,

𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] reaches 𝜌² = 0.88 for resolutions finer than 4.4 cm, while 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [728,888] and 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] led to 𝜌 2 = 0.76 and 𝜌 2 = 0.74 respectively. The benefit of considering only the brightest green pixels for Cab estimation is in agreement with previous findings [START_REF] Moorthy | Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level[END_REF][START_REF] Zarco-Tejada | Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[END_REF][START_REF] Zarco-Tejada | Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[END_REF]. Conversely, using the 50% darkest pixels results in lower correlations, especially for the highest spatial resolutions. For those pixels, the incoming radiation contains a higher proportion of photons that have already interacted with the canopy before reaching the considered leaves. This may make the illumination conditions locally very variable, leading to lower correlations with Cab.

Author The best cases are analyzed in more detail to better quantify their performances (Fig. 8). They correspond to 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850], 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [728,888], 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] and 𝑀𝑇𝐶𝐼 computed from the average reflectance spectra of the 50% brightest green pixels observed at the 3.5 cm spatial resolution. 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] achieves the best performances with 𝑅 2 = 0.83 and 𝑅𝑀𝑆𝐸𝑃 = 2.45 µg/cm² (i.e., 9.6 % of Cab range) using a linear regression model, while the non-linear regression model does not improve the results. The three other best VIs lead to significantly lower estimation performances, ranging from 𝑅 2 = 0.67 and 𝑅𝑀𝑆𝐸𝑃 = 3.41 µg/cm² (13.4 %) for 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] to 𝑅 2 = 0.65 and 𝑅𝑀𝑆𝐸𝑃 = 3.55 µg/cm² (14.0 %) for 𝑀𝑇𝐶𝐼. These RMSEP values are about 40 % higher than that obtained with 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850]. Note that these RMSEP values should be reassessed by using more accurate Cab measurements as obtained from a pigment extraction method instead from transmittance-based Dualex measurements.
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Sensitivity to GF and GAI

As mentioned earlier, VIs may be simultaneously sensitive to variations in Cab and canopy structural variables such as GF or GAI. The effect of leaf biochemical composition must therefore be carefully disentangled from that of structural variables.

For this purpose, the correlation between the tested VIs and GF (Fig. 9) or GAI (Fig. 10) was investigated. For both structural variables, the performances of the two strategies to compute the VIs similarly depend on the level of heterogeneity in the pixel selection. However, unlike for Cab, when the heterogeneity is the largest, as when considering all the pixels at the highest resolutions, averaging the pixel-level VI values (Strategy 2) generally provides slightly better correlations with both GF and GAI than computing the VI from the average reflectance spectra (Strategy 1). As observed for Cab (Fig. 7),

Strategy 2 enhances the influence of the heterogeneity: the latter contains little information about Cab variations while being strongly driven by the canopy structure, e.g., through the proportion of soil and vegetation pixels as well as that of shaded and illuminated pixels. This explains why Strategy 2 provides more accurate retrievals of these structural variables as compared to Strategy 1. However, when the distribution of pixels is reduced, very similar results are obtained for the two strategies (Fig. 9 and Fig. 10, lines 2-4), similarly to what is observed for Cab. Only Strategy 2 will therefore be considered in the following since it provides either best or equal GF and GAI estimation performances as Strategy 1.

In the case of GF estimation, strong correlations (𝜌 2 ≥ 0.6) are generally obtained with all tested VIs except 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] and 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] when all the pixels are considered (Fig. 9, line 1).

𝑁𝐷𝑉𝐼 achieves the best performances for spatial resolutions close to 8 cm (𝜌 2 = 0.93). Unlike for Cab, no further improvement is observed when using only vegetation pixels (Fig. 9, lines 2-4) since, by definition, GF relates to the relative proportions of vegetation and soil.

In the case of GAI estimation when considering all the pixels, the best VIs are 𝑁𝐷𝑉𝐼 (𝜌 2 = 0.86) followed by 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and 𝑁𝐷 550 (𝜌 2 = 0.83) for spatial resolutions finer than 1.8 cm because of the beneficial influence of pure soil pixels (Fig. 10, line 1). For similar reasons as for GF estimation, focusing on green pixels generally decreases the performances for most resolutions and tested VIs (Fig. 10, lines 2-4), especially when considering the 50% brightest green pixels at the finest resolutions for which the impact of canopy structure is minimum. The main exceptions occur for resolutions around 8 cm with 𝑁𝐷𝑉𝐼, 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 , 𝑁𝐷 550 and 𝑆𝐼𝑃𝐼, whose performances achieved when considering the 50% darkest green pixels improve as compared to using all the pixels. The best correlation over all pixel selections is actually obtained by 𝑁𝐷𝑉𝐼 at the 7 cm spatial resolution (𝜌 2 = 0.88). This may be due to the fact that this combination resolution/pixel selection offers the best compromise to maximize the sensitivity to canopy structure variations (maximum for the finest resolutions) while minimizing 𝑁𝐷𝑉𝐼 saturation (minimum for the coarsest resolutions).

These results thus demonstrate the specificities associated with each VI: most tested VIs appear to be mainly related to GF and GAI while 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] and to a lesser extent 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] are strongly related to Cab and almost not sensitive to the structural variables. Such a result is of tremendous importance since it demonstrates that the sensitivity of 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] The best cases observed in Fig. 9 and Fig. 10 are further detailed in Fig. 11 to quantify their performances. In the case of GF estimation, the best case corresponds to 𝑁𝐷𝑉𝐼 computed from all the pixels observed at the 8.8 cm resolution (Fig. 11.a). It obtains 𝑅 2 = 0.94 and 𝑅𝑀𝑆𝐸𝑃 = 4 % (5.4 % of the GF range) using either linear or non-linear regression models. In the case of GAI estimation, the best case corresponds to 𝑁𝐷𝑉𝐼 computed over the 50% darkest green pixels observed at the 7 cm resolution (Fig. 11.b). While using a linear model leads to reasonable estimation results (𝑅 2 = 0.79 and 𝑅𝑀𝑆𝐸𝑃 = 0.35 m²/m² corresponding to 11.8 % of the GAI range), using an exponential model significantly improves the performance to take into account the saturation occurring for high GAI values, as suggested by [START_REF] Baret | Potential and limitations of vegetation indices for LAI and APAR assessment[END_REF] (𝑅 2 = 0.89 and 𝑅𝑀𝑆𝐸𝑃 = 0.25 m²/m² corresponding to 8.4 % of the GAI range).

Conclusions and perspectives

This study focuses on the estimation of leaf chlorophyll content from reflectance observations using an empirical approach applied to sugar beet crops. It is clearly demonstrated that computing the spectral indices over the well-illuminated green pixels of the image improves the sensitivity to chlorophyll content and decreases the possible impact of variations in canopy structure. Further, the 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] index performs significantly better than every other index tested. This index has two interesting properties: (1) as a ratio index, 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] is by construction independent to any factor that affects the radiance reflected by the canopy in a multiplicative way, including slope effects and variations in illumination conditions due to slight cloud coverage;

(2) the particular selection of wavebands enhances the sensitivity of 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] to leaf chlorophyll content while minimizing the impact of canopy structure. It is symptomatic to observe that the best-performing index for chlorophyll content estimation (𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850]) is the poorest one for canopy structure retrieval. Reciprocally, the best index for canopy structure retrieval (𝑁𝐷𝑉𝐼) offers the poorest performances for chlorophyll content estimation. The main drawback of this type of spectral index based on a blue band is its sensitivity to variations in the spectral distribution of incident light: the latter may be indeed strongly influenced by changing illumination conditions that affect the scattering by aerosols, water droplets or crystals. Great attention should therefore be paid either to the stability of irradiance conditions (using potentially artificial light sources), or to the radiometric calibration that will require frequent measurements over reference panels or corrections from ancillary information.

Alternatively, the use of a red reference located in the domain of maximum chlorophyll absorption (i.e., around 680 nm) may decrease the sensitivity to atmospheric conditions while providing interesting results if the spatial resolution and Cab range are such that this band nearly saturates for every sample. Incidentally, another drawback of using a blue reference is that poor estimation performances may be expected for very low values of leaf chlorophyll content, as in this case, the blue waveband does not reach saturation and varies with chlorophyll content [START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF].

Studying the impact of spatial resolution on Cab estimation shows that 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] may be quite sensitive to the soil influence. In the case of sugar beet crops, similar results are obtained for all the spatial resolutions finer than 4.4 cm, but these results deteriorate for coarser resolutions. In the context of UAV-based remote sensing, this means that a resolution of about 4 cm offers a good compromise between accuracy and efficiency, the latter improving as spatial resolution decreases and flight altitude increases. This compromise should, however, be defined for each situation: for example, time constraints may be such that efficiency can be improved by reasonably decreasing spatial resolution and, therefore, accuracy (note that this decrease can somehow be compensated by choosing a shorter Cab-sensitive waveband so as to mitigate the soil influence).

These results are derived from a comprehensive set of experiments including several locations, years, cultivars and levels of nitrogen fertilization. Good robustness properties are thus expected for sugar beet crops. However, these results need to be further evaluated for other species. In particular, the spatial resolution to be retained should be adapted to each crop to limit the fraction of mixed pixels in the computation of the spectral index. Also, the influence of the pixel subset used to compute the VIs should also be questioned for vegetation species exhibiting strong leaf surface effects, although this is already the case for the glossy sugar beet leaves. Ultimately, the proposed principles to derive optimal spectral indices could be extended to the estimation of other leaf biochemical constituents such as leaf water content: for example, the Cab-sensitive waveband (728 nm) could be replaced by a watersensitive one.

The rapid emergence of UAVs has opened a new era of Earth observation for vegetation monitoring [START_REF] Houborg | Advances in remote sensing of vegetation function and traits[END_REF]. Multi-and hyperspectral cameras are now becoming efficient and affordable sensors, and their combination with UAVs enables the acquisition of spectral data with the required high spatial resolution while providing a significant spatial coverage capacity in a reasonable time. This is particularly interesting for agricultural applications [START_REF] Duan | Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data[END_REF][START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF][START_REF] Zarco-Tejada | Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)[END_REF] that require a timely revisit capacity to sample the crop at the optimal development stage [START_REF] Inoue | Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements[END_REF]. The VIs developed in this study take advantage of such high spatial resolution data to improve the estimation of leaf chlorophyll content in sugar beet canopies as compared to classical VIs of the literature. In particular, the use of 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] based on UAV observations is promising to accurately estimate leaf chlorophyll content over larger areas.

Figure 1 :

 1 Figure 1: Locations of the three study sites and photographs of sugar beet canopies illustrating the encountered soil types (loamy soil for site 1 and chalky soil for sites 2 and 3).

Figure 2 :

 2 Figure 2: Ground-based platform used for hyperspectral measurements

Figure 3 :

 3 Figure 3: Cab, GAI and GF reference measurements.

Figure 4 :

 4 Figure 4: Gradual degradation of spatial resolution. Illustration for (a) 0.1 cm, (b) 1.8 cm, (c) 4.4 cm, (d) 8.8 cm, (e) 17.5 cm and (f) 35 cm.

Figure 6 :

 6 Figure 6: Squared Spearman's correlation (𝜌 2 ) obtained between VIs and Cab as a function of 𝜆 1 and 𝜆 2 wavebands. VIs are computed from average reflectance spectra of vegetation pixels for the 0.9 cm (lefthand column) and 17.5 cm (right-hand column) spatial resolutions. The five generic VIs are considered, i.e., 𝑆𝑅[𝜆 1 , 𝜆 2 ], 𝑚𝑁𝐷 𝑛𝑖𝑟 [𝜆 1 , 𝜆 2 ], 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [𝜆 1 , 𝜆 2 ], 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ], and 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ] from top to bottom. The color scale is the same for the five VIs and the two spatial resolutions.

Figure 7 :

 7 Figure 7: Squared Spearman's correlation (𝜌 2 ) between VIs and Cab measured over the 55 plots as a function of spatial resolution. In the left-hand column, VIs are computed from the average reflectance spectra of considered pixels (strategy (1)), while in the right-hand column, VIs are computed by averaging pixel-level VI values (strategy (2)). For both strategies, the four subsets of pixels are tested (vegetation and soil pixels, vegetation pixels, 50% darkest and brightest vegetation pixels).

Figure 8 :

 8 Figure 8: Relationships between Cab and (a) 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728, 850], (b) 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟[728,670], (c) 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒[728,888], and (d) 𝑀𝑇𝐶𝐼. The spatial resolution is 3.5 cm, and VIs are computed from average reflectance spectra of the 50% brightest vegetation pixels. For each VI, the prediction performances obtained using linear (in black) and best non-linear (second-degree polynomials, in red) regressions are shown.

Figure 9 :

 9 Figure9: Squared Spearman's correlation (𝜌 2 ) between VIs and GF measured over the 55 plots as a function of spatial resolution. In the left-hand column, VIs are computed from the average reflectance spectra of considered pixels (strategy (1)), while in the right-hand column, VIs are computed by averaging pixel-level VI values (strategy (2)). For both strategies, the four subsets of pixels are tested (vegetation and soil pixels, vegetation pixels, 50% darkest and brightest vegetation pixels).

Figure 10 :

 10 Figure10: Squared Spearman's correlation (𝜌 2 ) between VIs and GAI measured over the 55 plots as a function of spatial resolution. In the left-hand column, VIs are computed from the average reflectance spectra of considered pixels (strategy (1)), while in the right-hand column, VIs are computed by averaging pixel-level VI values (strategy (2)). For both strategies, the four subsets of pixels are tested (vegetation and soil pixels, vegetation pixels, 50% darkest and brightest vegetation pixels).

Figure 11 :

 11 Figure11: Relationships between 𝑁𝐷𝑉𝐼 and GF when considering all the pixels at the 8.8 cm resolution (a), and between 𝑁𝐷𝑉𝐼 and GAI when considering the 50% darkest green pixels at the 7 cm resolution (b). In both cases, VIs are computed by averaging pixel-level VI values. Prediction performances obtained using linear (in black) and best non-linear (in red, power function for GF and exponential function for GAI) regressions are shown.

  

  Author-produced version of the article published in Remote Sensing ofEnvironment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008

Table 1 :

 1 Author-produced version of the article published in Remote Sensing ofEnvironment, 2017, N°198, p.173-186. Characteristics of field experiments. Ɵs is the sun zenith angle at the time of measurements.

	The original publication is available at http://www.sciencedirect.com
	Doi: 10.1016/j.rse.2017.06.008

The details of these field experiments are summarized in Table

1

. Seven sugar beet cultivars exhibiting differences in plant structure were submitted to variable levels of nitrogen fertilization. Rows were spaced 45 cm apart and plant population density was between 10 to 12 plants per square meter. So as to further increase the representativeness and heterogeneity of the data set, various phenological stages were considered during the 2015 and 2016 growing seasons, i.e., on

June, 2-3 2015, June, 23-24 2015 and July, 26-27 
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  Author-produced version of the article published in Remote Sensing ofEnvironment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008proposed by[START_REF] Wu | Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[END_REF] and defined as MCARI[705,750] = [(𝑅 750 -𝑅 705 ) -0.2(𝑅 750 -

	𝑅 550 )]	𝑅 750 𝑅 705
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  𝑆𝑅[𝜆 1 , 𝜆 2 ]. In the cases of 𝑚𝑁𝐷 and 𝑆𝐼𝑃𝐼 indices, as the reference waveband should be insensitive to Cab variations over the considered Cab range, it was set either to near infrared (850 nm) or to blue (440 nm). The corresponding VIs were thus noted respectively 𝑚𝑁𝐷 𝑛𝑖𝑟 [𝜆 1 , 𝜆 2 ] and 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [𝜆 1 , 𝜆 2 ] if 𝜆 𝑟𝑒𝑓 = 𝜆 𝑛𝑖𝑟 = 850 nm, and 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ] and 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ] if 𝜆 𝑟𝑒𝑓 = 𝜆 𝑏𝑙𝑢𝑒 = 440 nm. Note that, although the atmosphere has lesser influence on the measured signal when using Author-produced version of the article published in Remote Sensing of Environment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008 low altitude sensors (e.g., ground-or tower-based, or embedded on unmanned aerial vehicles (UAVs))instead of classical satellite-and airborne sensors, the reflected radiation in the blue domain may strongly vary with changes in illumination conditions caused by atmospheric absorption and scattering.This implies that the use of 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ] and 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [𝜆 1 , 𝜆 2 ] requires a particular attention to properly convert the measured radiance into reflectance. Also, if necessary due to the lower sensitivity of CCD sensors in the blue region, the signal-to-noise ratio may be increased by aggregating a few wavebands around 440 nm.

Table 2 :

 2 Vegetation indices selected from the literature and their generic formulation.

	Generic	VI				
			𝜆 𝑟𝑒𝑓	𝜆 1	𝜆 2	Actual VI name	References
	VI name	formulation				
	𝑆𝑅	𝑅 𝜆 1 𝑅 𝜆 𝑟𝑒𝑓	780 550 780 710	--	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 = 𝑆𝑅 -1 𝐶𝐼 𝑟𝑒𝑑-𝑒𝑑𝑔𝑒 = 𝑆𝑅 -1	Gitelson et al. (2005, 2003, 2006)
			800 670 670	𝑁𝐷𝑉𝐼	Rouse et al. (1973)
	𝑚𝑁𝐷	𝑅 𝜆 𝑟𝑒𝑓 -𝑅 𝜆 1 𝑅 𝜆 𝑟𝑒𝑓 + 𝑅 𝜆 2	750 550 550	𝑁𝐷 550	Gitelson et al. (1996) Gitelson and Merzlyak
			750 705 705	𝑁𝐷 705
							(1994)
			850 445 680	𝑆𝐼𝑃𝐼	Penuelas et al. (1995)
	𝑆𝐼𝑃𝐼	𝑅 𝜆 𝑟𝑒𝑓 -𝑅 𝜆 1 𝑅 𝜆 𝑟𝑒𝑓 -𝑅 𝜆 2	445 750 705	𝑚𝑆𝑅	Sims and Gamon (2002)
			709 754 681	𝑀𝑇𝐶𝐼	Dash and Curran (2004)
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  𝐶𝐼 𝑟𝑒𝑑 𝑒𝑑𝑔𝑒 proposed by[START_REF] Gitelson | Remote estimation of canopy chlorophyll content in crops[END_REF][START_REF] Gitelson | Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[END_REF][START_REF] Gitelson | Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[END_REF]. Selecting a red-edge band actually increases the sensitivity to Cab variation for high Cab values, i.e., it minimizes the saturation effect. For 𝑚𝑁𝐷 𝑛𝑖𝑟 [𝜆 1 , 𝜆 2 ], the best performances are obtained choosing λ1 in the red-edge and λ2 in the red-edge and near infrared domains, i.e., 𝑅 𝜆 2 ≈ 𝑅 𝜆 𝑛𝑖𝑟 . For such waveband combinations, we have𝑚𝑁𝐷 𝑛𝑖𝑟 [𝜆 1 , 𝜆 𝑛𝑖𝑟 ] ≈ 1 -𝑆𝑅[𝜆 1 , 𝜆 𝑛𝑖𝑟 ] ≈ 𝐶𝐼 𝑟𝑒𝑑 𝑒𝑑𝑔𝑒 .A convergence is thus reached between these two generic VIs when optimizing the set of wavebands for Cab estimation. Anyway, the highest correlationAuthor-produced version of the article published in Remote Sensing ofEnvironment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008

Symmetrical patterns are observed for 𝑆𝑅 and 𝑆𝐼𝑃𝐼 indices, since 𝑆𝑅[𝜆 1 , 𝜆 2 ] = 1/𝑆𝑅[𝜆 2 , 𝜆 1 ] and 𝑆𝐼𝑃𝐼[𝜆 1 , 𝜆 2 ] = 1/𝑆𝐼𝑃𝐼[𝜆 2 , 𝜆 1 ]. Conversely, non-symmetrical patterns are observed for 𝑚𝑁𝐷 indices that do not verify this property.

For 𝑆𝑅[𝜆 1 , 𝜆 2 ], the best performances are obtained taking 𝜆 1 in the red-edge (between 710 and 735 nm) and 𝜆 2 having a longer wavelength. The highest correlation is observed for 𝑆𝑅

[732,884]

, which is close to the
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  to Cab will not derive from non-causal relationships due to possible covariance between Cab and canopy structure observed over the training dataset. -produced version of the article published in Remote Sensing of Environment, 2017, N°198, p.173-186. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.rse.2017.06.008
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Comparing the two strategies for computing VI values from images shows that the differences mainly depend on the level of heterogeneity within the considered pixels. The heterogeneity increases as the spatial resolution increases and the pixel selection becomes less restrictive (in order, 50% darkest or brightest green pixels, green pixels, all the pixels). When the level of heterogeneity is the largest, as when considering all the pixels in the case of high resolution (Fig. 7, line 1), averaging first the reflectance values over the pixels and then computing the VI (Strategy 1) provides better Cab estimation performances than Strategy 2 (averaging the VI values computed for each individual pixel). This may be due to the fact that averaging the reflectances put more weight on the brightest pixels that bear more reliable information on Cab as demonstrated later. Conversely, computing first the VIs at the pixel level may lead to unrealistic VI values when the pixels have low reflectance values: since VIs are computed as ratios, low values in the denominator will provide unstable values. Note that, since the average reflectance value in the image does not depend on spatial resolution, the performances do not change with spatial resolution when computing VIs from the average reflectance spectra over all the pixels (Fig. 7, top left-hand plot). When the distribution of pixel values is reduced as in the case of medium to coarse spatial resolution for a restricted selection of pixels (green pixels, 50% darkest or brightest green pixels), the two strategies lead to very similar results (Fig. 7, lines 2-4).

Only Strategy 1 will therefore be considered in the following since it provides either best or equal Cab estimation performances as Strategy 2.

When all the pixels are considered (Fig. 7, line 1), the best-performing VI is 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] (𝜌 2 = 0.77), followed by 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [728,888] and 𝑀𝑇𝐶𝐼 (𝜌 2 = 0.69). A substantial improvement is observed for every VI except 𝑁𝐷𝑉𝐼 when considering only vegetation pixels, especially for spatial resolutions finer than 8.8 cm. 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 [728,850] obtains significantly higher correlations than other VIs with 𝜌 2 ranging from 0.84 to 0.87 for resolutions finer than 8.8 cm. Again, the 𝑆𝐼𝑃𝐼 VIs show good correlations, with 𝑆𝐼𝑃𝐼 𝑏𝑙𝑢𝑒 [728,888], 𝑆𝐼𝑃𝐼 𝑛𝑖𝑟 [728,670] and 𝑀𝑇𝐶𝐼 achieving 𝜌 2 close to 0.74 for the finest resolutions. Incidentally, it is worth noting that, even if 𝑀𝑇𝐶𝐼 was originally designed for estimating
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