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INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a uni-
fied approach for genomic evaluation to combine 
phenotypes, pedigree, and genotypes (Aguilar et al., 
2010). Mixed model equations (MME) in ssGBLUP 
require the inverse of a genomic relationship matrix 
(G−1; VanRaden, 2008) and the inverse of a numera-
tor relationship matrix ( 1

22
A ) for genotyped animals. 

When the number of genotyped animals is limited, 

possibly less than 100,000, both inverses can be ef-
ficiently calculated (VanRaden, 2008; Aguilar et al., 
2011; Fragomeni et al., 2015). When more animals are 
genotyped, G−1 can be obtained efficiently using the 
“algorithm for proven and young” (APY; Misztal et al., 
2014; Misztal, 2016), which exploits a limited rank of 
G due to a small effective population size. Faux and 
Gengler (2013) developed an algorithm to create 1

22
A  

directly from a pedigree. However, when the number 
of generations or the number of ancestors is large, the 
matrix becomes dense, resulting in expensive compu-
tations and more memory requirements.

Strandén and Mäntysaari (2014) showed that 
1

22
A  could be decomposed into a product of several 

sparse matrices. When MME are solved with the pre-
conditioned conjugate gradient (PCG), the explicit 

1
22
A  is not needed because the computations require 

only a product of 1
22
A  by an arbitrary vector, say q; 
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ABSTRACT: This paper evaluates an efficient 
implementation to multiply the inverse of a numera-
tor relationship matrix for genotyped animals ( 1

22

A ) 
by a vector (q). The computation is required for solv-
ing mixed model equations in single-step genomic 
BLUP (ssGBLUP) with the preconditioned conjugate 
gradient (PCG). The inverse can be decomposed into 
sparse matrices that are blocks of the sparse inverse 
of a numerator relationship matrix (A−1) including 
genotyped animals and their ancestors. The elements 
of A−1 were rapidly calculated with the Henderson’s 
rule and stored as sparse matrices in memory. 
Implementation of 1

22

A q  was by a series of sparse 
matrix–vector multiplications. Diagonal elements 
of 1

22

A , which were required as preconditioners in 
PCG, were approximated with a Monte Carlo method 

using 1,000 samples. The efficient implementation 
of 1

22

A q  was compared with explicit inversion of A22 
with 3 data sets including about 15,000, 81,000, and 
570,000 genotyped animals selected from popula-
tions with 213,000, 8.2 million, and 10.7 million 
pedigree animals, respectively. The explicit inversion 
required 1.8 GB, 49 GB, and 2,415 GB (estimated) 
of memory, respectively, and 42 s, 56 min, and 13.5 d 
(estimated), respectively, for the computations. The 
efficient implementation required <1 MB, 2.9 GB, 
and 2.3 GB of memory, respectively, and <1 sec, 3 
min, and 5 min, respectively, for setting up. Only <1 
sec was required for the multiplication in each PCG 
iteration for any data sets. When the equations in ssG-
BLUP are solved with the PCG algorithm, 1

22

A  is no 
longer a limiting factor in the computations.
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that is, only 1
22
A q  is needed. With PCG, diagonals 

of 1
22
A  are needed as preconditioners (Tsuruta et al., 

2001). The purposes of this study were to implement 
efficient computations of the product 1

22
A q  and of the 

diagonal elements of 1
22
A  and compare their comput-

ing costs with that of an explicit inversion.

MATERIALS AND METHODS

Indirect Multiplication of 1
22
A q

A numerator relationship matrix involving only 
genotyped animals and their ancestors is defined as

00 02*

20 22

=
é ù
ê ú
ê úë û

A A
A

A A

and its inverse is defined as
00 02

* 1

20 22

 =
é ù
ê ú
ê úë û

A A
A

A A ,
in which the subscript “2” represents a group of gen-
otyped animals and “0” represents a group of their 
ancestors. The inverse considering inbreeding coef-
ficients can be easily calculated using the rapid rule 
from a pedigree (Henderson, 1976; Quaas, 1976). The 
matrix A*−1 does not need either descendants of or the 
animals unrelated to the genotyped animals.

Using a property of the inverse (Searle, 1982, p. 
260), the inverse of A22 is a function of submatrices of 
A*−1 (Strandén and Mäntysaari, 2014):

( ) 11 22 20 00 02

22

 = A A A A A .

A product of the inverse by a vector, q, is expressed as

( ) ( ){ }11 22 20 00 02
22

 é ù=  ê úë û
A q A q A A A q

. [1]
Let 4 temporary vectors be v, w, x, and y; the 

above product can be computed by a sequence of ma-
trix–vector multiplications: v = A02q, w = (A00)−1v, 
x = A20w, y = A22q, and  A q22

1− = y − x. The matrices 
A22, A20, and A02 are sparse and hence the matrix–
vector multiplications can be efficiently computed. We 
do not need explicitly to compute (A00)−1 because the 
product w = (A00)−1v can be computed by solving the 
sparse equation A00w = v. The Cholesky factor of A00 
is typically required to solve the equation. The sparse 
matrices A22, A20, and A02 and the Cholesky factor of 
A00 are calculated and stored in memory before the 
PCG iterations. The product 1

22
A q  will be calculated 

in each round because q is a vector of the current solu-
tion or search direction, and it changes every round.

Diagonals of 1
22
A . The PCG algorithm requires the 

diagonal elements of 1
22
A  as a part of a preconditioner. 

Although the explicit computation of the diagonal ele-
ments is expensive, the diagonals can be approximated 
by a Monte Carlo method (García-Cortés, 1994; Dong 
and Liu, 1994; García-Cortés and Cabrillo, 2005) as

( ) ( ) ( )1 1
22 221

diag 1/ n
i ii

n 

=
» åA s A s ,

in which n is the number of samples,   is the direct 
product operator, and si is a vector of random numbers 
containing either +1 or −1 with equal probability and the 
product ( 1

22 i
A s ) is computed with Eq. [1]. The computa-

tion of diag( 1
22
A ) has to be performed only once before 

the PCG iterations. Small errors in the preconditioner 
affect only the convergence rate in PCG, not the solu-
tions of MME. In our tests, 1,000 samples were always 
sufficient to provide the same convergence rate and the 
solutions compared with the exact values of diag( 1

22
A ).

Data

Three data sets were used for testing (Table 1). Data 
1 consisted of 15,723 genotyped animals and 16,694 
pedigree animals in a commercial broiler population 
(Lourenco et al., 2015a). Data 2 consisted of 80,993 
genotyped animals and 375,946 pedigree animals in 
the U.S. Angus population (Lourenco et al., 2015b). 
Data 3 consisted of 569,404 genotyped animals and 
1,436,112 pedigree animals in the U.S. Holstein popu-
lation (Masuda et al., 2016).

Implementation and Computations

The inverse of A was calculated using the rapid 
method by Quaas (1976) and stored as a sparse matrix 
using the SPARSEM module (Misztal, 1999), as pres-
ent in the blupf90 package (Misztal et al., 2016; http://
nce.ads.uga.edu/wiki/BLUPmanual). The system of 
equations involving A00 were solved with a sparse 
matrix package, YAMS (Masuda et al., 2014), which 
used optimized dense-matrix subroutines from the Intel 
Math Kernel Library (Intel Corporation, Santa Clara, 
CA). For comparison, A22 was explicitly created and 
inverted as in Aguilar et al. (2011). The diagonals of 

Table 1. Description of data used in this study
Item Data 1 Data 2 Data 3
Number of animals

Genotyped 15,723 80,993 569,404
In selected pedigree1 16,694 375,946 1,436,112
In whole pedigree 213,297 8,234,208 10,710,380

Equations
Order 219,226 8,526,614 21,985,710

1Genotyped animals and their ancestors.
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1
22
A  were calculated with the exact inverse and with 

the Monte Carlo method. All programs were written in 
Fortran 95 and compiled with the Intel Fortran Compiler 
13.1 (Intel Corporation). Analyses were performed on a 
computer running Linux (x86_64) with Intel Xeon E5-
2689 central processing unit (2.9 GHz) processor with 
8 cores.

RESULTS AND DISCUSSION

Computing time and memory requirement for the 
explicit calculation of A22 and its inverse are shown in 
Table 2. Memory requirements were 1.8 GB for Data 
1 and 49 GB for Data 2. Computing time was 42 s for 
Data 1 and 56 min for Data 2. For Data 3, the memory 
requirement was too much to allocate for the available 
computer. Extrapolating from Data 2 assuming a qua-
dratic cost for memory and cubic costs for computing 
time, the computing for Data 3 would require 2,415 GB 
and more than 13 d to finish the inversion.

Table 2 also presents the computing time and mem-
ory requirement to prepare the sparse components of 

1
22
A . Total wall-clock time for the preparation of sparse 

components was short for all the data sets (less than 1 s 
in Data 1, 5.3 min in Data 2, and 4.4 min in Data 3). The 
required memory for the sparse components was much 
less than for the full inverse. Although Data 2 had fewer 
genotyped animals than Data 3, longer running time 

and more memory were required for the preparation. 
This was caused by more nonzero elements in the fac-
tor of A00, as almost all of them were newly created as 
“fill-in” during the factorization (Masuda et al., 2014). 
This illustrates the fact that 1

22
A  can be relatively dense 

for the limited number of animals. Therefore, as shown 
in this study, the indirect computation of 1

22
A q  takes ad-

vantage of sparsity in storage and computing time com-
pared with the direct inversion of A22. The factor of A00 
as used with YAMS actually occupied more than 99% 
of the required memory, but this amount of memory is 
still negligible with current computers.

Wall-clock time for 1
22
A q  with the sparse compo-

nents for one round of the PCG iteration was also neg-
ligible (<1 s) as shown in Table 3. Solving the sparse 
equation A00w = v was inconsequential in the compu-
tation. One iteration of PCG in ssGBLUP with Data 3 
took about 12 s (Masuda et al., 2016).

In ssGBLUP runs, the use of the Monte Carlo ap-
proximation of diag( 1

22
A ) with 1,000 samples resulted 

in the same convergence rate and solutions as with the 
exact diagonals (results not provided). The approxima-
tion was less expensive to compute, as it required only 
2.5 min for Data 2 and 2.2 min for Data 3 compared 
with 56 min and 13.4 d (estimated), respectively, to 
compute the exact diagonals. In summary, the computa-
tion of 1

22
A q  removes computing limits from ssGBLUP 

as these computations take a small fraction of memory 
and computing time even for the largest pedigrees.
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