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INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a unified approach for genomic evaluation to combine phenotypes, pedigree, and genotypes [START_REF] Aguilar | A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score[END_REF]. Mixed model equations (MME) in ssGBLUP require the inverse of a genomic relationship matrix (G -1 ; VanRaden, 2008) and the inverse of a numerator relationship matrix ( 1 22  A ) for genotyped animals. When the number of genotyped animals is limited, possibly less than 100,000, both inverses can be efficiently calculated [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF][START_REF] Aguilar | Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation[END_REF][START_REF] Fragomeni | Use of genomic recursions in single-step genomic BLUP with a large number of genotypes[END_REF]. When more animals are genotyped, G-1 can be obtained efficiently using the "algorithm for proven and young" (APY; [START_REF] Misztal | Using recursion to compute the inverse of the genomic relationship matrix[END_REF][START_REF] Misztal | Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size[END_REF], which exploits a limited rank of G due to a small effective population size. [START_REF] Faux | Inversion of a part of the numerator relationship matrix using pedigree information[END_REF] developed an algorithm to create 1 22  A directly from a pedigree. However, when the number of generations or the number of ancestors is large, the matrix becomes dense, resulting in expensive computations and more memory requirements. [START_REF] Strandén | Comparison of some equivalent equations to solve single-step GBLUP[END_REF] showed that 1 22  A could be decomposed into a product of several sparse matrices. When MME are solved with the preconditioned conjugate gradient (PCG), the explicit 1 22



A is not needed because the computations require only a product of ) by a vector (q). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix (A -1 ) including genotyped animals and their ancestors. The elements of A -1 were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of 1 22  A q was by a series of sparse matrix-vector multiplications. Diagonal elements of 1 22  A , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of 1 22  A q was compared with explicit inversion of A 22 with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssG-BLUP are solved with the PCG algorithm, 1 22  A is no longer a limiting factor in the computations.

that is, only

1 22  A q is needed. With PCG, diagonals of 1 22
 A are needed as preconditioners [START_REF] Tsuruta | Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications[END_REF]. The purposes of this study were to implement efficient computations of the product 1 22  A q and of the diagonal elements of 1 22  A and compare their computing costs with that of an explicit inversion.

MATERIALS AND METHODS

Indirect Multiplication of 1 22



A q

A numerator relationship matrix involving only genotyped animals and their ancestors is defined as

00 02 * 20 22 = é ù ê ú ê ú ë û A A A A A
and its inverse is defined as

00 02 * 1 20 22  = é ù ê ú ê ú ë û A A A A
A , in which the subscript "2" represents a group of genotyped animals and "0" represents a group of their ancestors. The inverse considering inbreeding coefficients can be easily calculated using the rapid rule from a pedigree [START_REF] Henderson | A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values[END_REF][START_REF] Quaas | Computing the diagonal elements and inverse of a large numerator relationship matrix[END_REF]. The matrix A *-1 does not need either descendants of or the animals unrelated to the genotyped animals.

Using a property of the inverse (Searle, 1982, p. 260), the inverse of A 22 is a function of submatrices of A *-1 (Strandén and Mäntysaari, 2014):

( )

1 1 22 20 00 02 22   =  A A A A A .
A product of the inverse by a vector, q, is expressed as

( ) ( ) { } 1 1 22 20 00 02 22   é ù =  ê ú ë û A q A q A A A q
.

[1] Let 4 temporary vectors be v, w, x, and y; the above product can be computed by a sequence of matrix-vector multiplications: v = A 02 q, w = (A 00 ) -1 v, x = A 20 w, y = A 22 q, and A q 22 1 -= y -x. The matrices A 22 , A 20 , and A 02 are sparse and hence the matrixvector multiplications can be efficiently computed. We do not need explicitly to compute (A 00 ) -1 because the product w = (A 00 ) -1 v can be computed by solving the sparse equation A 00 w = v. The Cholesky factor of A 00 is typically required to solve the equation. The sparse matrices A 22 , A 20 , and A 02 and the Cholesky factor of A00 are calculated and stored in memory before the PCG iterations. The product 1 22  A q will be calculated in each round because q is a vector of the current solution or search direction, and it changes every round. Although the explicit computation of the diagonal elements is expensive, the diagonals can be approximated by a Monte Carlo method [START_REF] García-Cortés | Multiple trait estimation of variance components in animal models with different design matrices[END_REF][START_REF] Dong | Stochastic estimation with Z 2 noise[END_REF][START_REF] García-Cortés | A Monte Carlo algorithm for efficient large matrix inversion[END_REF] as ( ) ( ) ( )

Diagonals of

1 1 22 22 1 diag 1/ n i i i n   = » å A s A s 
, in which n is the number of samples,  is the direct product operator, and s i is a vector of random numbers containing either +1 or -1 with equal probability and the product ( 1

22 i  A s ) is computed with Eq. [1]. The computa- tion of diag( 1 22  A
) has to be performed only once before the PCG iterations. Small errors in the preconditioner affect only the convergence rate in PCG, not the solutions of MME. In our tests, 1,000 samples were always sufficient to provide the same convergence rate and the solutions compared with the exact values of diag( 1 22  A ).

Data

Three data sets were used for testing (Table 1). Data 1 consisted of 15,723 genotyped animals and 16,694 pedigree animals in a commercial broiler population (Lourenco et al., 2015a). Data 2 consisted of 80,993 genotyped animals and 375,946 pedigree animals in the U.S. Angus population (Lourenco et al., 2015b). Data 3 consisted of 569,404 genotyped animals and 1,436,112 pedigree animals in the U.S. Holstein population [START_REF] Masuda | Implementation of genomic recursions in single-step genomic BLUP for US Holsteins with a large number of genotyped animals[END_REF].

Implementation and Computations

The inverse of A was calculated using the rapid method by [START_REF] Quaas | Computing the diagonal elements and inverse of a large numerator relationship matrix[END_REF] and stored as a sparse matrix using the SPARSEM module [START_REF] Misztal | Complex models, larger data, simpler computing?[END_REF], as present in the blupf90 package [START_REF] Misztal | Manual for BLUPF90 family of programs[END_REF]; http:// nce.ads.uga.edu/wiki/BLUPmanual). The system of equations involving A 00 were solved with a sparse matrix package, YAMS [START_REF] Masuda | Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood[END_REF], which used optimized dense-matrix subroutines from the Intel Math Kernel Library (Intel Corporation, Santa Clara, CA). For comparison, A 22 was explicitly created and inverted as in [START_REF] Aguilar | Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation[END_REF]. The diagonals of 1 Genotyped animals and their ancestors.

1 22  A were calculated with the exact inverse and with the Monte Carlo method. All programs were written in Fortran 95 and compiled with the Intel Fortran Compiler 13.1 (Intel Corporation). Analyses were performed on a computer running Linux (x86_64) with Intel Xeon E5-2689 central processing unit (2.9 GHz) processor with 8 cores.

RESULTS AND DISCUSSION

Computing time and memory requirement for the explicit calculation of A 22 and its inverse are shown in Table 2. Memory requirements were 1.8 GB for Data 1 and 49 GB for Data 2. Computing time was 42 s for Data 1 and 56 min for Data 2. For Data 3, the memory requirement was too much to allocate for the available computer. Extrapolating from Data 2 assuming a quadratic cost for memory and cubic costs for computing time, the computing for Data 3 would require 2,415 GB and more than 13 d to finish the inversion.

Table 2 also presents the computing time and memory requirement to prepare the sparse components of 1 22  A . Total wall-clock time for the preparation of sparse components was short for all the data sets (less than 1 s in Data 1, 5.3 min in Data 2, and 4.4 min in Data 3). The required memory for the sparse components was much less than for the full inverse. Although Data 2 had fewer genotyped animals than Data 3, longer running time and more memory were required for the preparation. This was caused by more nonzero elements in the factor of A 00 , as almost all of them were newly created as "fill-in" during the factorization [START_REF] Masuda | Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood[END_REF]. This illustrates the fact that1 22  A can be relatively dense for the limited number of animals. Therefore, as shown in this study, the indirect computation of 1 22  A q takes advantage of sparsity in storage and computing time compared with the direct inversion of A 22 . The factor of A 00 as used with YAMS actually occupied more than 99% of the required memory, but this amount of memory is still negligible with current computers.

Wall-clock time for 1 22  A q with the sparse components for one round of the PCG iteration was also negligible (<1 s) as shown in Table 3. Solving the sparse equation A 00 w = v was inconsequential in the computation. One iteration of PCG in ssGBLUP with Data 3 took about 12 s [START_REF] Masuda | Implementation of genomic recursions in single-step genomic BLUP for US Holsteins with a large number of genotyped animals[END_REF].

In ssGBLUP runs, the use of the Monte Carlo approximation of diag( 1 22  A ) with 1,000 samples resulted in the same convergence rate and solutions as with the exact diagonals (results not provided). The approximation was less expensive to compute, as it required only 2.5 min for Data 2 and 2.2 min for Data 3 compared with 56 min and 13.4 d (estimated), respectively, to compute the exact diagonals. In summary, the computation of 1 22  A q removes computing limits from ssGBLUP as these computations take a small fraction of memory and computing time even for the largest pedigrees. 

 = é ù ê ú ê ú ë û A A A A
A , in which the subscript "2" and "0" represent a group of genotyped animals and their ancestors, respectively.

2 Parallel processed with 8 computing cores.

3 Using a Monte Carlo method with 1,000 samples.

4 Extrapolated. 

A

  by an arbitrary vector, say q; Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient 1 Y. Masuda,* 2 I. Misztal,* A. Legarra, † S. Tsuruta,* D. A. L. Lourenco,* B. O. Fragomeni,* and I. Aguilar ‡ *Department of Animal and Dairy Science, University of Georgia, Athens 30602; †INRA, UR631 SAGA, BP 52627, 31326 Castanet-Tolosan Cedex, France; and ‡Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay 90200ABSTRACT: This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals (

A

  as a part of a preconditioner.

Table 1 .

 1 Description of data used in this study

	Item	Data 1	Data 2	Data 3
	Number of animals			
	Genotyped	15,723	80,993	569,404
	In selected pedigree 1	16,694	375,946	1,436,112
	In whole pedigree	213,297	8,234,208	10,710,380
	Equations			
	Order	219,226	8,526,614	21,985,710

Table 2 .

 2 Wall-clock time and storage memory required for the preparation of sparse components 1 of the inverse of a subset of numerator relationship matrix (A 22 ) for genotyped animals and the results from the computations with the direct inverse of A 22 for comparisons

	Item				Data 1	Data 2	Data 3
	Wall-clock time for preparation 2		
	Indirect approach				
	Setting up A 00 , A 20 , A 02 , and A 22 <1 s	<1 s	2 s
	Factorization of A 00			<1 s	167 s	125 s
	Computing diagonals 3 of	A	1 22 	<1 s	148 s	134 s
	Direct approach				
	Setting up A 22			<1 s	199 s	2.7 h 4
	Inversion of A 22			42 s	56 min	13.4 d 4
	Required memory for storage		
	Indirect approach			<1 MB	2.9 GB	2.3 GB
	Direct approach			1.8 GB 49.0 GB 2,415 GB 4
	1 Submatrices of the inverse of a numerator relationship matrix
	00	02				
	* 1					
	20	22				

Table 3 .

 3 Wall-clock time for the indirect multiplication of the inverse of a subset of numerator relationship matrix (A 22 ) with a vector (q) in an iteration in the preconditioned conjugate gradient (PCG) and the results from the computations with the full inverse for comparisons

	Wall-clock time for	1 22  A q per PCG iteration 1 Data 1 Data 2 Data 3
	Indirect approach	<1 s	<1 s	<1 s
	Direct approach	<1 s	<1 s	59 s 2

Parallel processed with 8 computing cores.

Extrapolated.
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