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Abstract 10 

Optimization of feeding strategy is an essential issue of anaerobic co-digestion that can be 11 

greatly assisted with simulation tools such as the Anaerobic Digestion Model 1. Using this 12 

model, a set of parameters, such as the biochemical composition of the waste to be digested, its 13 

methane production yield and kinetics, has to be defined for each new substrate. In the recent 14 

years, near infrared analyses have been reported as a fast and accurate solution for the estimation 15 

of methane production yield and biochemical composition. However, the estimation of methane 16 

production kinetics requires time-consuming analysis. Here, a partial least square regression 17 

model was developed for a fast and efficient estimation of methane production kinetics using 18 

near infrared spectroscopy on 275 bio-waste samples. The development of this characterization 19 

reduces the time of analysis from 30 days to a matter of minutes. Then, biochemical composition 20 
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and methane production yield and kinetics predicted by near infrared spectroscopy were 21 

implemented in a modified Anaerobic Digestion Model n°1 in order to simulate the performance 22 

of anaerobic digestion processes. This approach was validated using different data sets and was 23 

demonstrated to provide a powerful predictive tool for advanced control of anaerobic digestion 24 

plants and feeding strategy optimization. 25 

Keywords 26 

Spectroscopy; Kinetics; Methane potential; Modeling; Anaerobic digestion; ADM1.27 
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 28 

1 INTRODUCTION 29 

 30 

Anaerobic digestion (AD) is probably the major biological process involved in waste valorization. It 31 

has a low energy requirement, low sludge production and large potentialities to produce both valuable 32 

intermediates and energy. Nonetheless, diversification of substrates and development of Anaerobic co-33 

Digestion (AcoD) are needed in order to keep AD as a highly efficient process.  Since feeding strategy is 34 

the major factor governing the overall process, the development of AcoD involves optimal feeding 35 

strategy definition (Karthikeyan and Visvanathan, 2013). The variability of the available inputs and the 36 

diversity of technological processes has made the forecasting of the process performances and the 37 

definition of an optimal feeding strategy difficult. In particular, precise substrates characterization and 38 

advanced dynamic models are required to predict the performances of the process depending on its 39 

feeding strategy (García-Gen et al., 2013). In that aim, the Anaerobic Digestion Model #1 (ADM1)  has 40 

been developed (Batstone et al., 2002). ADM1 is a detailed model taking into account the main reactions 41 

of AD processes. ADM1 has been extensively used and analyzed in both academic and practical 42 

applications (Batstone et al., 2006).  43 

The first limit is that hydrolysis is recognized as the rate-limiting step in the complex digestion 44 

process (Appels et al., 2008) but is represented as a single-order reaction in ADM1. Contois-type 45 

equation represents more accurately the hydrolysis of solid substrates (Yasui et al., 2006). Moreover, 46 

García-Gen et al., (2015) and Jimenez et al., (2016) recommended to split the organic matter into three 47 

to four compartments with different kinetics of hydrolysis to fit the experimental biogas production. The 48 

second limit encountered while using such a complex model is that many parameters have to be 49 
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determined and depend either on the substrate or on the process (Batstone et al., 2015). To set these 50 

parameters, a precise characterization of the substrate composition as input variables is needed. Input 51 

variables of the model describe the substrate in terms of protein, lipid, carbohydrate content and 52 

Chemical Oxygen Demand (COD), biodegradability and kinetics of hydrolysis. Thus, several methods have 53 

been proposed to simplify the implementation. Basically, Folin reagent or Kjeldahl procedure are used to 54 

estimate the protein content (Souza et al., 2013),  hexane extraction for lipid content (Girault et al., 55 

2012) and colorimetric assay using a complexation between phenol and glucose for the carbohydrate 56 

content estimation (Ugwuanyi et al., 2005). Kleerebezem and Van Loosdrecht, (2006) proposed to use 57 

the elemental composition of the substrate and to transform it into proteins, lipids, carbohydrates, and 58 

COD. Zaher et al., (2009) generalized this approach creating a transformer that converts the elemental 59 

composition and COD into an input ADM1 vector. The limit of the approaches based on elemental 60 

composition is the estimation of the biodegradability and kinetics of hydrolysis. Biodegradability 61 

estimation is usually calculated as a rate between COD and Biochemical Methane Potential (BMP). BMP 62 

is experimentally obtained by batch digestion experiments which are time-consuming (Angelidaki et al., 63 

2009). However, the laboratory analyses reported above are time consuming and labor intensive, which 64 

is an important drawback for industrial application. These characterizations of the substrate are rarely 65 

available at industrial scale and must be determined for each new substrate (Appels et al., 2011). The 66 

difficulty to estimate the parameters describing the substrate reduces the applicability of the model for 67 

the predictions of the digestion performances at industrial scale.  68 

Thus, different methods have been proposed to shorten the time of analysis. Jimenez et al., (2014) 69 

used a Partial Least Square (PLS) regression model to predict biodegradability by 3D fluorescence 70 

coupled with chemical sequential extractions. It allows reducing the time of analysis from one month to 71 

one week. Another method has been proposed by Lesteur et al., (2011) and Jacobi et al., (2012) which 72 

reduces the time of BMP analysis to a matter of minute using Near InfraRed (NIR) spectra. NIR spectra 73 
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are mathematically treated using Standard Normal Variate normalization (SNV), detrending or Savitsky-74 

Golay filtering and used to predict the BMP thanks to a PLS model (see also Ward, 2016). Recently, 75 

Charnier et al., (2016)  extended the use of the NIR analyses to the prediction of the carbohydrate, 76 

protein and lipid content and chemical oxygen demand. Combining the literature on the prediction of 77 

the BMP and the biochemical composition, NIR appears to be an efficient method for a fast 78 

implementation of the ADM1 model. 79 

Kinetic estimation remains a challenge; few methods are available and are all based on biological 80 

digestion of the substrates (Jensen et al., 2011). From these digestion experiments, the methane 81 

production rate (MPR) is obtained and the kinetic is estimated so that the model fits the MPR (Yasui et 82 

al., 2008). Batstone et al., (2009) suggested that this approach underestimates the kinetics of methane 83 

production because kinetics depends on the micro-organisms adaptation to the substrate. In order to 84 

adapt the micro-organisms to the substrate, García-Gen et al. (2015) estimated the kinetics on eight 85 

successive batches using the same substrate to feed the reactor. Thus, methane production kinetics 86 

estimation requires batch or continuous digestion experiments which make the kinetics of methane 87 

production one of the longest parameter to obtain. To shorten the estimation of methane production 88 

kinetics is a hindrance to overcome in order to use ADM1 for industrial purposes (Batstone et al., 2015).   89 

Hence, this study aims at reducing the difficulties of ADM1 parameters estimation. It first focuses on 90 

the possibility to predict the methane production kinetics of solid substrates using NIR spectroscopy. In a 91 

second time, combining the models existing on the literature (Charnier et al., 2016; Jacobi et al., 2012; 92 

Lesteur et al., 2011) and the model developed in this study, NIR is used to predict biochemical 93 

composition and MPR to implement ADM1. The hydrolysis kinetics of ADM1 is optimized to fit the MPR 94 

predicted by NIR. This approach reduces the ADM1 parameters estimation such as BMP or hydrolysis 95 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Charnier, C. (Auteur de correspondance), Latrille, E., Jimenez, J., Torrijos, M., Sousbie, P.,
Miroux, J., Steyer, J.-P. (2017). Fast ADM1 implementation for the optimization of feeding

strategy using near infrared spectroscopy. Water Research, 122, 27-35.  DOI : 10.1016/j.watres.2017.05.051

M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

kinetic from 30 days to a matter of hours, making it suitable for industrial application. Eventually, the 96 

accuracy of this approach has been estimated based on two case studies. 97 

2 MATERIAL AND METHODS 98 

2.1 Batch experiments 99 

MPR was estimated from biological degradation of the substrate. Experiments were carried out in  100 

8.5 L batch reactors with 6 L of sludge under mesophilic conditions as described in García-Gen et al., 101 

(2015). The substrates were grinded to approximately 1cm. In order to adapt the micro-organisms to the 102 

substrate, The reactor was fed at 1 gVS.l-1 with the same substrate in eight successive batches, each one 103 

lasting for only few days, due to the low amount of substrate added. The biogas produced passed 104 

through a moisture trap and through a milligas counter fitted with a digital output (MGC-1 gas flow 105 

meters, DR.-ING.RITTER APPARTEBAU GMBH & CO.KG, Bochum, Germany); the data were recorded on-106 

line. The methane production of the last batch (i.e., after adaptation of the microbial ecosystem to the 107 

substrate) was used to obtain the MPR. Methane yield was estimated as the maximal methane produced 108 

from 1 gTS on the eighth batch. Methane production times were selected on the MPR as values 109 

corresponding to the durations required to reach a certain ratio of the methane yield from 5 to 95 % 110 

with a regular increment of 5 %.  111 

2.2 NIR analyses 112 

According to Lesteur et al., (2011), freeze-dried and grinded samples were scanned in reflectance 113 

over 1000-2500 nm, with a resolution of 2.5*106 nm, using a spectrophotometer BUCHI NIR-Flex N-500 114 

solids fitted with vial accessory (Buchi®, Flawil, Switzerland). For the first chemometric treatment, 115 

absorbance (A) was calculated from reflectance (R) as A=log(1/R) and SNV was applied. For the second 116 
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treatment, Savitzky–Golay filter with a second derivative was added to previous treatment of the 117 

spectra. Eventually, a third treatment was added, based on the first treatment but with a detrending as 118 

an additional chemometric treatment. 119 

2.3 Samples analyzed 120 

275 samples representing a wide diversity of substrates were analyzed to build the PLS model for the 121 

prediction of the methane production times and BMP. In details, the analyses were conducted on 3 fat or 122 

oleaginous samples, 24 fruits, 18 vegetables, 12 farm wastes such as straw, manure or grass, 15 cereals, 123 

6 meat or fish extracts, 3 micro-algae and 194 mixed organic wastes. Based on the recommendation of 124 

Dardenne (2010), the dataset was split in an independent validation set and a calibration set before 125 

establishing any correlation with NIR spectroscopy. A validation set of 42 samples was separated for the 126 

model validation composed of 6 vegetables and 36 mixed organic wastes. The remaining 237 samples 127 

were used to calibrate the PLS regression model. All the samples were freeze-dried and grinded below 1 128 

mm before any analysis. The mean methane yield was about 0.316 L.gTS-1 and 0.270 L.gTS-1  with a 129 

standard deviation of 0.093 L.gTS-1 and 0.041 L.gTS-1, a minimal value of 0.129 L.gTS-1 and 0.167 L.gTS-1, a 130 

maximal value of 0.717 L.gTS-1 and 0.351 L.gTS-1  for the calibration and validation sets respectively. 131 

Figure 1 represents the times required to reach a certain ratio of the methane yield, from 5 to 95%, of 132 

both calibration and validation sets. The same samples as described in (Charnier et al., 2016) were used 133 

to build the PLS model for the prediction of the biochemical composition.  134 

2.4 Partial least square regression for kinetics prediction. 135 

Methane yield was predicted using the toolbox FACT on Scilab 5.5.0. Methane production times 136 

were firstly considered as independent values when running the PLS regression with the tool box FACT, 137 

Scilab® 5.5.0. Each of the discrete times (from 5% to 95%) was used to build a specific PLS model leading 138 

to 19 independent models with no dependencies between the latent variables for the 19 models.  139 
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In a second approach, the discrete times (from 5% to 95%) were considered as a vector using the 140 

package MixOmics, R®3.2.2 leading to one PLS model with a single set of latent variables. In this case the 141 

PLS model was built using MixOmics. 142 

In both approach, the PLS models  forthe prediction of the methane production times and the PLS model 143 

for the prediction of the methane yield  were calibrated using the data from the calibration set. Cross-144 

validations were performed on the calibration set using the Jackknife method (Karaman et al., 2013) 145 

which splits randomly the dataset into 15 independent blocks. For each PLS model, the performances of 146 

the cross-validation were used to determine the number of latent variables and to choose the best 147 

chemometric treatment. The final model was then applied to the independent validation set. The 148 

accuracy and robustness of the model were assessed with the indicators recommended in Dardenne 149 

(2010). Cross-validation performances were analyzed based on the model Standard Error of Calibration 150 

(SEC), the Standard Error of Cross Validation (SECV) and the coefficient of determination between 151 

predicted and reference values (R2). The SEC was unfortunately not accessible using MixOmics but the Q2 152 

and SECV were used to assess the performance of the PLS. The accuracy of the PLS on the validation set 153 

was assessed by the Standard error of Prediction (SEP) and bias.  154 

 155 

2.5 Modified ADM1 156 

ADM1 benchmarked on the BSM2 report (Rosén and Jeppsson, 2008) was implemented in Scilab 157 

5.5.0. ADM1 model was then modified based on the work of  (Ramirez et al., 2009).  The degradation of 158 

the particulate organic matter has been implemented with Contois kinetics to describe both 159 

disintegration and hydrolysis. Hydrolysis was supposed to be non-limiting. Three micro-organism groups 160 

were considered for the hydrolysis of carbohydrates, proteins and lipids. A consortium regrouping all the 161 

hydrolytic micro-organism was considered for the disintegration. An additional modification of this 162 
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model was tested, as recommended in (Jimenez et al., 2016), four different particulate inputs were 163 

implemented, Xrc, Xmc, Xsc and Xne according to their bioaccessibility (Figure 2). Xrc, Xmc, Xsc and Xne 164 

stand respectively for the readily accessible, moderately accessible, slowly accessible and not extractible 165 

organic matter. These four particulate inputs are considered to have the same composition and to be 166 

degraded by the same biomass but with different µmax in this modified ADM1.  167 

2.6 MPR prediction 168 

The prediction of the MPR curve is made using the predicted methane yield and the 19 methane 169 

production times (5-95 %) predicted. At each of the methane production time predicted is associated a 170 

methane production using the methane yield multiplied by the percentage reached. Thus 19 points of 171 

the MPR curve are estimated based on the NIR prediction. The initial point was added as zero methane 172 

produced at time zero. The MPR was then interpolated. A smooth spline with the function smooth.spline 173 

was done using R®3.2.2 to remove noise. For the prediction of the confidence range, ± 1 SEP was added 174 

to the 19 methane production times and the methane production yield before to produce the MPR using 175 

this approach, in order to transfer the potential errors of the NIR prediction on the predicted MPR. 176 

2.7 Biochemical composition prediction 177 

The same methods, datasets and models as reported in (Charnier et al., 2016) were used for an 178 

accurate prediction of the carbohydrates, nitrogen and lipids content and COD. Thus, the same 179 

performances of prediction as described in (Charnier et al., 2016) were obtained. The total 180 

carbohydrates content was predicted in mgO2.gTS-1, the total nitrogen content was predicted in g.gTS-1, 181 

the total lipids content was predicted in g.gTS-1 and the total COD was predicted in mgO2.gTS-1. 182 

2.8 ADM1 modelling approach  183 
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Conversion of the NIR predicted values into ADM1 parameters are presented in Figure 3. Total 184 

nitrogen is converted into protein COD equivalent multiplying the total nitrogen in gram by 6.25*1.54 185 

(Girault et al., 2012).  is the nitrogen content in protein and 1.54 the mean COD values of proteins 186 

in gO2.g
-1. Carbohydrates content was directly estimated in COD equivalent. Lipids content was 187 

estimated in gram per gram, thus a conversion rate of 2.8 between gram and COD was applied (Batstone 188 

et al., 2002). 2.8 represents the averaged COD of 1 gram of oil in gO2.g
-1.  COD and methane yield 189 

predictions were used to assess the non-biodegradable content of the substrate using the equation 1 190 

described by Jimenez et al., (2014): 191 

        192 

 (1) 193 

Biodegradability is expressed as a ratio from 0 to 1, BMP in NmlCH4.g-1 and COD in gO2.g
-1. If Xrc, Xmc, 194 

Xsc and Xne inputs were implemented, the repartition of the initial COD in Xrc, Xmc, Xsc and Xne was 195 

determined by analyzing the changes in the methane production slope of the predicted MPR. For the 196 

determination of the initial state of the model variables, a maximal specific growth rate (µmax) of 3 d-1 197 

was set, representing the mean µmax found in the 275 samples. The initial state of the ADM1 variables 198 

was simulated in accordance with the experimental protocol (see Material and Methods section 2.1). 199 

Seven batches were successively simulated with an input of 1 gTS.l-1 in a 6 liter reactor under mesophilic 200 

conditions. The values of the initial state of ADM1 variables were taken as the final values reached on 201 

the seventh batch. Then, on the eighth simulated batch, the kinetics parameters of ADM1 were assessed 202 

based on the MPR predicted by NIR.  The estimation of the kinetics was considered as a non-linear 203 

problem based on the root mean square optimization between the MPR predicted by NIR and the MPR 204 

simulated by ADM1. Using the modified ADM1 (see Material and Methods 2.5), the µmax of the Contois 205 

kinetic terms were optimized by the operator in order to minimize the square value of the difference 206 
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between the predicted methane production and the simulated methane production. In order to assess 207 

the improvements brought by the modifications of the model,  the µmax of the first order disintegration 208 

kinetic of the standard ADM1 implementation obtained from (Rosén and Jeppsson, 2008) was also 209 

optimized. This was done minimizing the square value of the difference between the predicted methane 210 

production and the simulated methane production using the function leastsq from Scilab®.5.5.0. 211 

3 RESULTS AND DISCUSSION 212 

3.1 Prediction of the methane production rate in batch conditions using 213 

NIR spectroscopy 214 

3.1.1 Prediction of the methane yield 215 

The methane yield was predicted according to (Lesteur et al., 2011) using the same chemometric 216 

treatment, presented in Material and Methods section Error! Reference source not found. (absorbance, 217 

SNV and Savitzky–Golay filter with a second derivative). Using the data set of the present study and 218 

based on the cross-validation performances, the PLS regression model was calibrated using 13 latent 219 

variables. The number of latent variables was selected to minimize the SECV. On the calibration set, the 220 

SEC was about 0.019 L.gTS-1, SECV about 0.026 L.gTS-1 and R2 about 0.92. The model was validated on the 221 

independent validation set with SEP of 0.025 L.gTS-1.The SEP found for the methane yield prediction is 222 

comparable with the SEP of 0.028 L.gVS-1 reported in (Lesteur et al., 2011). It validates the use of NIR 223 

infrared to predict methane yield in this study. If previous models give predictions per gram of volatile 224 

solids, predictions per gram of total solid have been preferred since the total solid is faster to estimate 225 

than volatile solid and prediction performances were similar. 226 
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3.1.2 Prediction of the methane production times  227 

First of all, the times required to reach a certain percentage of the methane yield ranging from 5 228 

to 95 % of the final value has been considered as independent values at each ratio of the methane yield. 229 

The choice of the chemometric treatment was based on the PLS performance during cross-validation and 230 

calibration. SEC, SECV and R2 between predicted and reference values in cross-validation are represented 231 

in Figure 4For all the treatments, SEC and SECV increase from 5 to 70% of the methane yield, this 232 

corresponds to an approximate 6-fold change. . SEC and SECV then decrease with the methane yield 233 

ratio from 70 % to 95 %. The variation of SEC and SECV is correlated with the variance within the dataset 234 

which increases with the ratio of the methane yield to reach a maximal variance between 65 % and 70 % 235 

of the methane yield as suggested in Figure 1. The experimental standard deviation and the standard 236 

deviation of the predicted values in cross-validation are plotted in Figure 4. The standard deviation 237 

reaches a maximum of 1.24 day at 65 % of the methane yield. Thus, the most important difference of 238 

production time between the samples is reached at 65 % of the methane yield. It explains the increase of 239 

both SEC and SECV up to this point. Then, the variance decreases indicating a homogenization of the 240 

samples. It can be concluded that 65 % of the methane yield is the most discriminant production time. It 241 

can be observed in figure 4 that, regardless of the chemometric treatment, using independent PLS 242 

model, R2 increases with the methane yield ratio. It means that model predictions are less accurate on 243 

early methane production. It can be mainly explained by two factors. First, to restore anaerobic 244 

conditions after having fed the digester, the head space is flushed using nitrogen. As a consequence, the 245 

very first biogas production is due to both liquid gas equilibrium and substrate biodegradation, which 246 

disturbs the estimation of the methane produced from the substrate biodegradation. Secondly, the early 247 

methane production is due to 5 to 15 % of the organic matter. Thus the information related to this early 248 

production can be diluted in the NIR spectrum which is made on the overall substrate.  249 
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 About the chemometric treatments, both SEC and SECV were minimized using treatment 250 

absorbance, SNV and Savitzky–Golay filter with a second derivative at any ratio of the methane yield 251 

with respectively values from 0.05 to 0.37 days and 0.07 to 0.55 days. R2 was maximal using treatment 252 

absorbance, SNV and Savitzky–Golay filter with a second derivative until 70% of the methane yield 253 

whereas treatment absorbance, SNV and detrending slightly improved R2 after 70% of the methane yield 254 

compared to treatment absorbance, SNV and Savitzky–Golay filter with a second derivative.  Treatment 255 

absorbance, SNV and Savitzky–Golay filter with a second derivative maximized the PLS regression 256 

performances for the prediction of production time and was chosen as the reference chemometric 257 

treatment for this purpose.  258 

PLS regression was also built to treat the production time as a vector of correlated values. In this 259 

case, a global set of latent variables is used. The advantage of this approach is to acknowledge the 260 

correlation between the production times at any ratio of the methane yield. The disadvantage is the 261 

necessity to set a unique number of latent variables for every ratio of the methane yield.  Using 262 

treatment absorbance, SNV and Savitzky–Golay filter with a second derivative, both approaches were 263 

compared considering either the time of production as a correlated vector or as independent values. SEC 264 

was not accessible using MixOmics and is thus absent of the Figure 4. Q2 was used to set the number of 265 

latent variables to 5 which corresponds to the first Q2 value below 0.0975 with a local minimum. The 266 

number of latent variables considering production time as independent values varies from 6 to 12. A 267 

reduction of the number of latent variables is usually acknowledged as a gain in robustness. 268 

Nonetheless, SECV was higher considering production time as a vector with values from 0.07 to 0.60 days 269 

than considering the methane production times as independent values. Moreover, the R2 was lower with 270 

values from 0.47 to 0.79. On average, considering the methane production time as a vector increased 271 

the SECV by 8.5% and decreased R2 by 6.1%. From these results, it can be concluded that the 272 
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performances are maximized considering the time of production as independent values with treatment 273 

absorbance, SNV and Savitzky–Golay filter with a second derivative.  274 

The resulting PLS regression model was then tested on the validation set. SEP values are 275 

presented in Figure 5. The same patterns as for SECV and SEC estimation were observed for SEP and 276 

RMSEP which reached maximal values at 0.65 point of the methane yield with respectively 0.47 and 0.46 277 

day. The standard deviation of the validation set confirmed an increase of the dispersion until 65 % of 278 

the methane yield (Figure 5). SEP and RMSEP are approximately 2 times lower than the standard 279 

deviation of the validation set which proves that PLS was able to discriminate the production time of the 280 

samples.  It also shows that the errors of prediction are low, for instance at 65 % of the methane yield 281 

the SEP was 0.47 day to predict values in a range from 1.15 to 4.75 day with a mean value of 2.32 day. 282 

The model previously built on the calibration set can thus be considered as suitable to predict the times 283 

of degradation at any methane yield ratio.  284 

The cross-validation and validation results using treatment absorbance, SNV and Savitzky–Golay 285 

filter with a second derivative and considering the times required to reach a certain percentage of the 286 

methane yield as independent values are detailed in the bottom of Figure 5. In these two figures, the 287 

methane production times are represented without any distinction on the methane yield ratio. Figure 5 288 

confirms the accuracy of the PLS model but also shows that the error of prediction decreases with the 289 

predicted time.  The methane production times above 6 days mostly represent a methane production 290 

above 65 % of the final methane yield. It has been previously observed that the variance decreased after 291 

65 % of the methane yield and that this goes with a decrease of SECV, SEP and RMSEP, which explains 292 

the decrease in the error of prediction.  From the cross-validation results, it can be seen that one sample 293 

is strongly under-predicted at several methane yield ratios. It is actually the only sample represented by 294 

oil. It shows that oil is under-estimated on the current dataset of calibration. This error is not found 295 
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during the validation step because no oil was contained in the validation set. Nonetheless, from these 296 

results, it can be concluded that the prediction of production time is feasible using NIR spectroscopy and 297 

PLS model, even if an improvement of the dataset could be made including more oil samples. 298 

3.1.3 Prediction of the methane production rates 299 

A case study was carried out on two samples from the validation set to assess the feasibility of the 300 

MPR prediction. As explained in the section 2.6, the MPR was predicted using both methane production 301 

times and methane yield predicted by NIR analyses. Then MPR was interpolated from these 19 points. 302 

These curves are represented as “NIR predictions” in Figure 6 and compared to the experimental 303 

cumulated methane production. It shows that NIR prediction represents properly the production of 304 

methane. Both methane yield and production time were correctly predicted. The errors of prediction on 305 

the methane yield were about 6.7 % on salad and 3.5 % on cauliflower. On the experimental data, the 306 

methane flow decreased after 0.4 and 1 day and increased again after 1 and 1.5 day for respectively 307 

salad and cauliflower (Figure 6.A-B). These behaviors were not accurately predicted by NIR. One possible 308 

explanation is an inhibition of the readily degradable substrate on the slowly degradable substrate that 309 

was not predicted by NIR. Another hypothesis leading to similar results can be found in Yasui et al., 310 

(2008): the readily accessible organic matter is degraded first followed by the slowly accessible organic 311 

matter, keeping in mind that kinetics of disintegration and accessibility are independent. 312 

3.1.4 Simple predicted indicator of methane production performances 313 

MPR is a relevant indication that allows to differentiate the methane production performances 314 

of two substrates, but MPR analysis becomes difficult when the number of samples to compare 315 

increases. Methane yield and kinetics of methane production are two key parameters to elaborate an 316 

optimal feeding strategy. It is indeed in the interest of the plant operator to maximize both methane 317 

yield and kinetics. The time needed to reach 70 % of the methane yield has been reported in section 318 
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3.1.2 to be the most discriminant time. The observation of this time allows differentiating a substrate 319 

with a fast kinetic of methane production. In Figure 7, the samples of the validation set have been 320 

plotted depending on their predicted methane production time needed to reach 70% of the methane 321 

yield and their predicted methane yield. Figure 7 shows that the fast NIR spectroscopy analysis of the 322 

substrate provides the opportunity to the plant operator to select the most relevant substrates on a 323 

simple graph. 324 

3.2 ADM1 calibration from NIR prediction 325 

It has been proven that NIR spectroscopy can be used to estimate MPR in batch conditions. It turns 326 

to be also a powerful method to implement an ADM1 model able to predict the substrate methane 327 

production performances. The approach was applied to the case studies of salad and cauliflower. As 328 

described in Materials and Methods section Error! Reference source not found., carbohydrates, nitrogen 329 

and lipids content, COD and methane production rate were used to implement ADM1. The curve 330 

predicted by NIR was then used as a reference for the µmax optimization of the Contois kinetic 331 

parameters.  The model using only one particulate input (Batstone et al., 2002) was first tested. 332 

Respectively for salad (Figure 6.A) and cauliflower (Figure 6.B), µmax were estimated at 1.92 and 4.33 d-1. 333 

It can be seen that, while optimizing µmax, the model does not represent accurately the predicted MPR. 334 

Indeed, it tends to under-estimate the kinetics at the beginning of the production and to over-estimate it 335 

in the second part. More kinetic parameters are thus needed to represent efficiently the curve. Hence, a 336 

second optimization was done using the modified ADM1 described in section 2.5 with four fractions and 337 

four distinct µmax kinetic parameters for disintegration. It can be seen that four kinetics of disintegration 338 

improved the fit between the simulated cumulated biogas production and the predicted cumulated 339 

biogas production. The degradation of Xrc is faster than when considering a single input while the 340 

degradation of Xmc, Xsc and Xne are slower, which fits the predicted data. It can be seen in Figure 6.A-B 341 
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that the NIR predicted data allows calibrating a modified ADM1 that accurately represents the 342 

experimental batch data.  343 

 344 

If we consider a normal distribution of errors, 68.2 % of the reference values are contained in a range 345 

of ± 1 SEP of the predicted value. Thus, an error of ± 1 SEP was applied to each methane production 346 

time, to the methane yield and to the parameters describing the biochemical composition predicted by 347 

NIR in order to obtain an envelope where 68 % of the possible MPR curves will be included. µmax of the 348 

Contois kinetic parameters were optimized on the most optimistic MPR, minus one SEP on the methane 349 

production time and plus one SEP on the methane yield, and on the most pessimistic MPR, plus one  SEP 350 

on the methane production time and minus one SEP on the methane yield. The confidence range of the 351 

simulations is presented in Figure 6.C-D. It can be seen that the experimental MPR is included in the 352 

simulated range of confidence of the MPR.  It shows that the predicted confidence range represents 353 

accurately the experimental MPR. Since the experiments focus on the methane production under non 354 

inhibitory conditions, the impact of the errors of prediction on the biochemical composition cannot be 355 

observed. This approach is interesting in order to predict the performance of the plant depending on the 356 

feeding strategy. The introduction of potential errors of prediction in the model also provided an 357 

estimation of the risk that the plant operator is taking (Južnič-Zonta et al., 2012). Thus, it could provide 358 

key information to the human operator to optimize safely the production of a real plant.  359 

3.3 Discussion on the MPR prediction using NIR 360 

Batstone et al., (2009) have demonstrated that hydrolysis kinetic parameters estimated in BMP 361 

tests translated to very poor model performance when BMP-estimated values were used to simulate 362 

continuous reactors. On the other hand, García-Gen et al., (2015) demonstrated that the calibrated 363 

ADM1 kinetic parameters from batch assays that allow micro-organisms to adapt to individual substrates 364 
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can be used to model semi-continuous co-digestion operation treating simultaneously 5 wastes. In our 365 

case, we used the same experimental protocol as García-Gen et al., (2015) and thus the model 366 

parameters can be assumed to be valid for continuous operation of the digester.  The main drawback of 367 

the batch experiments with adapted micro-organisms is the time needed, from 6 to 12 weeks, which 368 

reduces its use. This study also shows that NIR spectrometry can be efficiently used to predict 369 

experimental batch MPR on adapted micro-organisms. Kinetic parameters of the ADM1 model calibrated 370 

on the predicted batch MPR can be used for continuous co-digestion simulation. This approach gives the 371 

opportunity to replace time-consuming biological experiments by fast NIR analysis for feeding strategy 372 

optimization. Two drawbacks must be highlighted. First, NIR remains an expensive and unusual device 373 

and only laboratories and large plants can afford to own a NIR spectrometer. Second, the analysis can be 374 

done on dry samples only. Two disadvantages are linked to drying: volatile compounds cannot be 375 

analyzed and on-line application cannot be considered. A further interesting development or 376 

improvement of this technology would be to work with wet samples and install an online sensor able to 377 

characterize in real time any input coming to the plant. The obstacle is the absorption of water using NIR 378 

that disturb the analysis. Mayer (2015) provides for example some hints about the estimation of 379 

methane yield on wet samples using NIR.  380 

4 Conclusion 381 

The current study shows that: 382 

• The kinetics of methane production was the main hindrance to overcome for a fast 383 

implementation of the ADM1 model using NIR. Thus, a PLS model has been developed to 384 

estimate properly the kinetics of methane production from a large set of solid substrates 385 

using NIR spectroscopy.   386 
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• Based on the actual and previous studies on biochemical composition, methane production 387 

yield and kinetics prediction using NIR, it is demonstrated that NIR is a powerful tool for the 388 

prediction the main parameters needed to optimize AD plants with a single analysis of few 389 

minutes on dry samples. 390 

• The predicted parameters using NIR spectroscopy are transformed in ADM1 parameters to 391 

implement a modified ADM1. From this virtual plant, it becomes possible to predict the 392 

performance of degradation of any input. It gives access to every parameters estimated in 393 

the ADM1 model such as the concentration of VFA, nitrogen or the biogas composition.  394 

This study demonstrates that the use of NIR spectroscopy coupled with PLS regression and ADM1 395 

modeling can help the human operators to monitor the plant. This approach can be used as a powerful 396 

tool for plant monitoring and feeding strategy optimization. 397 

 398 
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Figure 1: Calibration and validation set features of the experimental data. Description of the methane production time 

required to reach a certain ratio of the methane yield from 5 to 95 %.  
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Figure 2: Modified ADM1 with four different particulate inputs Xrc, Xmc, Xsc and Xne. 
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Figure 3: Modeling approach diagram 
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Figure 4: PLS regression performances on cross-validation with 3 different chemometric treatments and considering the 
methane production times as correlated or independent values. Treatment 1 correspond to absorbance and SNV, treatment 2 
to absorbance, SNV and Savitzky-Golay filter and treatment 3 to absorbance, SNV and detrending. 
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Figure 5: PLS performances on the validation set (up) and representation of the predicted value of both cross-validation 

and validation (bottom). 
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Figure 6: Cumulative methane production curve for anaerobic of salad (left) and cauliflower (right) in batch. A and 
B, comparison of predicted and simulated data using ADM1 considering the particulate organic matter as a single input or 
fractioning the particulate organic matter in four inputs with their own kinetics of disintegration for salad and cauliflower 
respectively. B. C and D, modelling of the methane cumulative production for salad and cauliflower AD taking into account 
the error of prediction for salad and cauliflower respectively. Methane production times and methane yield were chosen at ± 
1 SEP of the predicted value. The grey aera represents the range of confidence. 
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Figure 7: Performances of the substrates from the validation set expressed as a function of the methane yield and the 
production time of 70% of the methane yield. Abscissa arrow indicates the methane production kinetics and ordinate arrow 
the methane yield.  
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Highlights 

• Near infrared prediction of the methane yield and kinetics  

• Use of near infrared spectroscopy to implement ADM1 

• Prediction of co-digestion performances assisted with ADM1 simulation 

• Feeding strategies  optimization using the developed predictive methodology 

 


