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Préface

Cette année, pour sa dix-huitième édition, JOBIM (Journées Ouvertes en
Biologie, Informatique et Mathématiques) fait étape à Lille. Cet événe-
ment annuel, proposé conjointement par la Société Française de BioIn-
formatique, le GDR BioInformatique Moléculaire et l’Institut Français de
Bioinformatique, est devenu au fil du temps un rendez-vous incontour-
nable de la communauté bioinformatique et biostatistique nationale. JO-
BIM offre une photographie unique des travaux menés dans l’Hexagone,
et parfois même un peu plus loin. C’est un lieu d’échanges et de partages,
toujours convivial, où se croisent chercheurs et ingénieurs, théoriciens et
praticiens, jeunes et moins jeunes.

Comme à son habitude, le programme est très riche. Il reflète la di-
versité et la vitalité de la discipline : analyse de données omiques, phy-
logénie, biologie des systèmes, bioinformatique structurale, biologie inté-
grative,. . . Le comité de programme a sélectionné 37 présentations orales,
dont 22 exposés classiques et 15 démonstrations logicielles, et 100 pos-
ters. Nous avons également le plaisir d’accueillir six orateurs invités : Cé-
line Brochier-Armanet (LBBE, Lyon), Franca Fraternali (King’s college,
London), John Huelsenbeck (UC Berkeley), Tobias Marschall (MPI, Saar-
brücke), Julio Saez-Rodrigues (EMBL-EBI, Aachen) et Patrick Wincker
(Génoscope). Vous trouverez tous les résumés dans ce volume. Enfin, se
tiendront en marge de JOBIM les journées de l’association JeBiF (Jeunes
Bioinformaticiens de France).

Nous vous souhaitons une belle conférence !

Pour le comité de programme,
Cédric Lhoussaine et Hélène Touzet

Pour le comité d’organisation,
Guillemette Marot et Jean-Stéphane Varré
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Large metagenomic projects, such as Human Microbiome Project [1] or Tara Ocean Project [2], are be-
coming increasingly important for understanding life processes at the individual scale or at more global scales.
Therefore, serious efforts are put in funding projects, collecting DNA, sequencing, and analyzing the resulting
sequences. Comparative metagenomics is one of the most ubiquitous and informative of those analyzes. The
purpose is mainly to estimate proximity (or distance) between two or more environmental sites at the genomic
level. The comparisons are often based on identified species content. However, this approach is limited to se-
quences correctly assigned to known species documented in public biobanks, and this may correspond to small
fractions of the datasets, in particular for environmental samples such as sea water. This limitation motivated
the development of de novo comparison tools, such as Compareads [3] or Mash [4], based only on the non
assembled read set comparisons. Compareads was for instance successfully used for the first analyses of the
Tara Ocean data [5].

These reference-free methods share the use of k-mers as the fundamental unit used for comparing samples.
Actually, k-mers are a natural unit for comparing communities: (1) sufficiently long k-mers are usually specific
of a genome [6], (2) k-mer frequency is linearly related to genome’s abundance [7], (3) k-mer aggregates or-
ganisms with very similar k-mer composition (e.g. related strains from the same bacterial species) without need
for a classification of those organisms [8]. However, even if Compareads approach was designed to scale-up
to large metagenomic read sets, its use on data generated by large scale projects is turning into a bottleneck
in terms of time requirements. By contrast, Mash outperforms by far all other methods in terms of computa-
tional resource usage. However, this frugality comes at the expense of result quality and precision: the output
distances and Jaccard indexes do not take into account relative abundance information and are not computed
exactly due to k-mer sub-sampling. This is what motivated this work in which we propose a new de novo com-
parative metagenomic method, called Simka. Simka compares N metagenomic datasets based on their exact
k-mers counts. It computes a large collection of distances classically used in ecology to compare communities,
by replacing species counts by k-mer counts, for a large range of k-mer sizes, including large ones (up to 30).
Simka is, to our knowledge, the first method able to rapidly compute a full range of distances enabling the com-
parison of any number of datasets. Simka outperforms state-of-the-art read comparison methods in terms of
computational needs and result quality. For instance, Simka ran on 690 samples from the Human Microbiome
Project (HMP) (totalling 32 billion reads) in less than 10 hours and using no more than 70 GB RAM.

Simka works as follows. Firstly, the k-mer spectrum of each dataset is computed. The k-mer spectrum of
a dataset is the set of all its distinct k-mers associated with their abundance in the dataset. Secondly, k-mer
spectra are compared in a pairwise manner to compute their distance. This comparison process basically aims
at identifying which k-mers are shared by both spectra and which ones are not. It can be computationally very
expensive because each k-mer spectrum can contains millions to billions of distinct k-mers when k is large
(> 15). Moreover, the number of comparisons grows quadratically with the number of input datasets. To
tackle this issue, we have designed a new k-mer counting strategy of numerous datasets, called Multiset k-mer
Counting (MKC). MKC takes N datasets as input and provides an abundance vector for each distinct k-mer.
The abundance vector of a k-mer consists of its N counts in the N datasets. The abundance vector generation
by the MKC task is divided into two phases: (1) Sorting Count, (2) Merging Count. During the first step, the
k-mers of each dataset are counted independently. This is performed by sorting the k-mers in lexicographical
order. Distinct k-mers can thus be identified and their number of occurrences computed. This task can be very
efficiently performed by popular disk-based k-mer counting tool such as DSK [9] or KMC2 [10]. The resulting
k-mer spectra are written on the disk. During the second step, a Merge-Sort algorithm can be efficiently
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applied on the sorted k-mer spectra to directly generate abundance vectors. Given those abundance vectors, the
distances between each pair of datasets can be computed simultaneously. Interestingly, most of the ecological
distances are additive over the distinct k-mers, meaning that they can be iteratively updated one abundance
vector at a time. Once an abundance vector has been processed, there is thus no need to keep it on record,
allowing Simka to have a very low memory footprint.

One advantage of the overall Simka workflow is its high parallelism potential. During the sorting count
phase of the MKC, a first parallelism level is given by the independent counts of each dataset. N processes
can thus be run in parallel, each one dealing with a specific dataset. A second level is given by the fine grained
parallelism implemented in software such as DSK or KMC2 that intensively exploit today multicore processor
capabilities. As the number of distinct k-mers is generally huge, those tools separate the k-mers in P smaller
disjoint sets that can be counted independently and thus result in P k-mer spectrum chunks per dataset. During
its second step, the MKC exploit this partitionning to merge up to P k-mer spectrums chucks in parallel. Each
of these merge processes generates abundance vectors from which independent contribution to the distances
are computed. Since the distance computed by Simka are additive over the distinct k-mers, each contribution
is simply accumulated and the final distance is computed. Simka implementation is based on the GATB library
[11], a C++ library optimized to handle very large sets of k-mers. Simka is usable on standard computers and
has also been entirely parallelized for grid infrastructures made of hundred of nodes, and where each node
implements 8 or 16-core systems.

The quality of the distances computed by Simka were evaluated answering two questions. First, are they
similar to distances between read sets computed using other de novo approaches? Second, do they recover the
known biological structure of HMP samples? For the first evaluation, we show that Simka result are perfectly
well correlated with Compareads results. We go further in this evaluation by showing that Simka results are
highly correlated with costly but extremely accurate de novo comparison techniques relying on all-versus-all
sequence alignment strategy. For the second evaluation, Simka distances were compared to taxonomic distances
that are a traditional way of comparing metagenomic samples. Taxonomic distances are based on sequence
assignation to taxons by mapping to reference databases. To compare Simka to such traditional reference-
based methods, we used the HMP dataset. One advantage of this dataset is that it has been extensively studied,
in particular the microbial communities are relatively well represented in reference databases [1,12]. We show
that substituting k-mer counts by species counts gives admittedly different distances but that those distances are
biologically relevant as they capture the same underlying biological structure and lead to the same conclusions
as those based on taxonomic composition. In particular, Simka was able to retrieve two major biological results.
The first one is the segregation of the HMP datasets by body sites. The second one reveals that the organisation
of the gut samples is mainly driven by the relative abundances of three bacterial genera, known as enterotypes,
and characterized by the relative abundances of a few genera: Bacteroides, Prevotella and genera from the
Ruminococcaceae family. In contrast of Simka, Mash performed badly when considering HMP datasets per
body site since this tool can only take into account presence/absence information and not relative abundances.
As a matter of fact, differences in relative abundances are subtler signals that are often at the heart of interesting
biological insights in comparative genomics studies [13,14,15,16,17].

We introduced Simka, a new method for computing a collection of ecological distances, between many
large metagenomic datasets, based on their k-mer composition. This was made possible thanks to the Multiset
k-mer Counting algorithm (MKC), a new strategy that counts k-mers of numerous datasets with state-of-the-art
time, memory and disk performances.
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[4] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H. Bergman, Sergey Koren, and
Adam M. Phillippy. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol,
17(1):132, 2016.

[5] E. Villar, G. K. Farrant, M. Follows, L. Garczarek, S. Speich, S. Audic, L. Bittner, B. Blanke, J. R. Brum, C. Brunet,
R. Casotti, A. Chase, J. R. Dolan, F. Ortenzio, J.-P. Gattuso, N. Grima, L. Guidi, C. N. Hill, O. Jahn, J.-L. Jamet,
H. Le Goff, C. Lepoivre, S. Malviya, E. Pelletier, J.-B. Romagnan, S. Roux, S. Santini, E. Scalco, S. M. Schwenck,
A. Tanaka, P. Testor, T. Vannier, F. Vincent, A. Zingone, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, S. G.
Acinas, P. Bork, E. Boss, C. de Vargas, G. Gorsky, H. Ogata, S. Pesant, M. B. Sullivan, S. Sunagawa, P. Wincker,
E. Karsenti, C. Bowler, F. Not, P. Hingamp, and D. Iudicone. Environmental characteristics of agulhas rings affect
interocean plankton transport. Science, 348(6237):1261447–1261447, may 2015.

[6] Y. Fofanov, Y. Luo, C. Katili, J. Wang, Y. Belosludtsev, T. Powdrill, C. Belapurkar, V. Fofanov, T.-B. Li, S. Chu-
makov, and B. M. Pettitt. How independent are the appearances of n-mers in different genomes? Bioinformatics,
20(15):2421–2428, apr 2004.

[7] Yu-Wei Wu and Yuzhen Ye. A novel abundance-based algorithm for binning metagenomic sequences using l-tuples.
Journal of Computational Biology, 18(3):523–534, 2011.

[8] Hanno Teeling, Jost Waldmann, Thierry Lombardot, Margarete Bauer, and Frank O Glöckner. Tetra: a web-service
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Abstract The manufacturing process of cheeses, as for most fermented food, involves a complex 

flora, composed of bacteria but also yeast and filamentous fungi. These organisms can be brought 

by starters added during cheese manufacturing, or by environment (milk, maturing cellar…). The 

exact composition of cheeses is not known.  Both academic researchers and cheese 

manufacturers are interested to have a better insight of cheese ecosystems, and collaborate in the 

Food-Microbiomes Transfert project. One of the objectives was to develop a metagenomic 

approach with a user-friendly tool, adapted to cheese ecosystems. 

Keywords Metagenomics, next generation sequencing, microbial genomes, Database, Web 
server 

1 Cheese ecosystems characterization with a metagenomic approach 

The manufacturing process of cheeses, as for most fermented food, involves a complex flora, composed of 

bacteria but also yeast and filamentous fungi. The wide range of final products found on the dairy market is 

representative of the diversity of natural starters and ripening cultures used by dairy industries or coming from 

the food chain, from milk to the factory. However the cheese ecosystem is not completely understood [1]. The 

natural starters are not constructed from pure strains and the knowledge of their exact composition remains 

incomplete. Classical microbiological analysis or genetic methods (qPCR, MLST …) can be used to better 

understand cheese ecosystem, but these techniques are expensive and time consuming. In order to further 

understand cheeses ecosystems and maintain a constant quality of cheese products, there is a need for a method 

to characterize low abundant species and assign precisely taxonomy, in cheese samples.   

Techniques based on metagenomic DNA sequencing have been developed recently to rapidly identify 

species in complex ecosystems. Several tools are available to manage shotgun sequencing metagenomic 

datasets. Some are based on marker genes (for example: MetaPhlaAn [2], MetaPhyler [3], mOTU [4]) and 

propose rapid approach to identify species, although the use of a small part of the genomes decreases 

sensitivity of these approaches. Others use different strategies to take into account all the reads, for example 

with k-mer approaches (CLARK [5], Kraken [6], LMAT [7], OneCodex [8]...), read mapping on reference 

genomes (Genometa [9], GOTTCHA [10], MEGAN [11], MicrobeGPS [12], Sigma [13]...), assembly and 

functional annotation (EBI metagenomic web server [14], MG-RAST [15]...). Very few are available for 

biologists.    

We are working in partnership with dairy manufacturers to develop a metagenomic approach based on 

shotgun sequencing of the cheese samples adapted to cheese ecosystems. Cheese ecosystem contain a reduced 

number of species (less than one hundred in most of the cases) and lots of reference genomes have been 

sequenced. However, there is a need to assign taxonomy of the present organisms, up to the strain level if 

possible, and to identify low abundance species. As different strains can have different property on the cheese 

manufacturing, it is important to have a tool able to identify genes present in the ecosystems.  

We have developed a method based on the mapping of metagenomic reads (first 35 nucleotides) on a set of 

reference genomes with Bowtie [16], with 3 mismatches allowed. These parameters have been chosen to allow 
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detecting microorganism displaying up to 10% divergence with reference genomes. A first filter based on read 

distribution on CDS allows discarding false positives. We then propose a method to identify among reference 

genomes of the same species those that are the closest to ecosystem micro-organisms. It is based on the number 

of CDS detected on each genome, a comparison between observed and expected CDS coverage [17], and 

informations about mismatches in the alignments. We have implemented this analysis method under a python 

pipeline named GeDI. 

2 Food-Microbiomes Transfert, a specific database and an interface to analyze cheese 

ecosystems 

Food-Microbiomes Transfert aims to provide a user-friendly tool to analyze cheeses ecosystems. To create 

the most accessible tool, the project offers a web interface to GeDI and a cheese specific genomes database. 

This interface will allow users to analyze their own metagenomes (or public metagenomes).  

The genomes database has been created using PostgreSQL and currently contains 99 cheese specific 

microorganisms (we expect soon 300 genomes, with at least one genome for all the genus that have been 

described in dairy products). These genomes have been extracted from public databases by dairy products 

ecosystems experts and will be enriched with ecological metadata using text-mining tools and the Ontobiotope 

ontology [18]. In addition to these public genomes, the user is able to add his own private genomes to perform 

analysis.  

A metagenome database allows to store metagenomics raw data and GeDI results. For this purpose, a 

metadata model representing cheese manufacturing, sampling method and cheese classification has been 

created, in partnership with cheese manufacturers and researchers to identify the most accurate and accessible 

model.  

These two parts of the database have been conceived using the Minimum Information about a 

Genome/Metagenome Sequence (MIGS and MIMS [19]). It allows to have a standard and reusable set of data.   

The client side is developed using JavaScript/HTML5/CSS3/RDFa and interacts with the server using 

AJAX queries. The aim is to create a dynamic interface with minimal user interaction needs and an easy way to 

perform/manage analysis and data.  

The user can upload data, share them with other users, manage genomes lists to reuse for a later analysis, and 

perform analysis with a minimal steps amount: i) select the metagenome ii) select genomes from public or 

private lists iii) start GeDI with default parameters.  

A results page allows the user to visualize the mapping summary and to download the results (mapping 

tables, charts as shown in Fig 1). 

 

Fig 1. Here is an example of graphics generated by the tool by mapping a 10 million reads metagenome on 

Streptococcus thermophilus JIM 8232. We can observe some uncovered CDS marking differences between the 

reference genome and the strain present in the ecosystem. 
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The server, hosted by the Migale platform, is based on two specific technologies. The web server uses the 

Python Django framework to manage web client requests, databases and users. The GeDI computation is done 

on a cluster using a Galaxy [20] instance called by the Python Bioblend library [21]. The use of Galaxy 

facilitate the reproducibility of research because of the possibility of exporting the histories and tools. It also 

allows to easily link the web server to the analysis pipeline because of the use of the same language: Python. 

The actual computation time is about 10 hours for a 1 million reads metagenome and a hundred of reference 

genomes and about 5 days for a 10 million reads metagenome. 

3 Prospectives  

We are working on the improvement of GeDI tool: validation on several datasets, computation time... The 

genome database will be enriched with new genomes and expert annotations especially with text-mining tools. 

The metadata of the metagenomic database will be added. We are also working on the interface improvement 

in order to make analysis even more intuitive, and to provide tools to perform cross-comparisons between 

analyses. GeDI tool will be soon available with command line and Galaxy wrappers. The database and 

interface will be available via the Migale platform.  
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1 CRIStAL (UMR CNRS 9189, Université Lille 1), 59655 Villeneuve d’Ascq Cedex, France
2 Inria Lille Nord Europe, 59650, Villeneuve d’Ascq, France

Corresponding author: pierre.pericard@gmail.com, helene.touzet@univ-lille1.fr

Abstract Advances in the sequencing of uncultured environmental samples, raise a growing need
for accurate taxonomic assignment. Accurate identification of organisms present within a commu-
nity is essential to understanding even the most elementary ecosystems. However, current high-
throughput sequencing technologies generate short reads which partially cover full-length marker
genes and this poses difficult bioinformatic challenges for taxonomy identification at high reso-
lution. We designed MATAM, a software dedicated to the fast and accurate targeted assembly
of short reads sequenced from a genomic marker of interest. The method implements a stepwise
process based on construction and analysis of a read overlap graph. It is applied to the assem-
bly of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We
show that MATAM outperforms other available methods in terms of low error rates and recovered
genome fractions and is suitable to provide improved assemblies for precise taxonomic assign-
ments.

Keywords Metagenomics, 16S rRNA, assembly, taxonomic assignment, algorithm.

1 Introduction
Shotgun metagenomic sequencing provides an unprecedented opportunity to study uncultured microbial

samples, with multiple applications ranging from the human microbiome to soil or marine samples, for which
the vast majority of microorganisms diversity remains unknown [1].

A major goal of metagenomic studies is to characterize the microbial diversity and ecological structure.
This is often achieved by focusing on one of several phylogenetic marker genes [2,3], that are ubiquitous in the
taxonomic range of interest and exhibit variable discriminative regions. For bacterial communities, the gold
standard marker is the 16S ribosomal RNA (rRNA, ∼1500bp avg. length), for which millions of sequences are
available in curated reference databases, such as Silva [4], RDP [5] or GreenGenes [6]. Traditionnal approaches
such as amplicon sequencing are limited to the analysis of small portions of the marker sequences. This leads to
strong technological limitations for organisms identification at sufficiently precise taxonomic levels, typically
beyond genus [7]. To assign marker sequences to species, or even strains, we need to be able to recover full
length rRNA with less than a few errors per kilobase. Metagenomic assemblers are not suitable for this task,
because they are optimized to deal with whole genomes, and struggle to differentiate between very similar
sequences [8]. To this respect, marker-oriented methods such as EMIRGE [9] and REAGO [10] were recently
developed in order to assemble metagenomic read subsets into full length 16S rRNA contigs, thus aiming to
improve the taxonomic assignment accuracy of environmental samples. EMIRGE uses a Bayesian approach
to iteratively reconstruct 16S rRNA full length sequences. REAGO identifies rRNA reads using Infernal [11],
and then constructs an overlap graph by searching for exact overlaps between reads using a suffix/prefix array.
However, such tools still show some limitations in terms of recovery error rates as well as dealing with low
abundance species.

In this work, we present MATAM, a new approach based on the construction and exploitation of an overlap
graph, carefully designed to minimize the error rate and the risk of chimera formation. MATAM was validated
on both simulated and actual sequencing data. It is able to reconstruct nearly full length 16S rRNAs and is
robust to variations in the sequencing depth as well as community complexity.

2 Methods
2.1 Overview of MATAM

The MATAM (Mapping-Assisted Targeted-Assembly for Metagenomics) pipeline takes as input a set of
shotgun metagenomics short reads and a reference database containing the largest possible set of sequences
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from a given target marker gene. MATAM identifies reads originating from that marker, and assembles nearly
full length sequences of it. It is composed of four major steps. Although this method should work for any
conserved and widely surveyed gene, we will focus on the 16S rRNA for the remainder of the article.

2.2 Reference database construction
The availability of a reference database for the marker gene is an essential feature of the method, be-

cause it allows us to model the target sequences. For applications to 16S rRNA assembly, MATAM utilizes
Silva 128 SSU Ref NR database [4]. From this reference database that we denote as complete, we also build
a clustered reference database, that provides a coarse-grained representation of the taxonomic space. For that
task, we use Sumaclust [12,13] (http://metabarcoding.org/sumaclust) using a 95% identity threshold.

2.3 rRNA reads identification and mapping
In the first step, reads are mapped against the clustered reference database using SortMeRNA [14,15]. This

step allows to quickly sort out 16S rRNA reads from the whole set of reads, providing high quality alignments.
For each read, we keep up to ten best alignments against the reference database. Moreover, this mapping step
yields a broad classification of the 16S rRNA reads. Indeed, reads coming from distantly related species are
aligned against their respective closest known references, which nest in distant lineages of the taxonomy, while
reads from closely related species are aligned against closely related references.

2.4 Construction of the overlap graph
The identified 16S rRNA reads are then organized into an overlap graph defined as follows: graph nodes

are reads, and an undirected edge connects two nodes if the two reads overlap with a sufficient length and with
a sufficient identity to assert that they originated from a common sampled taxon. The standard approach to
build such an overlap graph requires comparison of each read with each other, which is time-consuming. Here,
we use alignment information to sort through candidate read pairs in a very efficient manner. For each pairing,
we consider only reads that share alignments with at least one common reference sequence and for which the
alignments are overlapping on more than 50 nucleotides with 100% identity. This strict criterion allows us to
reduce the risk of connecting reads from unrelated taxa, which would in turn produce chimeras. By doing so,
we discard reads containing sequencing errors in their overlap, which is bearable considering the nowadays
very low sequencing error rates of short reads.

2.5 Extracting contigs from the overlap graph
Although the overlap graph appears very bushy, it also reveals some general trends. While it exhibits

highly connected subgraphs, it also displays disjoint paths. We simplify the graph by performing a breadth first
traversal starting from a random node to annotate the nodes with their depth. All nodes with equal depth that are
connected in a single connected component are collapsed into a single compressed node and outgoing edges are
merged into a compressed edge. Low support compressed nodes containing a single read, and compressed edges
representing a single overlap are removed. The resulting graph, called the compressed graph, is several order
of magnitude smaller than the initial overlap graph. We partition this graph in three categories of subgraphs:
hubs, that are nodes with an degree strictly greater than two, specific paths that are sequences of nodes of degree
two or one, and singletons that are non-connected nodes. Intuitively, hubs correspond to the highly connected
subgraphs in the overlap graph, and are likely to contain mainly reads coming from conserved regions shared
in many species, thus overlaping without error even for distantly related taxa. Specific paths tend to contain
reads originating from variable regions of the 16S gene, that are specific to one or few closely related species.
For each subgraph in the compressed graph (hubs, specific paths, singletons), we extract the underlying sets of
reads and build an individual assembly using the genomic assembler SGA [16]. Note that any other state-of-the
art genomic assembler could be used here. As a result, we obtain one or more contigs for each subgraph.

2.6 Contigs scaffolding
We use a greedy algorithm to scaffold the contigs obtained in the previous step. For that task, contigs are

first mapped against the complete reference database, and all alignments within the 1% range of suboptimal
scores are kept. We then select contigs by increasing number of matches and decreasing lengths. By doing
so, a long contig with a unique alignment will be selected for scaffolding before a short contig exhibiting a
large number of alignments. Such long contig can be assigned non-ambiguously to a single species, while the
short contig with multiple matches rather corresponds to a conserved region of the marker and is used to fill
in the blanks between the specific contigs. Contigs matching against the same reference sequence are then
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Chimera (%) TAL/TL (%) ER (%) Ns (%) ACL
mean SD mean SD mean SD mean SD mean SD

MATAM 1.28 0.55 99.3 0.2 0.03 0.02 0.00 0.00 1252 116.9
EMIRGE 36.89 9.42 79.9 11.6 0.62 0.16 0.55 0.36 1436 15.4
REAGO 42.11 10.36 91.5 0.8 0.31 0.13 0.00 0.00 1333 298.9
SPAdes 21.23 9.05 73.5 15.9 0.60 0.49 0.02 0.04 966 47.4
MEGAHIT 23.81 2.85 80.3 4.9 0.36 0.18 0.00 0.00 962 87.6

Tab. 1. Results for the simulated dataset with varying sequencing depth. We provide averaged metrics for the
five sequencing depths. ACL is the average contig length.

merged into a single consensus scaffold. Redundant scaffolds included in larger ones are removed. Finally,
only scaffolds larger than 500bp are retained. This yields the final MATAM output which could be used for the
purpose of taxonomic assignment.

3 Implementation
MATAM was implemented in Python 3, except for the overlap graph building and compression steps that

were written in C++11 using the SeqAn library [17], and is available via Docker and Conda. MATAM is
distributed under the GNU Affero GPL v3.0 licence and the source code is freely available at the following
URL: https://github.com/bonsai-team/matam. All MATAM runs presented in this article were performed using
MATAM v0.9.9.

4 Results
MATAM performance was compared with those of two general-purpose metagenomic assemblers, SPAdes [18]

and MEGAHIT [19], as well as with two methods specialized in 16S rRNA assembly, EMIRGE [9] and
REAGO [10]. The five tools were run on three different datasets, chosen for their complementarity and the
possibility to validate the reconstructed candidate 16S rRNA sequences: a simulated dataset [20], a synthetic
microbial community [21], and two environmental samples from human gut and mouth providing amplicon
based taxonomic assignments [22]. SortMeRNA was used to extract 16S rRNA reads from these datasets be-
fore assembling them with SPAdes and MEGAHIT. Complete command-lines and parameters are available in
the Supplementary Results.

In order to compare the five methods on a common ground, the same validation procedure was applied for
all experiments. Only reconstructed sequences with lengths exceeding 500bp were considered, and chimeric
sequences were filtered out by the UCHIME algorithm [23] implemented in VSEARCH [24] and querying the
Silva 128 SSU Ref Nr99 database. For each experiment, we indicate the proportion of chimeric contigs (%
chimeras, which is the total size of all chimeric contigs divided by the assembly total size). All the following
measures were then computed on the remaining assemblies. When the sequences present in the sample are
actually known (see Sections 4.1 and 4.2), the assembly quality assessment was performed with MetaQuast [25]
by aligning the contigs against the original sample sequences, and considering the following metrics: the
number of contigs (#contigs), which is the total number of contigs of lengths greater than 500bp; the total
length (TL), which is the total number of bases in the contigs; the total aligned length (TAL), which is the
total number of aligned nucleotides in the contigs; the genome fraction (GF), which stands for the total number
of nucleotides from the original sample sequences covered with contigs divided by the total size of the sample
sequences; the error rate (ER), which consists in the percentage of observed mismatches and indels with respect
to the closest matched sequence in the original sample. Finaly, taxonomic assignments were carried out with
the RDP Classifier [26].

4.1 Simulated metagenomic datasets with varying sequencing depth
In the first experiment, we evaluated the ability of methods to correctly reconstruct the 16S rRNA sequences

in the context of low sequencing depth. For that, we used a selection of 122 genomes providing a realistic
taxomical diversity [20,27], that contains 287 distinct 16S rRNA copies. We generated five datasets with
varying sequencing depths: 50x, 20x, 10x, 5x and 2x per genome. Illumina reads were simulated with the ART
simulator [28], using the HiSeq2500 built-in error profile, 101bp read length, and 250bp fragment length with
a 30bp standard-deviation (SD). In this simulation, all species are equally distributed, which corresponds to the
high complexity community introduced in [20].
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Fig. 1. Effect of sequencing depth on the assemblies genome fractions.

Chimera (%) #contigs TL TAL GF (%) ER (%) Ns (%)
MATAM 3.2 101 139220 130654 83.1 0.05 0
EMIRGE 17.4 82 117138 102856 50.7 0.17 1.12
REAGO 15.5 59 90269 81297 42.8 0.06 0
SPAdes 5.5 59 70229 59988 39.9 0.11 0.05

MegaHit 3.0 61 77251 68904 44.3 0.18 0

Tab. 2. Results for the synthetic community.

Table 1 shows the results averaged over the five datasets (mean metrics and their respective standard devia-
tion, SD). More than 99% of the MATAM sequences were aligned by MetaQuast to one of the 287 16S rRNA
sequences from the initial sample (mean TAL/TL), while among other methods, this proportion reached at
best 91%, with REAGO. Congruently, MATAM sequences obtained the lowest average error rate (ER=0.03%),
which represents more than a ten-fold accuracy gain compared to the other assemblers, and a twenty-fold im-
provement over EMIRGE. Furthermore, EMIRGE sequences contained 0.5% of unknown nucleotides (Ns),
bringing its effective ER above 1%. Additionally, MATAM recovered about thirty times less chimeras than
REAGO and EMIRGE did.

For each of the five tools, we reported the recovered genome fraction (GF) with respect to increasing
sequencing depth (Figure 1). MATAM recovered from 76% to 85% of the reference sequences for sequencing
depths greater than 10x, while EMIRGE recovered less than 55% of the reference sequence, and the GF for
other methods is lower than 22%. MATAM also achieved the best performance facing a low sequencing depth
of 2x, reaching a GF of 33%, while GFs ranged between 5% and 10% with all other assemblers.

4.2 Synthetic archaeal and bacterial community

Inching toward more realistic applications, a second dataset provides Illumina reads extracted from a syn-
thetic microbial community composed of 16 archaeal species from 12 genera, as well as 48 bacterial species
from 36 genera (accession SRR606249; [21]). As emphasized by the authors, the selected organisms cover a
wide range of environmental conditions and adaptation strategies. In contrast to the previous simulated dataset
(Section 4.1), the proportion of each species in the sample is not uniform, which results in individual genome
average sequencing depth varying from 9x to 318x. The number of 16S rRNA paralogs per genome appears
also highly diverse, ranging from 1 to 10 copies per genome. Altogether, this dataset represents a total amount
of 106 distinct 16S rRNA sequences with pairwise sequence identities ranging from 59.64% to 99.93%.

The organisms were sequenced on Illumina HighSeq2000, providing 109 million 101bp paired-end reads
with an average fragment size of 250bp. We quality cleaned the reads using Prinseq Lite [29], removed adapter
sequences using Cutadapt [30], filtered out short reads (¡ 50bp), and obtained a total number of 67.6 million
reads, which were analyzed with MATAM and EMIRGE. The uncleaned raw dataset was provided to REAGO,
considering that the method could not handle reads with varying lengths. Finally, for SPAdes and MEGAHIT,
the 16S rRNA reads were extracted from the cleaned dataset using SortMeRNA, which provided 108,560 16S
rRNA reads to assemble.
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Fig. 2. Alignment of the reference sequences with the assembled contigs shows MATAM ability to differentiate
between very close sequences. MATAM, EMIRGE and REAGO contigs are shown respectively in blue, red
and green. In a ideal setting, each software should produce contigs that cluster closely to each reference (black)
sequence. Contigs followed by a star, and drawn in a darker color, were considered as chimeric by VSEARCH.

Results are shown in Table 2. Confirming the trends observed on the simulated dataset, MATAM is able to
recover the highest number of sequences together with the highest GF (83%). Most importantly, with lower ER
than achieved by the other tested methods, the MATAM assembly appears highly accurate. While EMIRGE is
the second best approach in terms of recovered GF, it also yields the greatest ER and Ns over all the compared
tools. Moreover, a RDP classification of MATAM and EMIRGE sequences indicates that while MATAM
missed one expected genus only, EMIRGE missed 4 genera out of 48.

Inspection of the MetaQuast alignments of the assemblies against the original 16S rRNAs revealed that all
methods accurately assembled the genes sharing less than 90% sequence identity with their closest relatives
within the sample. However, performances significantly dropped when attempting to assemble the closely
related genes in the dataset. This especially concerned the paralogous 16S rRNA copies sharing around 99%
sequence identity.

We selected sequences from a representative subset of four related species possessing one to three such
paralogous copies. Those 16S rRNAs and their corresponding assembled candidate sequences were selected for
a phylogenetic tree reconstruction. The obtained tree (Figure 2) demonstrates that MATAM correctly assembled
all the different paralogs with nearly no error, while EMIRGE and REAGO only managed to recover one
candidate sequence per species. Thus, EMIRGE and REAGO merged into a single candidate sequence the
reads issued from distinct paralogs, resulting in erroneous assemblies with high ER and underestimated GF.
Indeed, each of the sequences assembled with REAGO, as well as one EMIRGE sequence over four, appear
to cluster at a slight distance from their respective targeted paralogs. Those distances simply account for the
methods reconstruction errors. Consistently, in two cases, the candidates assembled by EMIRGE and REAGO
were identified as chimeras by VSEARCH.

4.3 Human Microbiome Project
Finally, we used two metagenomic samples from the Human Microbiome Project (gut: SRS011405, and

mouth: SRS016002, [22]) in order to validate MATAM on real metagenomic datasets sequenced from genuine
environments. The reads were already quality cleaned and trimmed, and no additional filtering was performed.
Hence, reads having different lengths, we were not able to run REAGO on these datasets. Results obtained
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Chimera (%) #contigs TL #classes #genera
SRS011405 MATAM 3.37% 218 187710 5 (4) 21 (17)

EMIRGE 43.04% 273 393152 2 (2) 12 (8)
SRS016002 MATAM 4.92% 353 320748 13 (13) 31 (28)

EMIRGE 46.01% 282 394087 12 (12) 25 (23)

Tab. 3. Results for the gut and mouth HMP datasets. The column #classes indicates the total number of
taxonomic classes found with RDP from the assemblies, with the number of these classes validated with the
QIIME OTUs (in parentheses). The column #genera gives the same information at the genus level.

(a) Human gut sample SRS011405 (b) Human mouth sample SRS016002
Fig. 3. % identity distribution of best matches against Silva 128 SSU Ref NR.

with SPAdes and MEGAHIT using the following protocol appeared highly inaccurate and therefore, they are
not further commented in this work. Thus, we only present the results obtained with EMIRGE and MATAM.

For these two datasets, the exact ground truth is unknown. Thus we could not perform the same validation
procedure as in the two previous examples and we had to resort to alternative strategies. First, we took advantage
of the availability of OTU sequences inferred through a QIIME analysis of the V1-V3 hypervariable regions
for the same biological samples (available from the SRS accession numbers). We compared the assignments
obtained from assemblies, calculated with RDP, with these of amplicon OTUs (Table 3). For both samples,
MATAM identified more classes and genera than EMIRGE did, and most of these taxa were validated by the
amplicon OTUs. Interestingly, we observed that in the two samples, three genera were recovered both by
MATAM and EMIRGE, but not by the amplicon approach: Odoribacter, Peptococcus, and Bergeyella. Since
some species from these genera are known to be adapted to the human gut and mouth environments, it is
plausible that they were missed by the amplicon approach while being accurately recovered by MATAM and
EMIRGE from the metagenomic samples.

Moreover, we evaluated assembly quality by aligning MATAM and EMIRGE sequences against the com-
plete Silva 128 SSU Ref NR database, using BLAST. The rationale for this experiment is that most of the
species in these human gut and mouth samples are possibly already known, and therefore should be found
in Silva. We observed that nearly all MATAM sequences matched with a known 16S rRNA in Silva with
more than 99% identity, among which a majority matched with 100% identity (Figures 3a and 3b), which sug-
gests that MATAM sequences could possibly be assigned at the species or even the strain level. On the other
hand, EMIRGE sequences provided a discordant picture. In the case of the human mouth sample, most of the
EMIRGE sequences obtained a match above 97% identity, but only a slight proportion of them matched with
100% identity against a known 16S rRNA (Figure 3b). The observation is even more pronounced with the
human gut sample, where only 43% of the EMIRGE sequences obtained a match above 97% identity against a
Silva 16S rRNA sequence (Figure 3a). Thus, conversely to MATAM, EMIRGE sequences would suggest that
only a slight proportion of the human gut and mouth diversity has a known isolate registered in Silva. However,
considering our previous conclusions on controlled datasets, we assume that part of this diversity inferred with
EMIRGE might in fact corresponds to reconstruction artifacts.
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5 Discussion
Taxonomic assignments of environmental samples is a strikingly difficult task which suffers from inherent

limitations of high-throughput sequencing technologies. In this respect, we designed MATAM as an alternative
to existing software helping to better understand the taxonomic structures of shotgun metagenomic samples.
Our experimental results show that MATAM outperforms other available tools providing phylogenetic marker
assemblies. Reconstructing full length 16S rRNAs allows to reach a higher precision of taxonomic assignments
than individual read analysis or amplicon sequencing do, because the reconstructed sequences effectively con-
tain stronger phylogenetic signal. Moreover, metagenomic shotgun sequencing is naturally immune against the
primer and amplification biases attached to the amplicon sequencing technology, and therefore is more adequate
to sequence unknown species.

Our approach opens up several new perspectives. Although we have focused this work on the assembly
of 16S rRNA genes, MATAM was designed to deal with any marker of taxonomic interest. Indeed, there
is currently an emerging trend to consider a combination of universal (single-copy) marker families, such as
provided in the recently published database proGenomes [31]. Sequences from this database, or from any
other customized one, could be used with MATAM to target a variety of markers, and thus provide improving
taxonomic assignments. MATAM could also be used in combination with other types of sequencing data.
Long read sequencing is able to produce fragments that cover large regions of the DNA molecules, up to
several thousands of bases. When long reads are available, they could serve as a guide in the scaffolding step
of MATAM and concomitantly, MATAM low-error contigs could be used to correct them. Finally, targeted
gene capture, that allows to sequence at high depth captured DNA regions of interest from an environmental
sample [32], could also prove to be an exciting application field for MATAM.
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Abstract  Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing 
and monitoring RNA populations. One of the main bottlenecks consists in correctly identifying 
the different classes of RNAs among the plethora of reconstructed transcripts, particularly those 
that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we 
present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately 
annotates lncRNAs based on a Random Forest model trained with general features such as 
multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-
the-art tools shows that FEELnc achieves similar or better classification performance on gold 
standard annotation datasets. Importantly, the program provides specific modules that enable 
the user to fine-tune classification accuracy, to formalize the annotation of lncRNAs and to 
identify lncRNAs even in the absence of an lncRNA training set. FEELnc moves beyond 
conventional coding potential classifiers by providing a standardized and complete solution for 
annotating lncRNAs. FEELnc is freely available at https://github.com/tderrien/FEELnc. 

Keywords Long non-coding RNAs, Machine learning, Non-model species, Classification. 

1 FEELnc description 
FEELnc is an all-in-one solution from the filtering of non-lncRNA-like transcript models, to the 

computation of a new coding potential score and the automation of the definition of lncRNA classes. Based 
on a relaxed definition of ORFs and a very fast analysis of k-mer frequencies, the program implements an 
alignment-free strategy using Random Forests [1] to classify lncRNAs and mRNAs. Particularly, we 
developed FEELnc to be used on organisms for which no set of lncRNAs is available by deriving 
species-specific lncRNA models from mRNA sequences and automatically computing the coding potential 
score cut-off that maximizes classification performances.  

 
Fig 1. FEELnc workflow and its 3 modules (from left to right): Filter, Coding_potential, Classifier. 

The FEELnc workflow (Fig. 1) starts with a module, the filter, which aims at identifying non-lncRNA 
transcripts from the reconstructed transcript models given by transcriptome reconstruction tools [2]. The 
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second FEELnc module aims at computing a coding potential score given the assembled sequences and thus 
discriminates lncRNAs/mRNAs. Finally, the third FEELnc module, the classifier, employs a sliding window 
strategy around each lncRNAs to report all the reference biotypes/transcripts located within the window. 

2 FEELnc benchmarks 
In order to compare the performance of FEELnc with state-of-the art methods, we benchmarked tools 

based on human and mouse gold-standard GENCODE annotations [3]. In summary, FEELnc shows similar 
or better performance compared to five alignment-based and alignment-free tools (Table 1). 

Programs Alignment 
Alignment 

Sensitivity Specificity Precision Accuracy MCC 

FEELnc no 0.923 0.915 0.916 0.919 0.838 

CPAT no 0.899 0.924 0.922 0.912 0.823 

CNCI no 0.829 0.979 0.975 0.904 0.817 

PLEK no 0.732 0.985 0.981 0.858 0.741 

PhyloCSF yes 0.906 0.802 0.820 0.854 0.712 

CPC yes 0.699 0.739 0.728 0.719 0.438 
Table 1. Tools performance on the human data sets (similar results were observed in mouse). Bold values 

are the highest for each metrics. Programs are ranked by MCC (Matthews Correlation Coefficient).  

3 Training FEELnc without known lncRNAs 
One issue when using machine-learning approach is the requirement of both a positive and a negative set 

(here mRNA and lncRNA) to train the model. While the former is often available for most organisms, the 
latter is usually not, especially for many organisms [4]. To simulate lncRNAs, we also assessed two 
strategies called "shuffle" and "cross-species". The shuffle strategy is based on the paradigm that lncRNAs 
are derived from ‘debris’ of protein-coding genes [5]. To this end, we shuffled mRNA sequences from a 
reference annotation using the Ushuffle program [6], while preserving a given k-mer frequency of the input 
sequences. The cross-species strategy makes use of lncRNA sets annotated in other species to extract non-
coding predictors and train the Random Forest model.  

As expected, we showed that FEELnc performance for the cross-species strategy decreases with the time 
of speciation between the targeted species and the species providing lncRNAs (Sprho= -0.85, pval<10-4) and 
the shuffle strategy is a valuable alternative when no lncRNAs are annotated in closely related species. 

4 Conclusion 
We present FEELnc, a new program to annotate lncRNAs based on RNA-Seq assembled transcripts. In 

addition to providing good performance metrics, FEELnc allows to be self-trained by own users' datasets and 
also can be used for non-model organisms for which no set of lncRNAs is annotated. 
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Résumé : Les ARN longs non codants (lncRNAs) constituent une famille d’ARN hétérogènes qui 
jouent un rôle majeur dans de nombreux processus biologiques. Nous avons développé 
récemment un outil d’annotation des lncRNAs appelé FEELnc, basé sur une approche sans 
alignement, et utilisant une stratégie ‘Random Forest’ entraînée sur les fréquences de multiples 
k-mer. Dans le cadre du consortium européen LUPA, FEELnc a permis d’identifier plusieurs 
milliers de nouveaux lncRNAs du génome du chien mais leur annotation fonctionnelle demeure 
dans son ensemble mal caractérisée. Dans ce travail, nous avons produit et analysé les profils 
d'expression des lncRNAs canins (n >10000) sur 26 RNA-seq représentant une grande diversité 
de tissus. Nous présentons une caractérisation fonctionnelle des lncRNAs canins portant sur 
l’identification de leur signature d’expression spécifique par tissu, l’analyse de leurs rôles 
potentiels comme régulateurs transcriptionnels, leurs niveaux de conservation et leurs contenus 
en éléments transposables. Nous avons identifié 4600 lncRNAs présentant un patron 
d’expression tissu-spécifique, avec près de 63 lncRNAs exprimés spécifiquement par tissu, 
suggérant un rôle essentiel dans la genèse et le maintien de l’intégrité des tissus. Nous avons 
construit un réseau de co-expression de l’ensemble des paires lncRNA:mRNA pour analyser des 
relations de cis-régulation. L’analyse statistique des paires a permis de déterminer des 
corrélations significatives (p.adjust BH <0,01) qui suggèrent un rôle régulateur pour plus de 
900 lncRNAs. L’analyse des mRNAs cibles identifiés par les corrélations, basée sur les termes 
GO, a permis d’identifier des annotations fonctionnelles significativement enrichies (p <1e-4, 
FDR <0.05) correspondant aux processus de développement tels que le développement 
d'organes sensoriels et la croissance cellulaire. L’analyse de la co-occurence des éléments 
transposables et des lncRNAs canins a montré que 84% des lncRNAs contiennent des SINEs 
spécifiques aux canidés. Ces co-occurences SINE:lncRNA suggèrent l'importance des éléments 
transposables dans l’expression tissu-spécifique des lncRNAs et dans la biogénèse des lncRNAs 
identifiés chez le chien. 

 

Mots clés : lncRNAs, transcriptome, co-expression, éléments transposables, chien.  

 

1. Introduction  

Avec l’avancée des nouvelles technologies de séquençage haut débit, les analyses du transcriptome 
(RNA-seq) permettent d'identifier l’ensemble des classes d’ARN dont la classe des ARN longs non codants 
(lncRNAs) [1,2]. Le transcriptome correspond ainsi à l’ensemble des molécules d'ARN transcrites, avec ou 
sans capacité de coder des protéines, pour un temps et une condition ou tissu donnés [3]. Arbitrairement 
définis selon un critère de taille (généralement plus de 200 nucléotides), les lncRNAs possèdent des 
caractéristiques similaires à celles des ARN codant pour des protéines (mRNAs), c'est-à-dire qu'ils peuvent 
être épissés, et posséder (ou non) une queue de polyadénylation, mais ils se différencient par une absence de 
cadre de lecture ouvert fonctionnel. A la suite du séquençage de l’ensemble des transcrits ARN, l’annotation 
et la classification des différents ARN consiste à reconstruire les modèles de transcrits, à partir desquels il est 
crucial de définir les classes fonctionnelles des nouveaux transcrits identifiés. Les lncRNAs annotés peuvent 
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être localisés soit dans des régions intergéniques (lincRNAs), soit chevauchant et anti-sens des mRNAs 
(AS-lncRNAs) et représentent de bons candidats pour assurer un rôle de régulateur notamment des mRNAs 
proximaux. 

Le modèle canin a émergé récemment comme une ressource nouvelle pour étudier la base génétique des 
traits complexes, incluant la morphologie, la physiologie et le comportement [4]. De multiples ressources 
génétiques et une séquence génomique de haute qualité positionnent désormais le chien comme une espèce 
modèle importante pour comprendre l'évolution du génome, la génétique de la population canine et les gènes 
sous-jacents aux traits phénotypiques complexes. Cependant, si les ressources génomiques nouvellement 
développées ont élargi notre compréhension du génome canin, l’annotation exhaustive des éléments 
fonctionnels tels que les ARN régulateurs de l’expression des gènes demeure nécessaire pour faciliter 
l'identification des relations génotype-phénotype [5]. Une des particularités du génome du chien réside dans 
la présence d'une famille d'éléments transposables spécifiques (SINEC_Cf) [6]. Ces rétrotransposons 
dégénérés (éléments auto-réplicants utilisant un ARN intermédiaire) sont dérivés d'un ARNt-Lys et ont été 
impliqués dans de nombreuses maladies génétiques [7,8] ou différences phénotypiques entre races de chiens 
[9,10]. Chez l'homme et la souris, les éléments transposables sont fréquemment retrouvés dans les lncRNAs 
[11,12] et de nombreuses études soulignent l'importance des éléments transposables dans la régulation de 
l'expression des gènes (voir pour revue récente [13]). 

Nous avons récemment développé un outil appelé FEELnc qui analyse l’ensemble des transcrits et permet 
d'extraire, d'annoter et de classifier les ARN longs non codants [14]. Nous avons utilisé FEELnc dans le 
cadre du programme européen LUPA (http://eurolupa.org/), un consortium dédié au modèle canin, pour 
étendre l’annotation du répertoire des lncRNAs à partir de 26 RNA-seq de tissus distincts canins. Nous 
présentons dans cette étude une vaste analyse d’expression des >10000 lncRNAs chez le chien, leur 
corrélation d’expression avec les ARN messagers, et l’analyse de leur conservation et de leur contenu en 
éléments transposables. Nos résultats précisent la classification et les caractéristiques d’expression des 
lncRNAs au regard des mRNAs, la nature spécifique de leur expression et identifient un sous-ensemble de 
lncRNAs conservés entre l'homme et le chien.  

 

2. Analyse du patron d’expression des lncRNAs  

Nous avons produit et utilisé les données de l’annotation canine ‘canFam3.1-plus’ comportant 10444 
gènes lncRNAs et 21810 gènes mRNAs [14]. Selon le protocole bioinformatique décrit dans Djebali et al. 
[15], nous avons aligné les lectures de 26 échantillons RNA-seq (>30 millions/RNA-seq), séquencés par 
HiSeq2000 à partir de banque cDNAs orientés, sur le génome de référence canin et à l’aide de l’annotation 
canFam3.1-plus avec le programme STAR (STAR_2.5.0a) [16] et avons déterminé l’expression des gènes et 
isoformes lncRNAs et mRNAs pour les 26 RNA-seq avec le programme RSEM (RSEM-1.2.25) [17]. 
L’analyse des 26 échantillons canins, représentant une grande diversité de tissus, a mis en évidence que 75% 
(7764/10444) des gènes lncRNAs étaient exprimés dans au moins un tissu (Transcripts Per Million i.e TPM 
>1). En comparant les distributions des niveaux d'expression entre gènes lncRNAs et les mRNAs, nous 
observons, comme chez l'homme [2] ou la souris [18] que les lncRNAs ont une plus faible expression (au 
moins 20 fois inférieure) pour tous les tissus analysés, à l'exception notable du tissu testiculaire ou la 
différence de moyennes d'expressions entre lncRNAs et mRNAs est moins importante (6 fois) (Fig. 1A).  
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Fig 1. (A) Analyse comparée des niveaux de transcription en log (TPM+1) entre gènes mRNAs (rouge 
foncé) et lncRNAs (bleu clair) dans 26 tissus. (B) Proportions de gènes lncRNAs (bleu clair) et 

mRNAs (rouge foncé) tissu-spécifique (le tissu testiculaire est représenté dans l’encadré étant donné 
la forte proportion de gènes exprimés spécifiquement dans ce tissu) (C) Clustering hiérarchique des 

26 tissus basé sur les corrélations de Spearman mesurées à partir des données d’expression lncRNAs. 

 

Nous avons déterminé le niveau de tissu-spécificité par le calcul d'un score de spécificité tissulaire, "tau" 
[19], pour chaque gène lncRNAs et mRNAs (dont le niveau d’expression TPM >1) et avons ensuite mené 
une étude comparative de la spécificité tissulaire pour les 26 tissus. Ce score de spécificité, compris entre 0 
et 1 (tau = 1 pour les gènes très spécifiques) est défini selon l'équation suivante : 

 

𝜏 =  !! !!
!
!!!
!!!

, 𝑥! =  !!
!"#!!!!!  (!!)

  

avec n correspondant au nombre de tissus analysés et xi, l'expression du gène dans le tissu i. Dans une 
récente étude comparative, ce score a été classé parmi les plus robustes pour annoter les gènes 
tissu-spécifiques (TS) [20]. En imposant un filtre strict tau ≥ 0,95 (qui correspond en moyenne à un ratio 
max(xi) / max2nd(xi) supérieur à 4), un total de 4600 lncRNAs tissu-spécifiques et 3600 mRNAs 
tissu-spécifiques ont été identifiés. Nous observons en moyenne 63 lncRNAs exprimés spécifiquement par 
tissu, en excluant le tissu testiculaire. Ces sous-ensembles de profils d’expression, majoritairement lncRNAs, 
révèlent de véritables signatures associées à chaque tissu qui suggèrent des fonctions spécifiques dans les 
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processus physiologiques des tissus (Fig. 1B). Comme chez l'homme [1,2], le tissu testiculaire est 
particulièrement enrichi en gènes tissus-spécifiques (~3000 lncRNAs), ce qui met en évidence la singularité 
de ce tissu, probablement dû à l'état plus relâché de sa chromatine et à la présence de nombreux types 
cellulaires [21]. Par extension, l’utilisation des lncRNAs tissu-spécifique dans le cadre d’une analyse de la 
variabilité d’expression ou du différentiel d’expression pourra permettre d’investiguer leur implication 
fonctionnelle liée à l’état pathologique ou à l'environnement.  

À partir des corrélations de Spearman mesurées sur les données d’expression lncRNAs, nous avons 
construit une matrice de distance et réalisé un clustering hiérarchique (méthode d'agrégation de ward) (Fig. 
1C), qui met à nouveau en évidence la spécificité du tissu testiculaire par rapport aux 25 autres tissus. De 
plus, le clustering permet aussi de visualiser le regroupement cohérent des tissus ayant des origines 
histologiques communes et/ou des proximités fonctionnelles comme les tissus tégumentaires, musculaires ou 
nerveux (Fig. 1C). Par exemple, nous identifions le lncRNA RLOC_00033166 exprimé dans les 5 tissus 
nerveux (TPM >2) et non transcrit dans tous les autres tissus. Ce lncRNA est par ailleurs localisé en anti-sens 
du gène NRG3 (Neuregulin 3) qui est impliqué dans la différentiation cellulaire des neuroblastes et 
représente donc un candidat potentiel à sa régulation. 

 

3. Construction et analyse du réseau de co-expression  

La majorité des lncRNAs qui ont pu être caractérisés chez d'autres espèces possèdent une fonction de 
régulation de l'expression d’un gène en coordonnant des processus épigénétiques, transcriptionnels ou 
post-transcriptionnels [22]. Des analyses statistiques de corrélations positives ou négatives des valeurs 
d'expression entre mRNAs et lncRNAs peuvent permettre de mettre en valeur des lncRNAs régulant 
l'expression de gènes codant pour des protéines sachant que la plupart des interactions lncRNA:mRNA 
validées fonctionnellement concernent des gènes qui se localisent dans une certaine proximité génomique 
(généralement <1 Mb) [23]. Par conséquent, la caractérisation positionnelle génomique [24] des lncRNAs 
vis-à-vis des mRNAs est une étape initiale et essentielle pour analyser des relations de cis-régulation 
potentielles. En utilisant le module de classification du programme FEELnc pour identifier l’ensemble des 
paires lncRNA:mRNA, nous avons pu identifier 9615 interactions classées selon 2 types (i) 
AS-lncRNA:mRNA défini par les lncRNAs chevauchant des mRNAs transcrit en anti-sens (n = 4531) et (ii) 
lincRNAs:mRNA défini par les lncRNAs intergéniques localisés à moins d'1 Mb d'un mRNA (n = 5083). En 
utilisant les données d’expression issues des 26 RNA-seq, nous avons ensuite appliqué le concept de 
guilt-by-association (coupable par association), principe qui repose sur l’observation que les transcrits 
co-exprimés sont plus susceptibles d'être co-régulés, de partager des fonctions similaires ou de participer à 
des processus biologiques similaires [25]. Les analyses statistiques de corrélations des 9615 données de 
co-expression, ont permis de déterminer des corrélations significatives (p.adjust BH <0,01) pour 492 paires 
de type lincRNA:mRNA et pour 411 paires AS-lncRNA:mRNA.  

Pour attribuer des fonctions potentielles aux lncRNAs, nous avons mené une étude d’enrichissement des 
termes GO (Biological Process) des mRNAs avec lesquels ils sont co-exprimés. Un ensemble de 12 termes 
GO ont été retrouvés significativement enrichis (p <1e-4; FDR <0,05) et correspondent aux processus de 
développement tels que ‘sensory organ development’ (GO:0007423, 28 gènes) et ‘cell growth’ 
(GO:0016049, 25 gènes). Ces résultats permettent de proposer une assignation fonctionnelle aux lncRNAs, 
bien que les prédictions fondées sur ces enrichissements sont dépendants des annotations sous-jacentes.  

 

4. Analyse de la conservation des lncRNAs canins avec l'homme 

Pour identifier des lncRNAs orthologues entre l'homme et le chien qui vont suggérer des fonctions 
potentiellement conservées entre espèces, nous avons utilisé la base de données Compara d’EnsEMBL [26] 
qui recense les régions synténiques orthologues via un alignement multiple complet de génomes de plusieurs 
espèces. Cet alignement, qui ne prend pas en compte le sens de transcription, implique de restreindre 
l'analyse aux lincRNAs (n = 5651) et ne pas considérer les AS-lncRNAs. L’analyse a donc consisté à 
cartographier les positions des lincRNAs canins sur le génome humain via Compara, et a permis d’identifier 
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727 (12,86%) lincRNAs possédant un orthologue humain. Par comparaison, l’analyse pour les mRNAs a 
déterminé que 66,02% des mRNAs ont un orthologue humain selon la même méthodologie. 

L’analyse des relations d’orthologie nous a permis d'étudier la distribution des scores de spécificité 
tissulaire (tau) en fonction de leur conservation au cours de l’évolution. Nous avons ainsi observé que les 
gènes sans relation d’orthologie sont significativement plus tissu-spécifique que les gènes conservés (test 
wilcoxon ; p <2,2e-16). Ces résultats montrent que les gènes possédant une expression localisée dans un type 
cellulaire ou un tissu sont également des gènes moins conservés au cours de l’évolution [27]. Ces 
observations suggèrent que ces gènes, en grande majorité les lincRNAs évoluent rapidement en terme de 
séquence, et ainsi se différencient pour devenir des acteurs spécifiques du développement, de la signalisation 
et de la régulation des principaux types et fonctions cellulaires.  

 

5. LncRNAs et éléments transposables canins  

Chez l'homme, 80% des lncRNAs chevauchent au moins un élément transposable (TE) et près de 40% des 
séquences lncRNAs sont dérivées de TEs [11,12] suggérant un rôle essentiel des TEs dans la genèse et 
l'évolution des lncRNAs [28]. Une des particularités du génome du chien réside dans la présence d'une 
famille spécifique de TEs, les SINEC_Cf, qui ont été montrés comme liés à la diversité phénotypique 
observée entre les races de chiens [6,9,10] et à l'origine de maladies [7,8].  

 
Fig 2. Analyse des éléments transposables (TEs). (A) Couverture du génome canin, des lincRNAs et 

mRNAs pour différentes classes et familles de TEs. (B) Distribution du score de spécificité tissulaire en 
fonction de la présence ou non de TEs dans les lincRNAs (bleu clair) et mRNAs (rouge foncé). 

 

Nous avons croisé l'annotation RepeatMasker [29] de 4 classes (et leurs familles principales) d'éléments 
transposables canins (DNA transposons, LTRs, LINEs et SINEs) et montrons que ~84% (8793/10444) des 
lncRNAs canins contiennent au moins un TE et que ~20% des séquences exoniques des lncRNAs sont 
composées exclusivement de TEs (Fig. 2A). Cette proportion en TEs est inférieure à celle observée dans la 
totalité du génome du chien (37,7%) mais 2,5 fois plus importante que celle des séquences mRNAs (7,9%) 
mettant en évidence la forte prévalence des TEs dans les séquences lncRNAs. Comparé au génome, la 
plupart des familles de TEs sont sous-représentées dans les lincRNAs à l'exception des rétrovirus 
ERVL-MaLR (Fig. 2A) qui sont aussi significativement enrichis dans les lncRNAs humains [12]. L’analyse 
des données d’expression sur les 26 tissus de cette étude montrent que les gènes contenant des TEs sont 
transcrits de manière plus tissu-spécifique (Fig. 2B) que ceux ne contenant aucun TEs. Ces observations qui 
montrent la corrélation entre l'insertion de TEs et une expression tissu-spécifique, suggèrent que les 
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modifications rapides au niveau de la séquence des gènes par insertion de TEs vont concourir à une 
spécialisation fonctionnelle notamment des lncRNAs.  

 

6. Conclusions 
Nous reportons dans cette étude l’analyse d’expression de plus de 10000 lncRNAs canins dans 26 tissus 

distincts. Les résultats montrent que les lncRNAs canins, comme pour les autres espèces, sont exprimés plus 
faiblement que les mRNAs mais de manière spécifique à un tissu. Ainsi, nous avons identifié ici les 
signatures transcriptionnelles spécifiques aux 26 tissus analysés. La forte spécificité tissulaire des lncRNAs 
peut constituer un facteur limitant pour annoter le répertoire des lncRNAs d’une espèce puisque leur 
annotation va ainsi dépendre de la disponibilité de nombreux types cellulaires, de l’analyse de nombreux 
tissus et de multiples conditions de temporalité, pour définir de manière exhaustive le catalogue complet des 
lncRNAs et de leur isoformes.  

L'étude des réseaux de co-expression révèle plus de 900 corrélations d'expression avec les gènes codant 
pour des protéines proches et met en évidence de possibles processus de cis-régulation géniques [30]. Par 
une approche de génomique comparative, nous identifions plus de 700 lincRNAs avec un orthologue humain 
et l’analyse du contenu en éléments transposables montre que ~84% des lncRNAs canins contiennent au 
moins un TE. Nous montrons que ces caractéristiques de conservation et de contenu en TE corrèlent avec 
une expression tissu-spécifique. Ces observations suggèrent que les lncRNAs canins évoluent rapidement en 
terme de séquence (insertion de SINEC_Cf) et ainsi se différencient pour devenir des éléments fonctionnels 
spécifiques du développement et de la régulation de fonctions cellulaires spécialisées. 

Cette étude indique que les lncRNAs appartiennent à de multiples classes fonctionnelles et suggère des 
fonctions potentielles aux lncRNAs, dans des processus fondamentaux tels que la spermatogenèse et le 
développement, mais aussi dans des mécanismes plus spécifiques tels que le développement d’organes 
sensoriels et la croissance cellulaire.  
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Abstract Cytometry is an experimental technique measuring cell marker expressions at the single
cell level. The recent increase in the number of markers simultaneously measurable has led to
the development of new automatic gating algorithms. Especially, the SPADE algorithm has been
proposed as a novel way to identify clusters of cells having similar phenotypes. While SPADE or
other cell clustering algorithms are powerful approaches, complementary analysis features are
needed to characterize better the identified cell clusters.
We have developed SPADEVizR, an R package designed for the visualization, analysis, and inte-
gration of cell clustering results. The available statistical methods allow highlighting cell clusters
with relevant biological behaviors or integrating them with additional biological variables. More-
over, several visualization methods are available to better characterize the cell clusters. SPADE-
VizR can also generate mathematical models to predict biological variables, based on the cell
cluster abundances.
These analysis features are essential to interpret properly the behaviors and phenotypes of the
identified cell clusters.

Keywords Mass Cytometry, Automatic Gating, Statistics, Visualization, Predictive models

1 Introduction

Cytometry is an experimental technique used to characterize cell properties at the single cell level. Thanks
to mass cytometry, the number of simultaneously measurable cell markers has increased up to 50 [1]. This
increase of measurable cell markers has led to the development of new automatic gating algorithms to identify
group of cells, also named cell clusters, having similar expressions for selected markers.

The SPADE algorithm [2] was developed to identify cell clusters in the context of mass cytometry data.
SPADE is a hierarchical clustering-based algorithm combined to a density-based down-sampling procedure.

While SPADE is a powerful approach, the interpretation of the behaviors or phenotypes of the identified cell
clusters can be challenging, in particular in the scope of a whole dataset. For instance, SPADE has no methods
allowing to highlight cell clusters with a cell abundance statistically different between two biological conditions
or associated with an additional biological variable. Moreover, SPADE lacks of visualization methods to deeply
characterize the phenotypes of the cell clusters in the whole dataset.

We have developed SPADEVizR, an R package to visualize, analyze and integrate results provided by
SPADE. This package extends the original SPADE outputs with techniques such as volcano plots, streamgraphs,
parallel coordinates, heatmaps, or distograms. Moreover, several statistical methods allow the identification of
clusters with important biological behaviors. SPADEVizR also has features allowing the quantification and the
visualization of the quality of clustering results and can be used with results generated by algorithms different
from SPADE.

We illustrated the capabilities of SPADEVizR in the context of a vaccine study to identify new B cell
populations altered by MVA immunizations in macaques [3].

2 Statistical methods

SPADEVizR allows the identification of three types of relevant cell clusters obtained from automatic gating
algorithms. Abundant Clusters (AC) correspond to clusters having a cell abundance statistically greater than
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a specific threshold for a given set of samples, identified using one-sample t-tests. Differentially Abundant
Clusters (DAC) correspond to clusters having a cell abundance statistically different between two biological
conditions, identified using two-samples t-tests. Correlated Clusters (CC) correspond to clusters having a cell
abundance statistically correlated with an additional biological variable, identified using the Pearson or Spear-
man coefficients of correlation. These clusters can be visualized using scatter plot or volcano plot (Fig. 1A)
representations.

3 Visualization methods

Boxplot (Fig. 1B) and kinetic representations available in SPADEVizR allows efficient visualizations and
comparisons of cluster abundances between different samples and conditions. Moreover, streamgraph repre-
sentations can display simultaneously absolute and relative cell abundances for a set of clusters (Fig. 1C).

Phenotypical characterization of the cell clusters can be performed using categorical heatmaps or parallel
coordinates (Fig. 1D). While heatmaps provide global overviews, parallel coordinates provide more details by
highlighting the homogeneity of marker expressions between the samples. SPADEVizR can generate multidi-
mensional scaling representations to visualize the similarities between samples or clusters.
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Fig. 1. Selected visualization representations available in SPADEVizR. (A) Volcano plot showing Differentially Abundant
Clusters (DAC). (B) Boxplot showing the cell abundances for a given cluster in each sample and each condition. (C)
Streamgraph showing absolute and relative abundances for a set of clusters across all the samples. (D) Parallel coordinates
showing the phenotype of a given cluster.

4 Conclusion

SPADEVizR constitutes a powerful approach for interpreting clustering results from several automatic gat-
ing algorithms. The available methods are very valuable to analyze properly high-dimensional cytometry data.
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A Guided Tour to Computational Haplotyping

Humans and many other species are diploid. Every individual inherits two versions of each
autosomal chromosome, called haplotypes, one from its mother and one from its father. Mo-
ving from (sequences of) genotypes to haplotypes is known as phasing or haplotyping. The
knowledge of haplotypes is critical for addressing a variety of important questions in funda-
mental and clinical research. In this talk, I will highlight both algorithmic and experimental
aspects of reconstructing haplotypes, with a special emphasis on recent technological advan-
cements and their impact on the computational problems to be solved. I will briefly touch
on population-based and pedigree-based phasing method, but will mostly focus on direct
experimental methods that allow to reconstruct haplotypes for single individuals. Haplotype
reconstruction from sequencing reads is most commonly formalized as the Minimum Error
Correction (MEC) problem. Recent advances on fixed-parameter tractable (FPT) algorithm
allow us to (quickly) solve practically relevant instances of this NP-hard problem optimally.
I will present experimental results from five different platforms (PacBio, Oxford Nanopore,
Hi-C, StrandSeq, and 10X Genomics) and highlight how combinations of these technologies
allow to accurately reconstruct dense chromosome-length human haplotypes at manageable
costs.
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Comparative genomics approaches in microbiology now use thousands of genomes to analyze a given              
species in different environmental or medical contexts. By collecting and comparing these genomic             
sequences, many studies are focused on the overall gene content of a species ( i.e. the pangenome) to                 
understand its evolution in terms of core and accessory parts. The core genome is defined as the set of genes                    
shared by all the organisms of a taxonomic unit (generally a species). Accessory part (variable regions) is                 
crucial to understand the adaptive potential of bacteria and contains genomic regions that are exchanged               
between strains by horizontal gene transfer ( i.e. the mobilome). As recently suggested [1], a consensus               
representation of multiple genomes would provide a better analysis framework than using individual             
reference genomes. Here, we introduce an extension of this concept, giving it a formal mathematical               
representation   using   a   graph   model   built   up   from   genes   clustered   into   families. 

Pangenomes are generally stored in a binary matrix denoting the presence or absence of each gene family                 
across organisms. However, this structure does not handle the genomic organization of gene families in each                
organism. In our approach, we propose a graph model where nodes represent families and edges               
chromosomal neighborhood information. Indeed, it is known that core gene families share conserved             
organizations   whereas   variable   regions   are   rather   randomly   distributed   along   genomes. 

Based on this data structure, our method classifies gene families through an Expectation/Maximization             
algorithm based on Bernoulli mixture model. Moreover, in order to take in account the genomic context of                 
gene families, we smooth the classification with neighborhood information using Markov random field             
model [2]. This approach splits pangenomes in three groups: (1) persistent genome , equivalent to a relaxed                
core genome (genes conserved in all but a few genomes); (2)  shell genome , genes having intermediate                
frequencies corresponding to moderately conserved genes potentially associated to environmental adaptation           
capabilities;   (3)    cloud   genome ,   genes   found   at   very   low   frequency. 

Pangenomics is a relevant paradigm for very large scale comparative genomics. Further development of this               
tool should provide solid bases for efficient study of the dynamics of pangenome species and almost                
exhaustive   references   for   metagenomic   studies. 
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1 Introduction

Heterozygous genome assembly constitutes a complex task for which no satisfying solution exists at the
present time. Phasing chromosomes in diploid or polyploid species or in metagenomes is still an open problem,
despite the emergence of new long-read technologies and other dedicated approaches. In particular, intra-
species or inter-species variations are usually discarded and/or result in highly fragmented assemblies. Several
approaches tried to produce phased contigs using regular or paired-end short reads. On such genomes, String
graph approaches like MIRA[1] produce large contigs but are intractable on large genomes. De Bruijn graph
approaches (Spades[2], platanus[3], discovarDenovo[4]) are limited to very high or very low heterozygosity
rates since they produce unsactisfactory fragmented contigs in the intermediary rates.

2 BWISE, a high order De Bruijn graph assembler

In this work we propose a novel de Bruijn graph-based assembler called BWISE that performs the construc-
tion of a very high order De Bruijn graph. This assembly fully takes advantage of read lengths and paired-end
relationships between reads. Thereby correct paths are allowed to be determined resolving haplotypes and
genomic repeats.

Results on simulated datasets show that BWISE is able to produce order of magnitude longer contigs than
state of the art methods on highly heterozygous genomes. We also show that BWISE is comparable to state of
the art assemblers for ”regular” haploid genomes, and has the potential to scale up to very large genomes as the
human one.

Beyond paired-end reads, the proposed framework allows in principle the integration of long-range in-
formation (mate pairs, 3Cseq/Hi-C, 10X, Single Molecule Real-Time (SMRT) as well as Nanopore reads) to
determine accurate long paths in the assembly graph, with the ultimate goal of generating a single high-quality
contigs per chromosome.
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Abstract Peptide identification from mass spectrometry experiments remains a challenging task,
often leading to numerous missing or erroneous assignments. Because of their prohibitive com-
putational cost, almost all peptide identification algorithms reduce their search space and in con-
sequence, limit their ability to identify peptides displaying post-translational modifications. To
resolve this difficulty, we developed a novel algorithm able to handle the computational complex-
ity of all-to-all comparisons of spectra in the context of large volumes. We illustrated the interest
of our approach with results obtained from the analysis of a public dataset and showed its capa-
bility to resolve the drawbacks usually accompanying spectra identifications without any a priori
filter (e.g. computation time and decreased sensibility).

Keywords Proteomics, Mass Spectrometry, Spectra Comparisons, Algorithms, Data Mining

1 Introduction

Tandem mass spectrometry is used to identify the proteins present in a mixture. To this end, peptides
obtained from the digestion of the proteins by an enzyme are fragmented into a mass spectrometer. All the
masses of the fragments are measured, and this series of masses generates an experimental mass spectrum.
The protein identification process relies, in a first step, on the interpretation of experimental spectra in terms
of peptides. In a second step, identified peptides are used to infer the list of proteins present in the mixture.
In order to interpret spectra as peptides, the most widely used methods compare experimental spectra with
theoretical spectra inferred from in silico digestion of a protein database. A scoring function is used to evaluate
the similarity between pairs of spectra, whose definition varies depending on the method; however, every such
scoring function is based on the count of shared masses between spectra, as a high number of shared masses
is largely accepted to lead to more reliable identifications. The number of shared masses between two given
spectra is the scoring function that we used in this study.
Currently, sensibility and reliability of the protein identification process remain limited. In a classical tandem
mass spectrometry experiment, up to 75% of the spectra are indeed still unassigned [1]. Achieving pairwise
comparisons of tens of thousands experimental spectra against hundreds of thousands of theoretical spectra
is impractical. In order to avoid an explosion of the computation time, each experimental spectrum is only
compared with theoretical spectra exhibiting almost the same mass, thus reducing drastically the search space.
However, since proteins display a high rate of post-translational modifications (PTMs), and because these
PTMs alter the mass of the peptides, this search space reduction hinders the peptide identification process – the
subset of theoretical spectra considered for identifying the peptide may not contain the correct spectrum. PTMs
are therefore incriminated as the most frequent cause for missing assignments [2]. Even though traditional
peptide identification engines may add some PTMs in their searches, considering too many PTMs leads once
again to excessive computation time. Recent Open Modification Search (OMS) algorithms [3] resolve the loss
of identifications due to modified peptide masses with a loosened mass filter. The processing time however
remains a significant bottleneck, associated to a degradation of results quality with more false positives and
false negatives [4].
This work proposed a novel OMS approach inspired from data-mining techniques, providing access to the
PTMs profiles of the sample while avoiding the computation time explosion pitfall.
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2 Methodology

We designed a new data-structure, SpecTrees, to identify spectra rapidly without a priori filtering. SpecTrees
contains by construction the number of shared masses between any two spectra. Inherent property of the data
layout, this information is however distributed inside the structure and requires retrieval through the specific
procedure SpecXtract. Let se (resp. st) be an experimental (resp. theoretical) spectrum. For each (se, st)
displaying a sufficiently high number of shared masses, a supplementary module analyzes this pair of spectra
in order to identify peptides, possibly containing PTMs. We used a traditional statistical validation to ensure
the results correctness, by means of evaluation of the False Discovery Rate (FDR).
Since the reference paper cited above was published, we extended our tests to larger datasets. We downloaded
a tandem mass spectrometry dataset from the PRIDE database (PXD001428) and obtained an experimental
dataset containing 37, 703 spectra. The protein database is originated from the Ensemble genome assembly
and contains 500, 685 theoretical spectra after replication of the digestion enzyme behavior.

3 Results

Altogether, SpecTrees and SpecXtract compute the number of shared masses between any pair of experi-
mental and theoretical spectra (se, st). We achieved on the larger datasets a running time under 10 minutes for
different sets of parameters, clearly outperforming traditional identification tools or other OMS approaches. In-
memory occupation of the program did not exceed 3 GigaBytes, and compatibility with the current throughput
of proteomic analyzes is therefore ensured.
Our experiment demonstrated the ability of our software to identify 11, 404 spectra, approximately 28% of the
total, with a false detection rate of about 1%. Among those identifications, some classical cases of missed-
cleavage (absence of digestion from the enzyme at a given location between two peptides), carbamylation,
deamidation, dioxidation, formylation, oxidation and isotopic peptides were found, therefore validating the
consistency of our approach. Rare modifications were also highlighted with a sufficient confidence, some of
which not yet described in PTMs databanks. Our approach additionally confers more reliability to the FDR for
modified peptides using search space stratification, where traditional algorithms fail to provide an homogeneous
FDR [5].

4 Conclusion

The SpecTrees data-structure is designed to compare important collections of spectra. Without any prelim-
inary mass filter in spectra comparisons, SpecTrees can highlight proteins with original PTMs useful to direct
further biological experiments. Moreover, flexible design enables the use of our method to detect peak patterns
within any set of masses. Finally, the execution time of the method is compatible with a routine use in mass
spectrometry laboratories.
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Network Models to Understand and Combat Cancer: from Clinical
Genomics to Biochemical Modelling

Large-scale genomic studies are providing unprecedented insights into the molecular basis
of cancer, but it remains challenging to leverage this information for the development and
application of therapies. We have performed an integrated analysis of the molecular profiles of
11,215 primary tumours and 1,001 cancer cell lines, along with the response of the cell lines
to 265 anti-cancer compounds. This analysis finds alterations in tumours that can confer
drug sensitivity or resistance, and sheds light on which data types are most informative
to prioritize treatment. Integration of this data with various sources of prior knowledge,
in particular signaling pathways and transcription factors, points at molecular processes
involved in resistance mechanisms, and offer hypotheses for novel combination therapies.
Our own analysis as well as the results of a crowdsourcing effort (DREAM challenge) reveals
that prediction of drug efficacy is far from accurate, implying important limitations for
personalised medicine. I will argue than an important missing aspect is the dynamics of
signaling networks, and show how applying logic models, trained with phosphoproteomic
measurements upon perturbations, can further improve our understanding of the molecular
basis of drug resistance, thereby providing new treatment opportunities not noticeable by
static molecular characterization.

35



 

Rare and common epilepsies converge on a shared gene regulatory network 
providing opportunities for novel antiepileptic drug discovery 

Andrée DELAHAYE-DURIEZ1,2,3,4, Prashant SRIVASTAVA1,*, Kirill SHKURA1,*, Sarah R. LANGLEY1,5,*, Liisi 
LAANISTE1, Aida MORENO-MORAL2,5, Bénédicte DANIS6, Manuela MAZZUFERI6, Patrik FOERCH6, Elena V. 
GAZINA7, Kay RICHARDS7, Steven PETROU7,8,9, Rafal M. KAMINSKI6, Enrico PETRETTO2,5  and Michael R. 

JOHNSON1 
1 Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK 

2 MRC Clinical Sciences Centre, Imperial College London, London, UK 
3 Université Paris 13, Sorbonne Paris Cité, UFR de Santé, Médecine et Biologie Humaine, France 

4 PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France 
5 Duke-NUS Medical School, 8 College Road 169857 Singapore, Republic of Singapore 

6 Neuroscience TA, UCB Pharma, S.A. Allée de la Recherche, 60 1070 Brussels, Belgium 
7 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 

Parkville, Victoria 3052, Australia 
8 The Centre for Neural Engineering, The Department of Electrical Engineering, The University 

of Melbourne, Parkville, Victoria 3052, Australia 
9 The Australian Research Council Centre of Excellence for Integrative Brain Function, 

Parkville, Victoria 3052, Australia 
 

* These authors participated equally to this work as joint second authors 
 

Corresponding Authors: andree.delahaye@inserm.fr 
enrico.petretto@duke-nus.edu.sg 
m.johnson@imperial.ac.uk 

 

Paper Reference:  Delahaye-Duriez et al. (2016) Rare and common epilepsies converge on a shared gene 
regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biology. 
http://dx.doi.org/ 10.1186/s13059-016-1097-7 

Abstract  

Background 

The relationship between monogenic and polygenic forms of epilepsy is poorly understood and 
the extent to which the genetic and acquired epilepsies share common pathways is unclear. 
Here, we use an integrated systems-level analysis of brain gene expression data to identify 
molecular networks disrupted in epilepsy. 

Results 

We identified a co-expression network of 320 genes (M30), which is significantly enriched for 
non-synonymous de novo mutations ascertained from patients with monogenic epilepsy and for 
common variants associated with polygenic epilepsy. The genes in the M30 network are 
expressed widely in the human brain under tight developmental control and encode physically 
interacting proteins involved in synaptic processes. The most highly connected proteins within 
the M30 network were preferentially disrupted by deleterious de novo mutations for monogenic 
epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed 
consistent downregulation in the epileptic brain in heterogeneous forms of epilepsy including 
human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse 
model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of 
M30 via gene mutation or altered expression as a convergent mechanism regulating 
susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression 
data from Connectivity Map, several drugs were predicted to preferentially restore the 
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downregulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on 
M30 expression was replicated in neurons. 

The code of R functions newly created for this study is provided as a convenient R-package at 
https://github.com/adelahay/BrainCell (DOI:10.5281/zenodo.164147). 

Conclusions 

Taken together, our results suggest targeting the expression of M30 as a potential new 
therapeutic strategy in epilepsy. 

Keywords Epilepsy, Co-expression, Regulatory network, Protein-protein interactions, Valproic 
acid. 
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Abstract Rare monogenic diseases globally affect millions of persons, but many causative genes
remain to be discovered. Several computational approaches have been developed to predict
disease-associated genes. Guilt-by-association strategies on protein interaction networks, in par-
ticular, postulate that proteins lying in a close network vicinity are functionally-related and impli-
cated in similar phenotypes.
However, current network approaches are limited as they do not exploit the richness of biological
networks, which are both multiplex (i.e., containing different layers of physical and functional
interactions between genes and proteins), and heterogeneous (i.e., containing both interactions
between genes/proteins, and interactions between diseases). In the present study, we extended the
Random Walk with Restart algorithm to leverage these complex biological networks.
We compared our algorithm to classical random walks thanks to a leave-one-out strategy. The
Random Walk with Restart on multiplex and heterogeneous networks takes advantage of data plu-
ralism and shows increased performances to predict known disease-associated genes. We finally
applied it to predict candidate genes for the Wiedemann-Rautenstrauch Syndrome.

Keywords Random Walks with Restart, Biological Networks, Multiplex and Heterogeneous Net-
works, Disease-Gene Prioritization.

1 Introduction

Rare monogenic diseases are often opposed to common diseases, but they jointly affect millions of persons.
Overall, the causative gene(s) are often unknown, many patients remain undiagnosed, and no treatment exists
for most of them. The disease phenotypes are resulting not from perturbations of isolated genes or proteins,
but of complex networks of molecular interactions [1,2,3]. Proteins, for instance, do not act in isolation, but
rather interact with each other to perform their functions in signalling pathways or metabolic reactions. Thanks
to the scaling of the experimental techniques allowing interaction discovery, recent years have witnessed the
accumulation of interaction datasets. For instance, protein-protein interactions (PPI) are nowadays screened
at the proteome scale revealing thousands of physical interactions between proteins. Interaction data are com-
monly represented as networks, in which the nodes correspond to the genes or proteins, and the edges to their
interactions.

In this context, network-mining approaches are applied to study human diseases, and in particular rare
monogenic diseases. The rationale underlying these network approaches for human diseases is the clustering
of proteins participating to the same cellular functions or biological processes in close network vicinity. Con-
sequently, mutated genes coding for network-related proteins will lead to the same or similar phenotypes [4].
Following this idea, the mapping of the human protein-protein interactome network, about 10 years ago, was
used to reveal new disease-associated genes, or allowed prioritizing candidate disease genes [5,6,7]. It also
unveiled unsuspected interactions between disease-causing proteins, such as between proteins coded by genes
mutated in ataxias [8]. More globally, interaction networks can also help deciphering the etiology and phys-
iopathology of diseases [3], and their comorbidity relationships through their distances in molecular networks
[9].

Among the various network-based study of human genetic diseases, Random Walk with Restart (RWR)
appears as one of the state-of-the-art guilt-by-association approaches to predict new candidate disease genes. It
was initially applied to explore the surroundings of disease-associated protein seed(s) in a PPI network. Every
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protein in the global network is ranked according to its affinity to the seed(s), thereby allowing the prioritization
of new candidate disease proteins [10]. The RWR algorithm was then extended, in particular to leverage
phenotypic information [11,12,13,14]. For instance, Li and Patra RWR algorithm [11] considers jointly a
PPI network and a network of phenotypic similarities between diseases. The two networks are connected by
bipartite protein-disease associations, and form a heterogeneous network, i.e. a network containing nodes and
edges of different nature connected by bipartite associations.

However, a common feature and limitation of these approaches is that they ignore the rich variety of infor-
mation on physical and functional relationships between genes and proteins. Indeed, not only PPI are nowadays
described on a large-scale: affinity purification followed by mass-spectrometry experiments inform on the in
vivo molecular complexes, pathways interaction data are cured and stored in dedicated databases. In addition,
functional interactions can be derived, for instance by constructing a co-expression network from transcrip-
tomics expression data. Overall, the exploitation of this diversity of interaction data is lagging behind.

Sets of networks sharing the same nodes, but in which edges belong to different categories or represent
interactions of different nature, are known as multiplex (aka multi-layer or multi-slice) networks [15]. In a
biological multiplex network, each layer contains a different category of physical and functional interactions
between genes or proteins. The combination of the different interaction sources, each having its own features
and bias, provides a complementary view on genes and protein cellular functioning.

We present here the extension of the RWR algorithm to multiplex and heterogeneous biological networks
(RWR-MH). We demonstrate the increased performance of this algorithm when compared with classical and
current RWR approaches. Finally, as a real-case biological example, we applied the RWR-MH algorithm to
predict candidate genes for the Wiedemann-Rautenstrauch syndrome (WRS), whose responsible gene(s) remain
unknown.

2 Methods

We constructed a multiplex network as described in [16], but updated from downloads on November 2016
(Tab 1). The multiplex network is composed of 3 layers of physical and functional interactions between genes
and proteins: protein-protein interactions (PPI), Pathway interactions extracted from pathway databases and
Co-Expression interactions derived from RNA-seq expression data. The network nodes correspond equally to
genes or proteins.

Additionally, we built a disease-disease similarity network, in which the edges between 2 diseases corre-
spond to significant phenotype similarities. Briefly, we retrieved diseases and their associated phenotypes from
the Human Phenotype Ontology (HPO) [17]. We then computed the phenotype similarity between diseases,
by measuring the relative information content of the common phenotypes of every disease pair. We thereby
assumed that rare phenotypes in the HPO database are more informative than frequent ones, as proposed by
[18]. Finally, the disease-disease similarity network is constructed by linking every disease to its 5 most similar
diseases according to their phenotype similarity scores, as proposed in [11].

The multiplex and heterogeneous network is constructed by linking every layer of the multiplex with the
disease-disease similarity network using known gene-disease bipartite associations extracted from OMIM [19].

Network Number of nodes Number of edges
PPI 12 621 66 971
Pathways 10 534 254 766
Co-expression 10 458 1 337 347
Disease-disease similarity 6 947 28 246

Tab. 1. Size of the networks used in this work.

We extended the RWR algorithm to consider multiplex and heterogeneous networks (RWR-MH). In a
nutshell, starting from initial seed node(s), the RWR progresses following the graph topology, with a non-zero
probability to jump back to the initial seed node(s) at each step. After a sufficiently large number of iterations,
RWR reaches a stationary state. In this stationary state, each nodes is associated to a score reflecting its
proximity or pertinence with respect to the initial seed(s). Our extended RWR-MH algorithm has the capacity
to explore one network layer, but also to jump between the different layers of the multiplex, because the same
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nodes are present in the different layers. In addition, it can jump to the disease-disease similarity network
thanks to the gene-disease bipartite associations. At every time, the walk can return to the initial protein and/or
disease seed node(s), with a defined probability that we set to 0.7, as in previous studies [10,11,12].

We applied a leave-one-out cross-validation (LOOCV) strategy to compare RWR-MH with other RWR
approaches. For every disease in OMIM [19] associated to 2 genes or more, each disease-associated gene is
removed one-by-one (we will later refer to this removed gene as the left-out gene). The remaining disease-
associated genes and the disease itself are used as seed nodes, and the RWR algorithms are applied. The
Cumulative Distribution Functions (CDFs) are used to evaluate and compare the performances of the different
approaches. They display the percentage of left-out genes that are ranked within the top k genes.

3 Results

3.1 RWR-MH outperforms current RWR approaches

We first compared different algorithms: i) the classical RWR on a monoplex PPI network, ii) the RWR on a
heterogeneous network (built with the PPI and the disease-disease similarity network, RWR-H, as proposed by
[11]), iii) the RWR on a multiplex network (composed of 3 layers, namely PPI, pathways and co-expression,
RWR-M), and finally iv) the RWR on the multiplex-heterogeneous network (RWR-MH).

We applied a LOOCV strategy to evaluate the performances of the different RWR algorithms (Methods) for
the prediction of known disease-associated genes (Fig 1). The multiplex RWR-M shows a superior performance
than the classical RWR on a monoplex network. It is however comparable to the heterogeneous RWR-H. The
multiplex and heterogeneous RWR-MH is remarkably better, since more than 45% of the left-out genes are
ranked within the top 20.
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Fig. 1. Cumulative Distribution Functions of the rank of each left-out gene retrieved by the LOOCV strategy. The
algorithms are the classical RWR applied to the PPI monoplex network, the RWR-M applied to the 3-layer multiplex
network, the RWR-H applied to the heterogeneous network built from the PPI and the disease-disease similarity networks,
and the RWR-MH applied to the multiplex-heterogeneous network.

3.2 RWR-MH prediction of candidate genes for the Wiedemann-Rautenstrauch Syndrome

The Wiedemann-Rautenstrauch Syndrome (WRS; MIM code: 264090), also called neonatal progeroid
syndrome, is a disorder characterized by intrauterine growth retardation with subsequent failure to thrive and
short stature [20]. In addition, patients display a progeroid appearance at birth and during the infancy, decreased
subcutaneous fat, hypotrichosis and macrocephaly [21]. Only a few case reports have been documented, and
no gene(s) has been described as causative of the syndrome yet.
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To illustrate our approach, we applied our RWR-MH algorithm using as seed the WRS disease node. For
visualization purposes, we displayed only the top 25 ranked diseases and top 25 ranked genes scored by the
RWR-MH algorithm (Fig 2).
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Fig. 2. Multiplex and Heterogeneous Network linking the top 25 genes and top 25 diseases obtained when the RWR-MH
algorithm is applied using WRS as seed (yellow node). Grey elliptical nodes represent diseases, while turquoise rectangles
represent genes. Black edges account for the bipartite gene-disease associations; Grey edges are the similarity links in
the disease-disease similarity network; Blue edges correspond to PPI interactions; Red edges represent co-expression
relationships; Orange edges represent pathway interactions.

We predicted the top scored genes as top candidates for being involved in WRS. Many of them, such as
FIG4, RNF113A or LMNA, are implicated in diseases directly connected to WRS from phenotypic similarities.
For instance, mutations in LMNA are responsible for Hutchinson-Gilford progeria syndrome (HGPS; MIM
code: 176670) and other premature aging syndromes such as Mandibuloacral Dysplasia with type A Lipodys-
trophy (MAD-A; MIM code: 248370). However, no mutations were found targeting LMNA sequence by gene
sequencing analyses of WRS patients [21,22]. Additionally, the RWR-MH algorithm evidenced ZMPSTE24,
which is known to be responsible of severe progeroid syndromes such as restrictive dermopathy (RD, MIM
code: 275210) [23]. This peptidase acts during the post-translation modifications of the prelamin A, coded by
LMNA, to undergo the complete maturation to lamin A. The direct interaction between the products of LMNA
and ZMPSTE24 is missing in the databases we used to construct our multiplex network. The ZMPSTE24 nodes
is however retrieved through different trajectories in the random walk. Once again, no mutations were found in
the ZMPSTE24 gene among the 5 WRS patients [22].

An interesting result is the small subnetwork composed of the genes IGF2, INS, INSR and RPS6KA3, which
all participate to the insulin pathway. We retrieved these genes as top candidates due to their associations with
two different diseases linked to WRS. This pathway is suspected to play a role in WRS [22]. Similarly, a
cluster of proteins related to the cell cycle and DNA repair is connected to WRS through the Wolf-Hirschhorn
syndrome (MIM code: 194190). DNA repair defects are also suspected to be involved in WRS [22]. The next
step will be to validate these predictions, for instance using exome-sequencing data. Overall, our extended
guilt-by-association RWR-MH algorithm could be integrated in analysis pipelines to help predicting candidate
genes for rare diseases.
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4 Discussion

Random Walk with Restart (RWR) is one of the state-of-the-art guilt-by-association approaches to prior-
itize candidate disease genes. We here extended the classical RWR algorithm in order to navigate multiplex
and heterogeneous networks. We also demonstrated the increased performance of the RWR multiplex and
heterogeneous strategy by leave-one-out cross validations. This improvement is due to the ability of our algo-
rithm to extract and integrate the information from many interaction sources. Other types of networks could
be integrated in the future, for instance to include interactions with non-coding RNAs. In addition, it would
be interesting to explore the impact on the results of different disease-disease network topologies, i.e. taking a
different criteria to build the disease-disease phenotype similarity network.

RWR has been mainly employed in biology to predict disease-associated genes [10,11,12,14,13]. But it
has also been applied to address other biological problems, such as the prediction of drug-target potential inter-
actions [24], the identification of clusters from PPI networks [25], or the prediction of adverse drug reactions
[26]. Multiplex approaches are likely to boost the results of all these different applications, and could also be
adapted to study cellular functioning as a whole.

The next step will be to resolve the degree bias of the algorithm. Indeed, RWR algorithms and other
network propagation methods are biased towards networks hubs [27]. Therefore, poorly-connected and not
well-characterized proteins, which can also be related to diseases, are hard to detect. Biased random walks can
tackle this issue by relating the probability of transition to the degree of the nodes [28].
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There is considerable evidence that the control of gene expression programs is dominated by a small 
number of transcription factors (TFs). In embryonic stem cells and a few other cell types, these core TFs 
collectively regulate their own gene expression, forming an interconnected auto-regulatory loop that is 
considered the core transcriptional regulatory circuitry (CRC). There is limited knowledge of core TFs for 
most cell types. We recently discovered that genes encoding known core TFs forming CRCs are driven by 
super-enhancers, which provides an opportunity to systematically predict CRCs in poorly studied cell types 
through super-enhancer mapping. We have developed a tool, CRCmapper [1], which enables users to 
generate transcriptional regulatory circuitry maps for any sample for which they can provide suitable 
ChIP-seq data. Applying CRCmapper to a large set of human samples we have generated core circuitry 
models models for 75 human cell and tissue types. These core circuitry models recapitulate and expand on 
what on previous CRCs and should prove valuable for further investigating cell-type–specific transcriptional 
regulation in healthy and diseased cells. 
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Abstract In this paper, we tackle the problem of generative learning of dynamic models from
”fat” time series data (high #variables/#individuals ratio), leading to a high sensitivity of learned
models to the dataset noise. To overcome this problem, we propose a method computing a mixture
of many highly biased but optimal spanning arborescences obtained from many perturbed versions
of the original dataset, introducing variance to counterbalance the strong arborescence bias. The
method is theoretically at the boundary between structure oriented Bayesian model averaging
and recent work on density estimation using mixtures of poly-trees through a perturb and combine
framework, transposed to a dynamic setting. In practice, preliminary results on the recent DREAM
D8C1 challenge are promising.

Keywords Network inference, Ensemble Learning, Model Averaging, Spanning Arborescences

1 Introduction

Accurate network inference, or generative structure learning, is a major problem in bioinformatics for the
comprehension of systems of different kinds, such as regulatory networks [1] or cell signaling pathways [2].
Although a difficult problem in any dataset, generative structure learning on biological contexts is additionally
challenged by the scarcity of the available datasets, obtaining such data often being very expensive and time
consuming.

A major issue occuring in structure learning algorithms from data is the one of data fragmentation, where
the computation of frequencies from data is not reliable enough to robustly estimate statistics and avoid over-
fitting. This problem occurs more particularly when the dataset is scarce and suffers from a very high vari-
ables/samples ratio, such as in many biological contexts where the number of available sets of measurements
does not exceed several tens in a good situation, for a living organism made of hundreds or thousands of genes
and involving many more molecules.

Biological systems are also often characterized by their dynamic properties, and many biological phe-
nomenon under study are actually time evolving processes, e.g. the diauxic shift of the Saccharomyces cere-
visiae yeast [3], for which available datasets can take the form of time series. Together, the data scarcity and
the objective of finding dynamic models reinforce the data fragmentation issue, since considering several time
points in space for each variable in the model both increases the number of actually considered variables in
the network to learn, and reduces the samples size of the original dataset, due to the underlying used sliding
window.

A possible strategy to prevent overfitting in such situation is to reduce the learning algorithm variance by
reducing the number of possible models. This can be achieved for example by constraining the search space
so that the resulting subspace have good properties, or by constraining the search algorithm so that a subset
of possible models is reachable. Used alone, this strategy can find a good local, even global, optimum, but
relatively to a potentally inadequate space where a good solution for the overall learning problem is unexistent.

Another possibility is to find an asymptotic structure which is the result of a consensus between different
models learned from the dataset [4,5]. This way, the lack of sufficient statistics on data is partly offset by an
attempt to compute sufficient statistics on potentially very noisy intermediate models.

In this article, we use both solutions. The general behaviour of the algorithm we propose is to compute
an expected composite model using Bayesian Model Averaging [4] theory and a set of expected features, the
expected edge existence, computed from the learning of many component models. These components are
themselves highly biased models, more precisely spanning arborescences [6], with the interesting property for
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these simple structure spaces, that a global optimum is computable in polynomial time for any dataset [7]. Due
to this latter property, it is necessary to introduce variance in the dataset for each component learning task,
in order to converge to diverse simple models, allowing different significant features of the final model to be
represented in the population of simple models. This variance is obtained by: 1) perturbing the original dataset
through sampling with replacement; 2) forbidding the use of some edges in the spanning arborescence, the edge
blacklist being randomly generated for each component.

The paper is organized as follows. We first provide the background material through the description of
required theory and previous works in section 2. Then, we describe our mixture algorithm in section 3. We
finally validate in section 4 our algorithm with promising results on experiments over the challenging biological
network inference application from time series data from the popular DREAM D8C1 recent challenge [8],
before discussing the algorithm and its perspectives in section 5.

2 Related Works

Network inference has been studied for decades in bioinformatics context and many solutions can be
grouped into the following families.

Feature selection methods break the global network inference problem into a set of N subproblems, N
being the number of features in the studied biological system. The objective is to find the best neighbors of
each feature in the biological model to learn, using various methods. A main strategy is to learn and rank, for
each feature j, a set of (possibly linear) regression coefficients describing the function of all other features to j.
Recent examples of this strategy include: the HLICORN method [9,10], where linear coefficients are computed
between each possible gene and previously discovered coregulator sets; the GENIE3 [11] algorithm, where a
supervised classification tree is built for each node, seen as the target, and potential parents are ranked according
to their decreasing order of entropy gain between the tree’s layers; BORUTA [12], a wrapper type of method
around random forest classification; TIGRESS [13], which uses a perturb and combine strategy as this paper
does. Note that this latter strategy is still significantly different from our proposal. First, TIGRESS reduces
the learning problem into an independent learning problem for each node, while our proposal constrains the
learned models globally, allowing here to enforce global sparsity and more generally allowing rich extensions
to the method (e.g. global prior addition). Furthermore, the models to combine in this work are obtained by
Lasso regression and forward selection strategy, without any quality guarantee, unlike our strategy. Finally, the
approach only introduces variance in the process via data perturbation, while we propose both data and edge
space sampling for each component, the latter showing significant experimental impact (cf. Section 4).

Ordinary Differential Equations (ODE) methods aim at modelling a dynamic biological system as a set of
differential equations involving its features (genes, proteins, etc.). In practice, these methods can find highly
accurate parameters for given equations, and have even been extended for learning the equations themselves
[14], but their computational cost make them only suitable for small biological systems, which is not our target.

Pairwise score approaches aim at finding networks optimizing a sum of feature to feature scores measuring
the level of correlation or dependency between them. A famous algorithm in this category is the ARACNE
[15] method which computes a superset of the Chow-Liu spanning tree induced by the learning dataset, by first
computing a complete graph with all pairwise mutual informations (MI), and then iteratively flagging edges
for removal using a MI inequality for every triangle in the graph. Such posterior optimization, called transitive
reduction, is indeed often very important in algorithms of this family since distinguishing between direct or
indirect dependencies is not necessarily possible with the used measures.

(Dynamic) Bayesian network (DBN) learning algorithms [16] aim at finding the best factorization of the
joint distribution involving the features at different consecutive time steps, as a product of conditional distri-
butions (one per feature). Most DBN learning algorithms targetting problems of any size try to find a local
optimum in the model space, through the use of a heuristic, going from one model in the space to another
through iterative local perturbation of a best candidate obtained so far (best-first strategy) [17] or a set of best
candidates (beam search) [18]. These algorithms often add some extra-mechanics to proceed further the first
local optima, as for example random restarts or tabu search [19].

Most methods in the above mentioned families consider the input dataset as is to make network inference.
In the context of small datasets, the data fragmentation issue together with the possibility of noise presence in
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the dataset can misconduct the learning algorithms. In order to abstract from a single model learned from such
dataset, ensemble learning strategies have been designed to implement a ”wisdom of crowds” principle in a
machine learning context. Historically used in a fully supervised context to average classification predictions
and turn them into final majority decisions, these principles have been transposed for probability density esti-
mation and structure learning contexts, a good example of such strategy for probabilistic models having been
theorized under the Bayesian Model Averaging (BMA) [4] framework.

In BMA, the objective is to find an expected model, defined by a set of expected features it must satisfy,
such as the dependency between its variables, the underlying graph edges or paths and so forth, assuming those
features are relevant in the model space, by combining different component models. In practice, considering
the whole space is intractable and one must rely on a subset to approximate the result, such as using Markov
Chain Monte Carlo methods [20] or bagging [21].

Typical BMA methods consider the whole model space for learning which leads to the question of which
heuristic to use and with which extra mechanics. This problem has been recently partially tackled in [5] but
choices still remain. A recent work by Schnitzler et al. [22] considers combining more simple component
models instead, namely spanning trees, and proposes extensions of the Chow-Liu algorithm [23] which show
good results in their non-dynamic density estimation context. The algorithm proposed in this paper is close
but differs in two main ways: it focuses at outputing an expected structure as in traditional BMA for structure
learning, and thus require to make choices between the different component properties, while their work outputs
a result in the form of a linear combination of each component’s density probability function; it focuses on time
series datasets instead of i.i.d. propositional data. Note that a preliminary adaptation of Schnitzler work for
structure learning has been proposed in [24], but authors use the component models as an intermediate product
to refine potential parent candidates of a greedy algorithm, while we propose an algorithm which directly infers
a model from the components.

Among BMA methods, it is important to mention the seminal work in [4] about BMA structure learning
through the computation of expected features using bagging on the Bayesian networks space. However, in
this work, learned expected features are used as constraints for heuristic learning, which does not include
component edges themselves, and whose result does not lead to significant improvement compared to the
unconstrained learning counterpart. Finally, in this paper, while most work focuses on combining unconstrained
Bayesian networks, few indications are also given on the results obtained by merging spanning trees, which
apparently gave worse results than with unconstrained Bayesian networks. However, this can be explained
by the low introduction of variance, unlike our proposal, which can lead to poor space exploration because
of the components global optimality. Also, chosen experiment datasets can not be considered as being high
dimensional ones and the variables/individuals ratio is less subject to data fragmentation, which can explain
that more biased models perform worse. We will demonstrate in section 4 that combining arborescences in an
adequate way can actually give very good results in this context.

3 Combining Spanning Arborescences for Network Inference

In this section, we propose a general algorithm for network inference from the combination of spanning
arborescences. Several application oriented details are willingly not given, such as the specific scoring function
used and the value of hyperparameters. These informations are detailed in Section 4 for the problem at hand.

3.1 Data representation

Let us consider a matrix representation of a dataset D consisting of n ordered time stamps (D rows) over
N variables (D columns). Each column j is a sequence describing an observed variable over n time steps
〈Dij〉i∈〈1,...,n〉 and each row i describes the state of a system at time step i over the N observed variables. Our
goal is to find a model of the system of interest in terms of dependencies between the observed variables at
different time steps of the system. In this paper, we assume that this system is a Markov process, i.e. that each
time step state only depends on the immediate previous step state, and that the transition from each state to the
next state is driven by the same underlying model.

The first step for the proposed algorithm to work is to transform the n × N dataset into a (n − 1) × 2N
dataset Dt describing 2 consecutive time slices of the system. The transformation consists in concatenating
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every pair of consecutive time steps from D into a ”dynamic” example in Dt, i.e. ,we have for each row Dt
i .:

Dt
i . = [Di,1 . . . Di,N Di+1,1 . . . Di+1,N ].

The given assumptions and the consequent representation allow transforming the ordered structure learning
problem from D into a simpler i.i.d. structure learning problem in the dynamic examples space of Dt.

3.2 Learning component models

From a dynamic dataset Dt, the first learning step of the proposed algorithm is to compute a set of compo-
nent models, i.e. simple models which will be combined in the second part of the algorithm.

Considering a number m of simple models to learn, we first compute m local perturbations of Dt, denoted
by {Dt[k]}1≤k≤m, by sampling from Dt with replacement (bagging strategy [21]). Then, for each Dt[k], a
directed graph Gk = (V,Ek), with V having one vertex for each of the N original variables, is built by first
randomly choosing α ·N · (N − 1)/2 undirected edges and then computing the two directed scores s(A→ B)
and s(B → A) for each of them. Finally, each graph Gk is searched for its optimum spanning arborescence Ak

with respect to the score s, using the Edmonds algorithm [6].

Even if the built graphs only have one node per original variable (as opposed to two nodes, one for timestep
t and one for timestep t + 1), the semantics of an arc X → Y measures the influence of X at time t over Y
at time t + 1. This semantics is taken into account during scores’ computation. Indeed, a score computation
s(X → Y ) is actually a score involving Dt[k]

.x and Dt[k]
.(y+N) columns of Dt, where x and y are the indices of

variables X and Y in D. Concerning the choice of score itself, many asymmetrical scores can be used. A
simple one with conditionals interpretation is the conditional entropy H(X|Y ). Bayesian scores, like Bayesian
Dirichlet variants [7] can also be used with the advantage of being able to add prior information, relatively to
each edge, to the learning task.

The edge sampling step before spanning arborescence computation is important in order to counterbalance
the determinism of the Edmonds algorithm due to its global optimality. The choice of α at this step is critical and
will be discussed in Section 4. On one hand, it must be low enough to avoid that the optimality of the spanning
algorithm restricts the component models diversity too much before the combination step. On the other hand, it
should also be high enough so that the spanning algorithm still discriminates between different models and the
resulting components are not just the consequences of random sampling. The choice of sampling undirected
edges instead of directly sampling directed ones is of major importance to this purpose, since it allows to obtain
strongly connected Gk graphs, to guarantee the existence of a spanning arborescence for a wide range of α.

To conclude, the first learning step ensures each component to be sparse, and globally optimal in the con-
sidered arborescences space, with respect to s. Edmonds algorithm, like Kruskal one in the undirected graphs
space, allows to get this optimality for each directed component in polynomial time.

3.3 Computing the composite model

Once the m component models have been learned, the second learning step aims at combining them into
a composite model. In the Bayesian Model Averaging framework, this step is achieved by computing a set of
expected features {E(fi)}i for the composite model, each E(fi) being inferred from each component features
set {fki }1≤k≤m. In this paper, the feature space consists in the set of all possible edges in V 2, and an expected
edge score is computed by counting how often that edge was present in the arborescenceAk, considering it was
present in the initial weighted graph Gk. Formally, we have for all (A,B) ∈ V 2:

E(fA→B) ≈
| {k | (A,B) ∈ edges(Ak)} |

α
.

More complex features could be considered, such as paths instead of edges or ancestor / descendant rela-
tionships, as in [4] (although the authors do not combine them in a single model). We leave these problems for
future work since it would require more complex combination rules, requiring transitive reduction techniques
[25], a difficult problem in the case where the input graph has cycles or is weighted.

The computation of all edges’ expected scores in the composite model directly provides a ranking for those
edges. A combined model is finally built from such ranking by choosing the k-best edges or all edges whose
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score exceeds a given threshold. The ranking itself can be used to compare the learning results with an optimal
model through an AUROC evaluation.

The Algorithm 1 summarizes the proposed approach.

Algorithm 1 The learning algorithm
Require:
Dt: a dynamic 2 slices of time learning dataset,
m: a number of component models to learn;
s: an edge directed weighting score;
α: a density for graphs setup pre-spanning arborescence;
σ: an edge weight threshold for final edges keep decision;

Ensure: a structural model from t to t+ 1 of the system
for 1 ≤ k ≤ m do

Dt[k] := sample with replacement from(Dt)
Gk := build strongly connected graph(Dt[k], s, α)
Ak := edmonds spanning arborescence(Gk)
F k := edges(Ak)

end for
∀(A,B) ∈ V 2 : E(fA→B) := | {k | (A,B) ∈ F k} | / α
return G = choose top edges({E(fA→B)}, σ)

3.4 Complexity

Following the decomposition of the Algorithm 1, the time complexity can be expressed as the sum of
two terms: one for the components computation, and another for the combination step. The components
computation complexity is m · (s+ g+ e), where s (resp. g, e) is the complexity of sampling (resp. connected
graph construction and Edmonds algorithm). The complexity of the sampling step is negligible here, but the
construction of the graphGk is inO(αN(N−1)) ≈ O(N2), as is the Edmonds algorithm computation with the
Tarjan optimization for dense graphs [26] (O(N2 log N) for sparse ones). Thus the components computation
part is in O(mN2).

The combination part is trickier since it consists in a succession of joins between the component edgelists
for further counting. Depending on the join algorithm used, this part can become the bottleneck of the overall
learning approach. Indeed, a simple nested join has a time complexity inO(PQ) where P andQ are the number
of rows in each table to join together. In our algorithm, this leads to a complexity in O(N2m). However, it is
possible to considerably improve this step using better strategies, such as hash joins, running inO(P +Q), thus
leading to a linear complexity in our settings. Note that in a purely sequential algorithm, it is not really necessary
to compute joins since component edges can be counted just after arborescence computation. However, since
this method is highly parallelizable due to the independence of components learning and of combinations order,
it is preferable to consider this solution since the parallelization gain overcomes the joins cost in practice.

Overall, the proposed approach is the sum of a quadratic and a linear step (in a parallel configuration), and
thus is of quadratic complexity.

4 DREAM 8 (HPN-DREAM) SC1B Network Inference Challenge Results

In this section, we validate our method and compare it with other algorithms through a dataset of the recent
HPN-DREAM 8 Breast Cancer closed challenge [8].

4.1 Challenge and evaluation method description

The DREAM 8 SC1B subchallenge learning objective is to find the network of a synthetical biological
model built using state of the art methods and biological knowledge. Simulation of this model led to the
production of several time series involving 20 biological features. The data used to perform the validation of
our algorithm was firstly pre-processed as described in section 3 to produce a single two-time slice dataset, the
resulting data containing 80 t to t+ 1 examples over 40 temporal features.

The evaluation of learning results for this task is achieved by an official tool, the DREAMTools python
package [27], through the computation of an AUROC score against the golden standard. In addition to com-
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Fig. 1. (Top) mean and sds of AUC computed by DREAMTools over 50 computations as a function of the number of
combined models, as well as the samples and edge ratio used for components learning. (Bottom) mean and sds of AUC
computed by DREAMTools over 50 computations as a function of the edge and sample ratios. Only convergence values
for increasing m are plotted.

puting scores the same way from one algorithm to another, this package also provides the expected ranking an
algorithm would have reached if the challenge were still open, using all final results from the more than 100
official submissions, which allows for a cheap comparison with many algorithms of all families described in
section 2.

In order to quantify the impact of several parameters on our algorithm learning quality, we have tested the
method with different parametrization of the number of combined modes m, the ratio of samples n contained
in each data perturbation, and the ratio of edges α present in each graph before each component learning. We
used BDeu [7] gain as edge score, the difference between the BDeu score of the A → B local structure and
the no edge one. Namely for an edge A→ B: BDeu(parents(B) = {A})−BDeu(parents(B) = ∅).

4.2 Results

Results for many parametrizations, given in Figure 1(Top), show different clear trends. Firstly, we can see
that for small edge ratios, the obtained AUC seems to monotonically increase with the number of combined
models, until reaching plateaus. For bigger ratios, the trend seems to be mostly observable, but the higher the
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sampling ratio, the lower the minimum edge ratio needs to be to show this trend. Additionally, we can observe
that the convergence AUC value tends to increase whenever any of the edge or the sample ratio decrease, which
is clearer in Figure 1(Bottom). These results seem to indicate that focusing on smaller parts of the available
information for each component, while aggregating a higher number of them for final consensus, seem to give
the best results, which confirms the requirement for components diversity in order to give a good consensus.
Extra experiments done and not displayed here show that smaller edge and sample ratios break the observed
trends. For edge ratio, this is predictable, since the minimum value displayed of 0.05 corresponds to an average
number of 2 neighbors per node (considering we add the reverse edges for each sampled edge, to ensure we
can compute a spanning arborescence), which is the minimal number of neighbors required for the algorithm
to make a choice. Lower values actually lead the spanning arborescence algorithm to just select most available
edges in the graphs it is given. For samples ratio, it seems to indicate a limit from which the dataset is too small
to capture faithful enough information.

Concerning the expected ranking for the different results, our approach is very promising since it reached
the 3rd position for the best mean AUC obtained over the different parametrizations, outperforming GENIE3,
ARACNE, all heuristic oriented Bayesian network methods, as well as all linear and most non-linear regression
methods, all ODE and all ensemble learning solutions.

4.3 Discussion

At the moment, the gap with the best performance is of 0.045. A particularity of the considered DREAM
subchallenge is that 3 out of the 20 biological features are actually fake nodes, supposed to have no correlation
with the others. This shows a limitation of our approach in its current form: learning spanning trees means that
every node will get one parent per component, even if there is no true correlation. Note that this problem is
not necessarily easy to solve, since there is also a tendency for such spurious correlations to be non-uniformly
distributed. Indeed, the optimization of the spanning arborescence score encourages to keep the apparently
more correlated pairs of nodes, so the ones with the most biased noise are chosen. Since sample and edge
samplings are uniformly done, there is a high probability for a restricted number of parents to appear in each
component for a fake node. In practice, this means that a simple pruning of the components is not enough.
Future work will address this issue.

5 Conclusion

In this paper, we have presented a network inference learning algorithm based on the combination of mul-
tiple spanning arborescences learned over multiple perturbation of the original dataset, with enforced diversity
through edge sampling, showing promising results in practice on a recent DREAM challenge.

Experiments have more particularly shown that combining more models together with more diversity, in-
volving a decrease of both sample and edge ratios in the currently defined parameter space, leads to better
convergence values. It is encouraged to use this strategy in a quite extreme way, since best performances ob-
tained in the experiments are achieved by situations where both ratios are very low. The only warning would be
to still allow the Edmonds algorithm to have choice, in order not to make the components completely random.
We have also seen in section 4 the impact of fake nodes on the results, and the difficulty of identifying them
whenever the spanning arborescence assign most nodes a parent. This issue has a significant impact on the
current results since removing edges involving fake nodes would lead to a top position of the approach.

Future works will address the limitations of the current algorithm, such as its sensitivity to fake nodes.
More advanced extensions will also be investigated, such as the introduction of priors, really important in
biological contexts, modular capabilities, which is becoming a standard in recent methods to abstract from a
model complexity, and different component combination rules to preserve extra properties in the consensus
model, such as paths or path lengths.
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Abstract

Observing cellular processes at the single cell level is often necessary to understand how cells respond to  
endogenous and environmental changes. Used in combination with fluorescence reporter techniques, flow 
cytometry and time-lapse microscopy are arguably the two most widely employed quantitative single-cell  
observation approaches.  The former  provides great  statistical  details  on the diversity of  the  studied cell  
population,  whereas  the  latter  provides  longitudinal  information on  single  cells:  individual  cells  can be 
tracked in time.  This is  a decisive advantage to investigate a number  of important  biological  problems, 
including chronological aging, epigenetic heritability, and dynamic features such as cell-cycle and circadian 
oscillations in non-synchronized cell populations.

However, the capability to extract single cell traces from microscopy images in a fully-automated manner 
is  a  necessary prerequisite  to obtain conclusions that  are valid and biologically relevant  in long lasting 
experiments.  Incorrect  assignments  (e.g.  two  cells  exchanged  at  some  time  point)  can  possibly  hide 
interesting features, or worse, create spurious information. Although such incorrect assignments are expected 
to be relatively rare at each time point, a simple analysis shows that the number of correct traces decreases 
rapidly with the duration of the experiment:  even for yeast  cells  that  have relatively regular shapes,  no  
solution has been proposed that reaches the high quality required for long-term experiments for segmentation 
and tracking based on brightfield images.

In this demo we present CellStar [1], a tool chain designed to achieve good performance in long-term 
experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a 
neighbourhood-preserving criterion for  tracking,  and the use of  an iterative  approach that  incrementally 
improves  segmentation  and  tracking  quality.  A graphical  user  interface  enables  manual  corrections  of  
segmentation and tracking errors and their use for the automated correction of other, related errors and for  
parameter learning.

In [1] we created a benchmark dataset with manually analysed images and compared CellStar with six 
other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a 
website,  the  Yeast  Image  Toolkit,  with  the  benchmark  and  the  Evaluation  Platform to  gather  this  and 
additional information provided by others.
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Abstract: As for many model organisms, the amount of Listeria omics data produced has 
recently increased exponentially. There are now >80 published complete Listeria genomes, 
around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis 
of these data sets through a systems biology approach and the generation of tools for biologists to 
browse these various data are a challenge for bioinformaticians. We have developed a web-based 
platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an 
interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data 
sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that 
connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; 
(iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; 
and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform 
integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to 
date. This website allows navigation among all these data sets with enriched metadata in a 
user-friendly format and can be used as a central database for systems biology analysis. 
Link: http://listeriomics.pasteur.fr/ 
 

Keywords Listeria, genomics, transcriptomics, proteomics, systems biology 

 

Summary 
Listeria monocytogenes is a foodborne pathogen responsible for foodborne infections with a mortality 

rate of 25%. This pathogen is responsible for gastroenteritis, sepsis, and meningitis and can cross three host 
barriers, the intestinal, placental, and blood-brain barriers [1]. Over the past three decades Listeria has become 
a model organism for host-pathogen interactions, leading to critical discoveries in a broad range of fields [2], 
including virulence-factor regulation, cell biology, and bacterial pathophysiology. To study these mechanisms, 
several genomics, transcriptomics, and proteomics data sets have been produced. 

The analysis of these data sets through a systems biology approach and the generation of tools for 
biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based 
platform, named Listeriomics (http://listeriomics.pasteur.fr/), that integrates different tools (see Figure 1) for 
omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and 
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sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that 
connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific 
tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression 
network tool for the discovery of potential new regulations. 

To our knowledge, none of the referent databases dedicated to model organisms such 
as E. coli or B. subtilis integrates as many data sets and visualization tools as the Listeriomics resource does. 
User experience and feedback from our collaborators using the Listeriomics interface [3] for the past 5 years 
were driving forces in organizing and improving the way to access data and tools. Our main purpose was to 
design an easy-to-use website with a dynamic interface for biologists wanting to access the different 
heterogeneous “omics” data sets available for Listeria. As such our website should interest the JOBIM 
community as it shows an example of extensive multi-omics data integration for model organism. 

The website is developed with an in-house platform which we named BACNET. It is written in Java 
language, with BioJava and Eclipse RAP APIs. We designed the platform so bioinformaticians wishing to 
create they own multi-omics website for another organism can do so with few efforts. We believed the 
description of the BACNET platform will also interest the JOBIM community. 
 
 

 
 

 

 
Figure 1: Overview of the different tools available in Listeriomics website 
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Research programs involving genetics, genomics and epigenetics are quickly growing. Lot of experiments
producing large amount of data are now feasible in the frame of a laboratory. As well, the tools analyzing
the data generated by these experiments are often available. Results of these experiments can be stored and
structured into files and loaded into databases, and lots of these databases are public. However, these bases are
usually implemented according to schemes and techniques that do not allow their interoperability in an easy
manner.

The technologies from the Semantic Web, especially RDF and SPARQL are one of the key elements for
combining databases, which has led to the emergence of linked data. It is based on triples (subject, predicate and
objects) describing the relationships between elements stored into interoperable triplestores allowing distributed
querying. Because of its flexibility, versatility and ontology-awareness, numerous biological databases, such as
UniProt, PubChem or ChEBI and Reactome at EBI, give access to their data via a SPARQL endpoint.

We present AskOmics, a new software, that uses the Semantic web technologies, which helps to integrate
multiple format of data and query them through a user-friendly interface. AskOmics is a free and open-source
software (AGPL licence) available on GitHub (https://github.com/askomics/askomics).

AskOmics supports both intuitive data integration and querying while shielding a non-expert user from
most of the technical difficulties underlying the web semantic technologies. Because large and heterogeneous
biological datasets are often difficult to integrate, AskOmics users can provide simple tabulation-separated files
(TSV), that are transformed automatically into RDF triples, then stored into a triplestore. Finally, for data
querying, AskOmics provides a visually intuitive interface to obtain a comprehensive view of the biological
study.

During data integration, user provides input files in common formats (currently TSV and GFF) to be con-
verted into RDF triples. AskOmics generates triples corresponding to the data (the content), and also triples
which describe the data (the abstraction). Triples are loaded in a triplestore in order to persist data and optimize
queries.

The query interface is composed of a dynamic graph at the left and a right view for filtering attributes.
On the graph, each node represents an entity. Entities are linked between them with arrows. Attributes of
the selected entities are displayed on the right view. To build the graph, AskOmics query the abstraction.
Users build their queries by starting from a node of interest and sequentially select its neighbors and filter on
attributes, creating a path on the abstraction. This path is converted into a SPARQL query and sent to the
triplestore. Finally, the results are displayed as a table and can be downloaded as a TSV file.

AskOmics has been applied successfully to the analysis of large scale datasets on the aphid embryogenesis,
on the variablility of Brassicaceae in response to clubroot disease, and to the analysis of biological pathways.
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1 Introduction and problem statement

Nowadays, huge efforts address the organization of biological knowledge through linked open databases.
These databases can be automatically queried to reconstruct a large variety of biological networks such as reg-
ulatory or signaling networks. Assembling networks still implies manual operations due to (i) source-specific
identification of biological entities, (ii) source-specific semantics for entity-entity relationships, (iii) prolif-
erating heterogeneous life-science databases with redundant information and (iv) the difficulty of recovering
the logical flow of a biological pathway due to the bidirectionality of chemical reactions. Homogenization
of biological networks is therefore costly and error-prone. Existing tools such as the ReactomeFIPlugIn of
Cytoscape 3.0[1] or STRING[2] allow to link entities to each other or to identify an entity’s membership to
a single pathway. Nevertheless, they are still limited in the global modeling aspects (logical rules inferred
from the knowledge representation). Here, we present a framework to automate the assembly of regulatory and
signaling networks in the context of tumor cells modeling.

2 Approach

Our framework is based on Semantic Web technologies. It addresses (i) the uniform identification of multi-
source biological entities, (ii) the description of labeled directed graphs through RDF, and (iii) the use of
BioPAX [3] as a semantic reference. We consider a list of target gene names or IDs as entry points. The
first step consists in retrieving transcription factors (TFs) controlling these target genes. Then, the second
step consists in considering the TFs as new entry points for the reconstruction algorithm. The full regulatory
network is finally assembled by iteratively applying the second step until no new TFs can be found.

3 Demonstration

To assemble networks our algorithm queries PathwayCommons[4] through its SPARQL endpoint and re-
trieves a graph of TFs associated to target genes. We developed a web tool that displays the biological network
assembly step by step, allowing users to interact with the reconstruction process and to visually shape the net-
work. Through this web tool, it is also possible to launch a command line tool (Java) to address larger scale
input gene lists. These tools have been deployed on the BiRD Cloud infrastructure. From a list of 1800 targets
genes, we were able to assemble in less than 3 minutes a graph of 1474 nodes and 12303 edges.

4 Discussion and Conclusion

As future works, we aim at integrating drug-target informations (e.g. KEGGdrug, DrugBank) through
SPARQL federated queries to get insights on (i) tumor cells growth and (ii) drug response on patient and cell
lines gene expression data. Our tool is freely available at https://github.com/symetric-group/
bionets-demo
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Abstract With the development of new experimental technologies, an avalanche ofdata has to
be computationally analyzed for scientific advancements and discoveries toemerge. Faced with
the complexity of analysis pipelines, the large number of computational tools, and the enormous
amount of data to manage, there is compelling evidence that many if not most scientific discoveries
will not stand the test of time: increasing the reproducibility of computed results is of paramount
importance. The objective we set out in this paper is to place scientific workflows in the context of
reproducibility: We define several levels of reproducibility; we characterize and define the criteria
that need to be catered for by reproducibility-friendly scientific workflow systems; we use such
criteria to place several representative and widely used workflow systems and companion tools
within such a framework; we discuss the remaining challenges posed by reproducible scientific
workflows in the life sciences. Our study was guided by three use cases from the French community,
involving in silico experiments.

Keywords Reproducibility;Scientific Workflows;Provenance; Packaging environments.

Novel technologies have led to the generation of very large volumes of dataat an unprecedented rate.
This is particularly true for the life sciences, where, for instance, innovations in Next Generation Sequencing
(NGS) have led to a revolution in genome sequencing. Current instruments can sequence several hundreds of
human genomes in one week whereas more than ten years have been necessary for the first human genome.
Many laboratories have thus acquired NGS machines, resulting in an avalanche of data which has to be further
analyzed using a series of tools and programs for new scientific knowledge and discoveries to emanate. The
same kind of situation occurs in completely different biological domains, suchas plant phenotyping which
aims at understanding the complexity of interactions between plants and environments in order to accelerate
the discovery of new genes and traits thus optimize the use of genetic diversity under different environments.
Here, thousands of plants are grown in controlled environments, capturing a lot of information and generating
huge amounts of raw data to be stored and then analyzed by very complex computational analysis pipelines for
scientific advancements and discoveries to emerge.

Faced with the complexity of analysis pipelines designed, the number of computational tools available and
the amount of data to manage, there is compelling evidence that the large majority of scientific discoveries will
not stand the test of time: increasing reproducibility of results is of paramount importance.
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Over the recent years, many authors have drawn attention to the rise of purely computational experiments
which are not reproducible (see in particular [1]). Major reproducibility issues have been highlighted in a very
large number of cases: while [2] has shown that even when very specific tools were used, textual description of
the methodology followed was not sufficient to repeat experiments, [3] has focused on top impact factor papers
and shown that insufficient data were made available by the authors to make experiments reproducible, despite
the data publication policies recently put in place by publishers.

Scientific communities in different domains have started to act in an attempt to address this problem. Pres-
tigious conferences (such as two major conferences from the databasecommunity, namely, VLDB15 and SIG-
MOD 16) and journals such as PNAS17, Biostatistics, Nature, and Science, to name only a few, encourage or
require published results to be accompanied by all the information necessary to reproduce them. However,
making their results reproducible remains a very difficult and extremely time-consuming task for most authors.
In the meantime, considerable efforts have been put into the development ofscientific workflow management
systems. They aim at supporting scientists in developing, running, and monitoring chains of data analysis pro-
grams. A variety of systems (Galaxy, OpenAlea,...) have reached a level ofmaturity that allows them to be
used by scientists for their bioinformatics experiments, including analysis of NGS or plant phenotyping data.
By capturing the exact methodology followed by scientists (in terms of experimental steps associated with tools
used) scientific workflows play a major role in the reproducibility of experiments.

The propose of this paper is thus to better understand the core problematic of reproducibility in the specific
context of scientific workflow systems. We aim to provide answers to the following key points: How can we
define the different levels of reproducibility that can be achieved when aworkflow is used to implement an
in silico experiment? Which are the criteria of scientific workflow systems that make themreproducibility-
friendly? What is concretely offered by the scientific workflow systems in use in the life science community to
deal with reproducibility? Which are the open problems to be tackled in computerscience (in algorithmics, sys-
tems, knowledge representation etc.) which may have huge impact on the problems of reproducing experiments
when using scientific workflow systems?

Accordingly, we make the following five contributions: We present three real use cases involving in silico
experiments, and elicit concrete reproducibility issues that they raise. We define several kinds of reproducibility
that can be reached when scientific workflows are used to perform experiments. We characterize and define the
criteria that need to be catered for byreproducibility-friendlyscientific workflow systems. Using the framework
of the criteria identified, we place several representative and widely used workflow systems and companion
tools within such a framework. We go on to discuss the challenges posed by reproducible scientific workflows
in the life sciences and describe the remaining opportunities of research in several areas of computer science
which may address them.

This paper is the result of a large collaborative work between several members of the French Bioinformatics
community. Ongoing work includes organizing hackathons to concretely testthe ability of the various workflow
systems to deal with reproducibility.
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Sequencing platforms produce large and heterogeneous data sets. For example, the Biomics pole (Institut
Pasteur, CITECH) provides sequencing data related to transcriptomics, genomics and metagenomics. Before
delivering results, platforms need to perform quality controls. Nevertheless, these platforms may also provide
dedicated analysis (e.g. variant caller, de-novo).

There are many sequencing pipelines available. We provide some of them in the Sequana project. The
particularity of the pipelines available in Sequana is that they are based on the Snakemake framework. Snake-
make pipelines are written in Python with a rule-based syntax; a configuration file is also required (YAML
format) [1]. The Snakemake pipelines targets an audience of developers since they require the pipelines to be
run on cluster with command line arguments; configuration file also need to be edited.

Sequana project is made of (i) a Python library, (ii) a set of Snakemake pipelines and (iii) standalones [2]. In
order to expose the Snakemake pipelines to all kind of users, we develop Sequanix, a standalone Graphical User
Interface (GUI) based on Python and PyQt. Sequanix can launch Snakemake pipelines available in Sequana
without the need for command line interface. Indeed, the GUI can be used on a cluster (with a display). So
the knowledge of editor such as VIM is not necessary anymore. Therefore, Sequanix fills the gap between
Snakemake developers and their end-users.

Pipelines provided by Sequana are directly available in a dropdown box. When a pipeline is chosen, the
embedded configuration file is automatically loaded as a form. This form can be edited without the need for a
text editor. It also have convenient features: if a parameter name ends in file or browser, a dedicated widget
(file or directory browser) is shown instead of a simple line edit; if comments are available in the configuration
file, we interpret and show them as tooltips in the GUI. Once a pipeline and a working directory are set, the
project can be saved, the workflow visualised as a directed acyclic graph (DAG) and finally the pipeline can be
executed. The interface displays the Snakemake standard output and the progress.

Sequanix exposes all Sequana pipelines (snakemake-based) within a graphical interface. Yet, many Snake-
make pipelines are developed by a large community of developers especially in the NGS field. So, we extended
the GUI so that any external Snakemake pipeline can also be imported and executed through the interface
making Sequanix a generic tool for any Snakemake pipeline.
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Le cloud, par ses promesses de machines à grande mémoire et clusters de calcul conséquents, se pose
comme un sérieux candidat pour répondre aux problématiques tant scientifiques que techniques amenées par
le déluge de données en bioinformatique. Afin de s'appuyer sur le cloud, il faut rendre son utilisation simple,
intuitive, et conserver un haut niveau de sécurité. C'est pour répondre à ce défi technique, et dans le cadre du
projet CYCLONE, que nous avons construit le portail web Biosphère (https://biosphere.france-
bioinformatique.fr).

Le projet CYCLONE (http://www.cyclone-project.eu) est un projet Horizon-2020 «  Actions d'innovation »
financé par la Commission Européenne (projet 644925). Il vise à répondre aux challenges posés par des
applications, dont certaines en bioinformatique, en intégrant et améliorant des solutions open-source pour la
gestion de clouds. Les objectifs sont une gestion unifiée de différents clouds, le déploiement et le maintien de
plateformes de traitement de données complexes dans une architecture multi-cloud, une réactivité et une
élasticité dans l'utilisation des ressources proposées. Dans le cadre de CYCLONE, l'Institut Français de
Bioinformatique (IFB) est en charge de la définition des besoins et cas d'utilisation en bioinformatique, la
proposition de machines virtuelles prédéfinies (appliances) y répondant, la formation des utilisateurs à
l'utilisation de ces appliances, la création de nouvelles appliances, et la proposition d’un portail à destination
des utilisateurs.

Biosphère est un portail web à haut niveau d’abstraction qui permet à l’utilisateur de lancer les appliances
"en un clic" sur différents clouds sans connaissance technique particulière, ou de configurer leur
déploiement. Ce portail lui permet aussi de surveiller et gérer les déploiements,et la consommation des
ressources. Le portail Biosphère contient un catalogue d'appliances bioinformatiques (RAINBio[1]), et
permet d'explorer ces appliances et outils d'après les termes de l'ontologie EDAM et une recherche textuelle.

Afin d'assurer un authentification simple, de confiance, et utilisable autant dans le portail que dans les
appliances, nous utilisons le gestionnaire d'identités développé dans le cadre du projet CYCLONE. Ce
gestionnaire s'appuie sur la fédération d'identités académique européenne eduGAIN.

Une fois l'appliance choisie, il est possible de la lancer en un clic, et de configurer son déploiement.
Lorsque l'appliance est basée sur une unique machine virtuelle (VM), il est possible de choisir la mémoire et
le nombre de CPU; et dans le cas d'un cluster, le nombre de noeuds de calcul. Le portail Biosphère permet
aussi de choisir le cloud utilisé,  le cas échéant de lancer l'appliance sur plusieurs clouds, et de modifier
ensuite dynamiquement le nombre de noeuds de calcul.

Dans les déploiements, l’authentification s'appuie sur la fédération d'identités eduGain, tant pour les
connexions en terminal distant, qu'en bureau distant. L'isolation réseau d'un déploiement, par exemple
pourun cluster de calcul, est assurée par le composant CNSMO, développé dans le cadre de CYCLONE,
fournissant un réseau privé virtuel (VPN), basé sur le logiciel communautaire OpenVPN (exécuté dans un
conteneur Docker).

Le portail Biosphère permet une gestion simplifiée des ressources utilisées. Afin de rendre le cloud
accessible à tous, le portail Biosphère s'appuie sur les développements du projet CYCLONE. Il propose ainsi
un haut niveau de sécurité réalisé par une authentification reposant sur la fédération d'identités académique
européenne eduGAIN, et un placement des appliances au sein de réseaux isolés et sécurisés. Le portail
permet aussi une allocation dynamique des ressources de calcul, et des déploiements multi-cloud. L'ensemble
de ces fonctionalités étant proposées dans une interface se voulant intuitive.
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Most of recent bioinformatics methods are available to the scientific community through web-based
portals. Without technical knowledge, users can rapidly evaluate or use the method presented. This simplicity
is often a tradeoff between the focused service provided and the integration with external resources. These
web servers also lack of consistency for the presentation of services, for the organization of data and results.

With the advent of specialized editions of journals, some guidelines start to be set up for web services.
Users nowadays expect to see a description of the method, a contact page, a simple form for job submission
and a results page with sample examples. These web services are still mostly independent of external
resources.

In this work, we present Biodjango, an integration of the Django framework for the presentation of web
services for bioinformatics methods. Within this extensive framework, we provide integrated methods for
linking external biological data to the analysis performed. On top of biopython or biodjango-specific
methods, it is possible to handle Uniprot entries for protein annotation, Gene Ontology vocabulary, NCBI
data and Bibliography management. For each biodjango application, a reference template is provided with
examples so users building their own web service can rapidly adapt these applications for their needs. The
application is made for modularity so users can pick only sub-parts of biodjango as required. To simplify the
management of job submission, progression and display of results, biodjango offers their management with a
simplified scheduler-like mechanism. To ease user adoption of biodjango, an extensive documentation is
provided for a rapid set up of a biodjango-derived web service, this documentation will be updated regularly
from the remarks and demands of the community.

We expect the biodjango project to accelerate web deployment of web services for the scientific
community, so bioinformaticians will be able to dedicate more time for the development of innovative
methods.
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1 Context 
Phylogenetic analyses aim at reconstructing the evolutionary history of biological objects from molecules to              
species, and populations. Phylogeny plays a major role in highly diverse domains such as predicting               
biological functions or measuring the biodiversity of ecosystems. As a consequence, a plethora of approaches               
have been designed in various communities, resulting in a large number of programs available. Faced with                
the increasing need to perform phylogenetic analysis, and the difficulty for scientists to determine which               
program to use at each step of an analysis and how to combine the use of programs together, we designed                    
Phylogeny.fr [1] almost ten years ago. 

While Phylogeny.fr runs 50,000 data analysis per month, we are now faced with two major difficulties: (i)                 
the series of programs used need to be updated and (ii) phylogeny.fr is used in contexts where its technology                   
is reaching its limits (e.g., when simultaneously used by hundreds of students or when the server is used                  
through batch scripts). Refactoring Phylogeny.fr is thus of paramount importance. 

In the meantime, new solutions have emerged to help users manage their analyses: scientific workflow               
systems such as Galaxy [2] have reached a level of maturity making them particularly suitable for complex                 
and large-scale analyses.  

2 Sketch of the demonstration  
In this demonstration, we introduce the first release of “NGPhylogeny.fr” (​NGPhylogeny.pasteur.fr​),           
developed under Affero GPL v2 licence within a python Web framework (Django), in which we have                
refactored phylogeny.fr by designing a scalable environment, an easy-to-use web interface and a series of               
modular Galaxy workflows to perform a large variety of phylogenetic analyses. All programs have been               
updated or replaced while some others have been added (such as ​Noisy to trim the alignment sites). Default                  
parameter settings have also been revised. Our demonstration will be based on real datasets. We will show (i)                  
how “NGPhylogeny.fr” can be used in a functional genomics context to quickly analyze large sets of protein                 
superfamilies, (ii) how in depth studies can be launched and (iii) how “NGPhylogeny.fr” can be installed on                 
a wide variety of configurations. 

Acknowledgements: ​This project is supported by ANR-11-INBS-0013 - IFB.  
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Unraveling the Good and the Bad in Protein Networks: Functional
versus Dysfunctional Interactions

In the last years, protein interactome comparisons have highlighted conserved modules
that might represent common functional cores of ancestral origin. However, recent analyses
of protein-protein interaction networks (PPINs) have led to a debate about the influence of
the experimental method on the quality and biological relevance of these interaction data.
It is crucial to know to what extent discrepancies between the networks of different species
reflect sampling biases of the respective experimental methods, as opposed to topological
features due to biological functionality. This requires new, precise and practical mathematical
tools to quantify and compare the topological structures of networks at high resolution. To
this end, we have studied the relationship between structured random graph ensembles and
real biological signaling networks, focusing on the number of short loops in networks, which
represent complexes in PPINs. By combination of a method for graph dynamics and an
algorithm for loop counting, we estimated the relative importance of loops in biological
networks compared to random graphs. We found that loops are a predominant feature of
PPINs, suggesting that enrichment of their occurrence has a key functional role.

Nevertheless, one must keep in mind that not all the interactions between proteins result
in a functional role that benefits the cell. One example is protein aggregation, resulting in
neurotoxic assemblies that lead ultimately to cell death. We investigate in detail the case of
interactions between fragments of the Prion protein (PrP) constituted by only the helices
H2 and H3 of the entire protein. We have investigated the molecular mechanisms of the
self-assembly process in solution by Molecular Dynamics. Our simulations show that this
process occurs by assembly of small modules of four monomers that precede the creation of
a base of six to eight H2H3 monomers; starting from this base, other H2H3 units attach to
it in various configurations, assembling short filaments.
1) Chung SS, Pandini A, Annibale A, Coolen AC, Thomas NS, Fraternali F. Bridging topo-
logical and functional information in protein interaction networks by short loops profiling.
Sci Rep. 2015; 5:8540.
2) Chakroun N, Fornili A, Prigent S, Kleinjung J, Dreiss CA, Rezaei H, Fraternali F. De-
crypting Prion Protein Conversion into a β-Rich Conformer by Molecular Dynamics. J Chem
Theory Comput. 2013; 5:2455-2465.
3) Chakroun N, Prigent S, Dreiss CA, Noinville S, Chapuis C, Fraternali F, Rezaei H. The
oligomerization properties of prion protein are restricted to the H2H3 domain. FASEB J.
2010; 9:3222-31.
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1 Introduction

Understanding  protein-protein  interactions  (PPI)  is  essential  to  decipher  the  mechanism of  numerous 
biological functions. Some  in silico  methods can be used to investigate PPI. In particular, cross-docking 
simulations of large datasets of proteins can be used to predict interface residues [1-3]. In this study, we  
discussed the ability of the cross-docking method to detect the multiple binding sites on protein surfaces.

2 Methods

358 proteins extracted from 138 unique PDB structures were used for this study. The MAXDo algorithm 
[1] was used with a rigid-body docking approach and a reduced protein representation, a coarse-grain protein 
model developed by Zacharias [4]. Binding site predictions resulting from evolutionary sequence analysis  
produced with JET [5] were used to restrict the initial search space. For each surface residue, its Protein  
Interface Propensity (PIP) was computed and used to predict binding sites on the protein surface.

3 Results

For a large number of proteins, alternative interfaces different from the reference experimental interfaces 
were predicted. However, about 70 % of these interfaces were not false positives but correspond to interfaces 
with other partners (other chain of the same PDB not included in the database, nucleic acid molecule or  
homo-/hetero-dimerization interface). We compared the use of two different scoring schemes accounting for  
multiple binding sites, for evaluating the binding sites prediction. The first score was obtained by comparing 
the predicted interface with one single global reference experimental interface generated by concatening all  
the  existing experimental  interfaces.  In  the  second score,  the  predicted interface was compared to  each 
experimental interface separately, and only the interface associated with the best performance was kept.

4 Conclusion

Using cross-docking simulations on a large dataset of proteins, accurate binding sites preditions could be 
realized, including proteins which present multiple binding sites.
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N-glycosylations play an important role in protein functions and some alterations of glycosylation such as
sialic-acid hydrolysis can alter protein activity.  Some alterations are also known as pathological markers.
Considering their  biological  importance,  it  is  essential  to study glycosylated  proteins.  However,  in vitro
study of N-glycans can be very difficult because of the structural diversity and the many reactive groups of
the glycan chains. Molecular dynamics can be a useful tool to overcome this problem and give access to
conformational informations through exhaustive sampling. At the beginning of this project, we lacked a tool,
enabling to realize  in  a single  workflow,  from the building of  a glycan  structure to the analysis  of  the
trajectories. To adress this issue, we want to use these studies to propose a complete tool for the building, the
simulation and the analysis of glycosylated proteins that will be implemented in GROMACS.

The  present  work  is  based  on  a  previous  study  from our  laboratory:  we  investigated  the  structural
influence of sialic-acid on N-glycan combining in vitro and in silico approaches. A new method to evaluate
the conformational landscape has been developed by projecting 3D vectors on a geometric plan. We aligned
the glycan core on the Z axis in an orthogonal space before projecting the position of the glycan branches on
the XY plan. With this method, along with the clustering of representative structures and the measurement of
dihedral angles values of the glycosidic linkage, it was possible to show the importance of sialic acids and
their role in the structural flexibility of N-glycans [1]. 

To investigate the structural influence of glycosylation on protein structure, we focus on the glycosylated
Insulin  Receptor  (IR).  It  was  previously  shown  that  the  hydrolysis  of  sialic  acids  on  the  IR  by
neuraminidase-1 sialidase induced insulin resistance and disrupted cell glucose uptake [2]. Simultaneously,
we  will  work  on  new  methods  to  specifically  analyze  protein  /  glycan  complexes.  We're  aiming  at
developing a method for the measurement of the protein surface covered by the glycan in order to investigate
the structural role of the sugar chains on protein surfaces. 

At this time, using the online tool CHARMM-GUI [3] to generate the structures, we have created a first
glycan library that will be implemented in our GROMACS module. We first concentrated on biologically
relevant N-glycans (pathological markers identified by literature search [4,5]). We then started molecular
dynamics simulations on some of these glycans. Our aim is to further our analysis and our results on the
matter of N-glycan structure and flexibility. With this data set, we will be able to start implementing the
GROMACS module and test our analysis methods. From this work, we aim at providing a complete tool
paired with specific analysis methods thus enabling the building, the simulation of glycosylated proteins. 
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Abstract The recent rise of long read sequencing technologies allows the solving of assembly
problems for large and complex genomes that were, until then, unsolvable with the use of short
read sequencing technologies alone. Despite the fact that they can reach lengths of tens of kbps,
these long reads are very noisy, and can reach an error rate as high as 30%, involving mandatory
error correction before using them to efficiently solve assembly problems. However, as the vast
majority of these errors are insertions and deletions, classical error correction tools developed for
short reads, which mainly focus on substitution errors, are not effective for correcting long reads.
Therefore, several new methods specifically designed for long read error correction have recently
been developed. In particular, NaS, instead of directly correcting the long reads, proposes to use
them as templates in order to produce assemblies of related accurate short reads, and use them
as corrections. Following this idea, we introduce HG-CoLoR, a new tool for the production of
such corrected long reads, that gets rid of the need to align the short reads against each other,
which is the bottleneck from NaS. Indeed, HG-CoLoR focuses on a seed-and-extend approach
based on a hybrid graph built from the short reads. Our experiments show that, while producing
comparable results both in terms of length and accuracy of the corrected long reads, HG-CoLoR
is several times faster than NaS, and also yields better assembly results than other state-of-the-art
long read hybrid error correction methods. HG-CoLoR is available from https://github.
com/pierre-morisse/HG-CoLoR.

Keywords NGS, long reads, correction, assembly

1 Introduction

Since a few years, long read sequencing technologies are being developed, and allow the solving of as-
sembly problems for large and complex genomes that were, until then, unsolvable with the use of short reads
sequencing technologies alone. The two major actors of these long read sequencing technologies are Pacific
Biosciences and Oxford Nanopore, which, with the release of the MinION device, allows a low-cost and easy
long read sequencing.

However, even though long reads can reach lengths of tens of kbps, they also reach a very high error rate
of around 15% for Pacific Biosciences, and up to 30% for Oxford Nanopore, the vast majority of these errors
being insertions and deletions. Due to this high error rate, correcting these long reads before using them to
efficiently solve assembly problems is mandatory. Many methods are available for short read correction, but
these methods are not applicable to long reads, on the one hand because of their much higher error rate, and
on the other hand, because most of the error correction tools for short reads focus on substitution errors, the
dominant error type in Illumina data, whereas insertions and deletions are more common in long reads.

Recently, several methods for long read correction have been developed. These methods can be divided
into two main categories: either the long reads are selfcorrected by aligning them against each other (HGAP
[1], PBcR [2]), or either a hybrid strategy is adopted, in which the long reads are corrected with the help of
accurate short reads (LSC [3], proovread [4], CoLoRMap [5]). de Bruijn graph [6] based methods, where the
long reads are mapped on the graph, and erroneous regions corrected by traversing its paths, also started to
develop recently, in the hybrid case (LoRDEC [7], Jabba [8]), as well as in the non-hybrid case (LoRMA [9]).

NaS [10], instead of locally correcting the long reads, uses them as templates to produce corrected long
reads from assemblies of related accurate short reads. The short reads are mapped both on these templates, and
against each other, in order to associate a subset of related short reads to each template. Each subset in then
assembled, and the obtained contig is used as the correction of the associated template.

In this paper, we introduce HG-CoLoR, a new long read hybrid error correction method that combines both
the main idea from NaS to produce corrected long reads from assemblies of accurate short reads, and the use
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of a graph, in order to get rid of the time consuming step of aligning all the short reads against each other.
HG-CoLoR indeed focuses on a seed-and-extend approach where the seeds, which are short reads that align
correctly on the long reads, are used as anchor points on a graph that is traversed in order to link them together
and to produce the corrected long reads. This graph is actually a hybrid structure between a de Bruijn graph
and an overlap graph [12]. It is defined from the short reads’ k-mers, and allows to compute perfect overlaps of
variable length between these k-mers. It is not explicitly built, but the use of PgSA [11] allows to simulate its
traversal.

Our experiments show that, while producing comparable results both in terms of length and accuracy of the
corrected long reads, HG-CoLoR is several times faster than NaS, and also yields better assembly results than
other state-of-the-art long read hybrid error correction methods.

For the sake of understanding, we first give an overview of NaS, and describe our hybrid graph and the way
PgSA allows its traversal, before introducing HG-CoLoR.

2 NaS Overview

NaS is a hybrid method for the error correction of long reads that, unlike other methods, uses long reads as
templates rather than directly correcting them. Short reads are mapped both on these templates and against each
other, in order to gather different subsets of short reads, each subset related to one given template. Each subset
is then assembled, and the produced contig is used as the correction of the related template. More precisely, a
corrected long read is produced from a template as follows.

First, the short reads are aligned on the template using BLAT [13] in fast mode, or LAST [14] in sensitive
mode, in order to find seeds, which are short reads that align correctly on the template. Then, once these seeds
have been found, all the short reads are aligned against each other, and similar reads, which are reads that
share a certain number of non-overlapping k-mers with the seeds, are recruited with the help of Commet [15].
Finally, the obtained subset of short reads is assembled using Newbler (unpublished), and a contig is produced,
and used as the correction of the initial template

The reads recruitment is the most crucial step of the method, as it allows to retrieve short reads correspond-
ing to low quality regions of the template. However, this step is also the bottleneck of the whole NaS pipeline,
as it is responsible for 70% of the total runtime on average.

NaS is able to generate corrected long reads up to 60 kbps, that align entirely on the reference genome and
that span repetitive regions. On average, the accuracy of the corrected long reads produced by NaS reaches
99.75%, without any significant length drop compared to the input long reads. Moreover, these corrected long
reads also yield highly contiguous assembly results, and thus show that focusing on the production of corrected
long reads from assemblies of accurate short reads, rather than on the local correction of the long reads, is an
interesting alternative to classical long read hybrid error correction.

3 Hybrid graph

As previously mentioned, the graph used by HG-CoLoR is a hybrid structure between a de Bruijn graph and
an overlap graph. This hybrid graph is not explicitly built, but can be traversed with the help of PgSA, which is
a data structure that allows the indexing of a set of reads of constant length, in order to answer different queries,
for a given string f . For place sake, we do not detail how the index is built, the complete list of queries, nor how
they are processed. For more details, one can refer to [11]. We simply mention that PgSA supports querying
for variable lengths of f without recomputing the index, and that one of the queries returns the positions of all
the occurrences of f in the different reads of the set.

This way, using PgSA to index a set of reads, and looping over the aforementioned query, allows to compute
perfect overlaps of variable length between the reads, thus simulating the use of an overlap graph. In the same
fashion, indexing the k-mers from a set of reads, and looping over the aforementioned query, fixing the length
of the queries strings as k − 1, allows to compute perfect overlaps of length k − 1 between the k-mers, thus
simulating the use of a de Bruijn graph. However, indexing the k-mers from a set of reads, and looping over
the aforementioned query, of course, also allows to compute perfect overlaps of variable length between the
different k-mers, thus simulating the use of a hybrid structure between a de Bruijn graph and an overlap graph.
To the best of our knowledge, this is the first time such a structure is mentioned. For better understanding, an
example of a simple graph is given in Figure 1.
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Fig. 1. A simple example of our graph, when fixing the length of the k-mers to 6, computing overlaps of minimum length
3, and building from the three following reads: AAGCTTAC, CTTACGTA, GTATACTG. Numbers on the edges of the
graph represent the overlap length between the k-mers.

4 HG-CoLoR description

HG-CoLoR, like NaS, aims to use erroneous long reads as templates, and to produce corrected long reads
from assemblies of short reads related to these templates. However, its main objective is to get rid of the time
consuming step of reads recruiting, that requires the mapping of all the short reads against each other. To do
so, it focuses on a seed-and-extend approach where the seeds are found in the same way as NaS, and where the
k-mers from the short reads, and their reverse-complements, are indexed with PgSA, to allow the traversal of
the previously described graph. This graph is traversed, in order to extend and link together the seeds, used as
anchor points, by directly assembling the short reads’ k-mers during the traversal. HG-CoLoR’s workflow is
summarized in Figure 2, and its four main steps are described below.

short reads QuorUM corrected short reads Jellyfish k-mers PgSA

hybrid graph

BLASRlong reads seeds
seeds linking

+
tips extension

corrected long reads

Fig. 2. HG-CoLoR’s workflow. First, the short reads are corrected in order to get rid of as much sequencing errors as
possible. Then, all the k-mers from the corrected short reads, and their reverse-complements, are obtained with Jellyfish,
and indexed with PgSA, to allow the traversal of the graph. The corrected short reads are aligned on the long reads with
BLASR to find seeds, and each long read is then considered as a template, and processed independently. For a given
template, the graph is traversed in order to extend and link together the associated seeds, used as anchor points. Then, the
tips of the sequence obtained after the seeds linking step are extended in both directions by traversing the graph, to reach
the initial template’s borders. Finally, the corrected long read is output.

4.1 Short reads correction and indexing

Even though short reads are very accurate prior to any correction, as HG-CoLoR seeks to arrange their
k-mers into a graph structure, and traverse it to extend and link the seeds together, it needs to get rid of as much
sequencing errors as it can in this data. Thus, prior to any other step, the short reads are corrected with the help
of QuorUM [16], which is able to provide a good raise of the accuracy in very little time. Then, the k-mers
from the corrected short reads, and their reverse-complements, are extracted with Jellyfish [17], and indexed
with PgSA, in order to allow the traversal of the graph during the following steps.

4.2 Seeds retrieving and merging

Like with NaS, the seeds are found by mapping the corrected short reads on the long reads, used as tem-
plates. This is done with the help of BLASR [18], an alignment tool specifically designed to align long reads
dominated by insertion and deletion errors. Then, each template is processed independently, and two phases of
analyze and merging are applied to the associated seeds. First, if the mapping positions of a given couple of
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seeds imply that they overlap on the template over a sufficient length, their assumed overlapping sequences are
compared, and the two seeds are merged accordingly. If the mapping positions indicate that the two seeds do
overlap on the template, but not over a sufficient length, or if the assumed overlapping sequences do not coin-
cide, only the seed with the best alignment score is kept. Then, once all the seeds with overlapping mapping
positions have been merged or filtered out, sequence overlaps between consecutive seeds are computed. As in
the previous step, if a given seed overlaps the following one over a sufficient length, the two seeds are merged.

4.3 Seeds linking

Once the seeds have been found and merged for all of the templates, HG-CoLoR once again processes each
template independently and attempts to link the related seeds together by considering them as couples, and
traversing the graph. The rightmost k-mer of the left seed (source) and the leftmost k-mer of the right seed
(destination) are used as anchor points, and the source is extended with perfectly overlapping k-mers from the
corrected short reads, found by following the paths of the graph, until the destination is reached. When facing
branching paths, every possible path is explored with the use of backtracking, to find the one that will allow
correct linking of the source to destination. Of course, HG-CoLoR explores these different paths in decreasing
order of the overlaps lengths, which means that edges representing longer overlaps are always explored before
those representing shorter ones. It also only explores edges that represent overlaps that are longer than a defined
minimum length. Moreover, as short reads from a different region of the reference genome can align on the
template and can be used as seeds, thus leading to impossible linkings, a threshold on the maximum number of
backtracks is set, to avoid useless important runtime and intensive computation.

If this threshold is reached, and no path has been found to link the source to the destination, the current
linking iteration is given up. When such a situation occurs, two different cases have to be taken into account. In
the first case, if no seeds have been linked so far, the current source is simply ignored, and a new linking iteration
is computed for the next couple of seeds. In the second case, if seeds have already been linked previously, the
source remains the same, the destination seed that could not be reached is ignored, and the destination is defined
as the next seed for the next linking iteration. An illustration of these two different cases is given in Figure 3.

However, in the second case, as this process of skipping a seed in the middle of the template can provoke
an important number of failed linking attempts, if seeds from a wrong region are present in great proportion on
the template, a threshold on the maximum number of seeds that can be skipped is set. Once this threshold is
reached, if the sequence obtained from the previously linked seeds could not be extended to reach one of the
remaining seeds, HG-CoLoR attempts to produce a fragmented corrected long read: the part corresponding to
the seeds linked so far is output, and the graph is traversed again, in order to try to link the remaining seeds
together, independently of the previous part.

. . .

src dst seed3

. . .

seedn

. . . . . .

. . .
linked
seeds

src dst seedk
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Fig. 3. Illustration of the different cases of seed skips. Hatched lines represent the templates, standard segments represent
the seeds, and bold segments represent the sequences obtained from the previously linked seeds. First case (left): No seeds
have been linked so far, the current source seed is simply ignored, and both the source and the destination are moved to
the next couple of seeds. Second case (right): Seeds have already been linked previously, the source remains the same,
the destination seed that could not be reached is ignored, and the destination is defined as the next seed.

4.4 Tips extension

Finally, it is obvious that the seeds do not always map right at the beginning and until the end of the
templates. Thus, in order to get as close as possible to the original templates’ lengths, once all the seeds of
a given template have been linked, HG-CoLoR keeps on traversing the graph and extending the tips of the
produced corrected long read, on the left of the leftmost seed, and on the right of the rightmost seed, until
they reach the template’s borders, or a branching path. Indeed, in the case of tips extension, when facing a
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branching path, HG-CoLoR has no clue as to which path to chose and continue the extension with, nor any
anchor points, unlike when it attempts to link two seeds together. Therefore, backtracking is useless and the
extension is simply stopped when such a situation occurs. In the case of fragmented corrected long reads, as
HG-CoLoR can not properly rely on the template’s borders, every fragment is extended until a branching path
is reached.

5 Results and discussion

We compare the quality of our corrected long reads with those produced by NaS, and also with those
produced by two other state-of-the-art hybrid error correction methods, namely CoLoRMap and Jabba (which
is more recent than LoRDEC). We compare the results both in terms of alignment identity of the corrected long
reads, and in terms of quality of the assemblies that could be generated from these reads.

5.1 Parameters

We ran multiple rounds of correction with HG-CoLoR on the different datasets to experiment with the
parameters, and find the combination that would produce the best results. Thereby, we found that a k-mer
size of 64 for the graph construction yielded the best compromise between accuracy, genome coverage, and
average length of the output corrected long reads. The minimum overlap length to allow the merging of two
seeds during the second step was set to 63, accordingly to the k-mer size chosen for the graph construction.
The minimum overlap length allowed to explore an edge during the graph traversal was set to 59, as decreasing
it more yielded unsatisfying results, and increasing it would make our graph closer to an actual de Bruijn
graph than to the hybrid graph it’s supposed to be. The maximum number of backtracks was set to 1,125, as
decreasing it more drastically impacted the quality of the produced corrected long reads, and increasing it, even
to very large values, barely yielded better results, but greatly increased the runtime. For the same reason, the
maximum number of seed skips was set to 5. For the mapping of the short reads on the long reads, BLASR
was used with default parameters except for bestn, that was set to 30 instead of 10. Yet again, increasing this
parameter to larger values only impacted the runtime, and did not improve the correction results enough to be
interesting, while decreasing it induced a drop of the number of output corrected long reads. Finally, GNU
Parallel [19] was used to allow HG-CoLoR to run on multiple processes. CoLoRMap was run with default
parameters. Following the authors’ recommendations, before running Jabba, the short reads were corrected
with Karect [20], and the de Bruijn graph was constructed and corrected with Brownie (unpublished). As
choosing the same value as the one used for HG-CoLoR led to worse results, a k-mer size of 75 was chosen for
the graph construction, as recommended by the authors. All tools were run with 16 processes.

5.2 Datasets

As we mainly seek to compare our results with NaS, we use the same data to allow a better comparison. This
data is composed of both long Oxford Nanopore reads and short Illumina reads for three different genomes:
Acinetobacter baylyi, Escherichia coli, and Saccharomyces cerevisae. Details are given in Table 1.

Dataset Reference genome Oxford Nanopore data Illumina data
Name Strain Reference sequence Genome size # Reads Average length Coverage # Reads Read length Coverage

A. baylyi A. baylyi ADP1 CR543861 3.6 Mbp 89,011 4,284 44x 900,000 250 50x
E. coli E. coli K-12 substr. MG1655 NC 000913 4.6 Mbp 22,270 5,999 28x 775,500 300 50x
Yeast S. cerevisae W303 scf7180000000084-113 12.4 Mbp 205,923 5,698 31x 2,500,000 250 50x

Tab. 1. Description of the datasets used in our experiments. Both MinION and Illumina data are available from the
Genoscope’s website http://www.genoscope.cns.fr/externe/nas/datasets.html.

5.3 Alignment-based comparison

The previously described long reads datasets were aligned with Last prior to any correction. The four
different correction tools were then applied, and the obtained corrected long reads were aligned with BWA
mem [21]. Results are given in Table 2 and discussed below.

We notice that, unlike the other methods, CoLoRMap output all the long reads and not only the ones it
managed to correct. As the reads that could be corrected were not tagged in any way and could therefore not
be extracted, it appears that CoLoRMap performed the worst correction, and did not manage to improve the
accuracy of the long reads at all, except for the E. coli dataset. These poor results are probably due to the
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Dataset Method # Reads Average length Cumulatize size # Aligned reads Average identity # Error-free reads Genome coverage Runtime

A. baylyi

Original 89,011 4,284 381,365,755 29,954 70.09% 0 100% N/A
CoLoRMap 89,011 4,355 387,609,994 18,085 67.93% 2 100% 14h33min

Jabba 17,476 10,260 179,309,738 17,476 99.40% 16,893 99.80% 12min30
NaS (fast) 24,063 8,840 212,707,189 24,063 99.82% 22,984 100% 94h18min

NaS (sensitive) 28,492 9,530 271,526,778 28,492 99.83% 27,190 100% 128h55min
HG-CoLoR 23,465 11,137 261,327,970 23,461 99.44% 20,906 100 % 21h08min

E. coli

Original 22,270 5,999 133,607,392 22,170 79.46% 0 100% N/A
CoLoRMap 22,270 6,219 138,489,144 21,784 89.02% 152 100% 8h26min

Jabba 22,065 5,794 127,848,525 22,065 99.81% 21,850 99.41% 12min56
NaS (fast) 21,818 7,926 172,918,739 21,818 99.86% 20,383 100% 72h02min

NaS (sensitive) 22,144 8,307 183,958,832 22,144 99.86% 20,627 100% 81h30min
HG-CoLoR 22,549 5,897 132,979,813 22,549 99.59% 19,676 100% 15h15min

Yeast

Original 205,923 5,698 1,173,389,509 68,215 55.49% 0 99.90% N/A
CoLoRMap 205,923 5,737 1,181,298,941 40,530 39.93% 23 99.40% 37h36min

Jabba 36,958 6,613 244,402,749 36,855 99.55% 34,028 93.21% 44min05
NaS (fast) 71,793 5,938 426,326,355 71,664 99.59% 59,788 98.70%

NaS (sensitive) 85,432 6,770 578,351,588 85,288 99.53% 69,816 99.17%
HG-CoLoR 71,518 6,604 472,306,800 71,393 99.17% 55,357 98.39% 99h16min

Tab. 2. Runtime and statistics of the long reads, before and after correction by the different tools. NaS runtimes are
omitted for the Yeast dataset because the results did not compute in 16 days. NaS corrected reads for this dataset were
obtained from the Genoscope website.

fact that only a few reads could be corrected, as CoLoRMap is designed to correct long reads from Pacific
Biosciences, that have an error rate of about 15%, whereas the long reads used in our experiments were from
Oxford Nanopore, and reached an error of at least 30% for the two other datasets.

Jabba clearly performed the best when it comes to runtime, outperforming all the other tools by several
orders of magnitude. It also produced corrected long reads that aligned with a high identity, a great proportion
of them aligning with no error. However, although highly accurate, these corrected long reads did not manage
to completely cover any of the studied reference genomes.

When it comes to this point, only NaS and HG-CoLoR managed to cover the whole reference genomes
with high identity, except for Yeast, due to the fact that even the original long reads did not cover the whole
genome. Moreover, HG-CoLoR outperforming Jabba in terms of genome coverage also tends to underline the
usefulness of our hybrid graph, showing that it seems to resolve the different regions of the reference genomes
better than a classical de Bruijn graph, when the short reads coverage is locally insufficient.

On the three datasets, NaS yielded more corrected long reads than HG-CoLoR, both in fast and sensitive
mode. The slight advantage of HG-CoLoR on the E. coli dataset comes from the production of fragmented
corrected long reads, rather than from a greater number of processed templates. In both modes, the corrected
long reads produced by NaS also aligned with a slightly higher identity than those produce by HG-CoLoR, and
a greater proportion was therefore error-free. As for the average length and the cumulative size of the corrected
long reads, HG-CoLoR performances were highly similar to NaS’s, except on the E.coli dataset, where the
advantage of NaS is probably due to the high quality of the original templates, and to the fact that it can recruit
short reads outside of the templates, while HG-CoLoR stops once the borders are reached. However, despite its
slight disadvantage on the aforementioned metrics, HG-CoLoR was at least four times faster than NaS, even in
fast mode.

5.4 Assembly-based comparison

All the corrected long reads datasets previously described were assembled using Canu [22], without the
correction and trimming steps. The following parameters were used for the assembly of all the datasets:
OvlMerSize=17, MhapMerSize=17, OvlMerDistinct=0.9925, OvlMerTotal=0.9925. The correctedErrorRate
parameter was tuned independently for each dataset. It was set to 0.07 for A. baylyi, to 0.085 for E. coli and to
0.125 for Yeast. Results are given in Table 3 and discussed below.

In agreement with what we observed in Table 2, the low accuracy of the long reads corrected by CoLoRMap
resulted in impossible assemblies. Only the corrected long reads of the E. coli dataset could be assembled, due
to their original high accuracy, but the generated assembly did not cover the whole genome, and displayed the
worst identity among all the other assemblies.

As for Jabba, the fact that the corrected long reads did not manage to cover the whole reference genomes
resulted in highly fragmented assemblies, that could not resolve large regions of the reference genomes. As a
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Dataset Method # Reads Coverage # Expected contigs # Obtained contigs Genome coverage Identity

A. baylyi

CoLoRMap 89,011 44x 1
Jabba 17,476 50x 1 13 89.43% 99.93%

NaS (fast) 24,063 59x 1 1 100 % 99.99 %
NaS (sensitive) 28,492 75x 1 2 99.72% 99.98%

HG-CoLoR 23,465 73x 1 1 99.97% 99.93%

E. coli

CoLoRMap 22,270 28x 1 29 97,74% 99.81%
Jabba 22,065 28x 1 41 95.76% 99.92%

NaS (fast) 21,818 37x 1 1 99.90 % 99.99%
NaS (sensitive) 22,144 40x 1 2 100% 99.99%

HG-CoLoR 22,549 29x 1 2 99.95% 99.95%

Yeast

CoLoRMap 205,923 14x 30
Jabba 36,958 21x 30 134 70.52% 99.83%

NaS (fast) 71,793 35x 30 123 97.44% 99.77%
NaS (sensitive) 85,432 47x 30 123 96.98% 99.80%

HG-CoLoR 71,518 39x 30 108 92.19% 99.61%

Tab. 3. Statistics of the assemblies that were generated from the long reads, after correction by the different tools. CoL-
oRMap results are ommitted for the A. baylyi and Yeast datasets, because Canu did not manage to assemble the sets of
corrected long reads.

result, long reads corrected by Jabba yielded the least covering assemblies, despite their high average length
and high accuracy. This underlines the fact that, although it is extremely fast, Jabba does not seem to be adapted
for correcting long reads prior to an assembly.

Surprisingly, for all the datasets, the sensitive mode of NaS produced corrected long reads that resulted in
slightly less satisfying assemblies than the fast mode. However, the difference was not significant, and adapting
the parameters of Canu to match the corrected long reads produced in sensitive mode addressed this issue.

Therefore, only the corrected long reads produced by NaS and HG-CoLoR could be assembled into a de-
cent number of contigs, covering the reference genomes well, and with a high identity. However, for the Yeast
dataset, none of these two tools managed to produce corrected long reads allowing to get close to the expected
number of contigs, nor to the full genome coverage. This is probably due to the fact that the original long reads
were of really poor quality, displaying an error rate of almost 45%, and did not cover the whole genome. They
were indeed sequenced with an old chemistry, and it is more than likely that, with long reads from a more recent
one as templates, both NaS and HG-CoLoR could produce corrected long reads that would greatly reduce the
number of contigs and increase the genome coverage of the assembly.

6 Conclusion

We described HG-CoLoR, a new hybrid method for the error correction of long reads, that, like NaS, uses
long reads as templates and focuses on the production of corrected long reads from assemblies of accurate short
reads, rather than on the local correction of the input long reads. Our method, instead of aligning the short
reads against each other in a recruiting step, like NaS, focuses on a seed-and-extend approach and introduces a
brand new idea of using a hybrid structure between a de Bruijn graph and an overlap graph. This graph, which
is defined from the short reads’ k-mers, and traversed with PgSA, is used to extend and link together the seeds,
which are short reads that align correctly on the input long reads, by a simple traversal, using them as anchor
points. Therefore, the corrected long reads are produced by directly assembling the short reads’ k-mers during
the traversal, without using any other proper assembly tool.

We tested this new method and compared it with NaS, CoLoRMap and Jabba on Oxford Nanopore long
reads from three different genomes, namely A. baylyi, E. coli, and S. cerevisae. On these three datasets, HG-
CoLoR yielded results that compared well with NaS, while being several times faster, CoLoRMap produced
corrected long reads of poor quality, and Jabba, while being the fastest tool, produced accurate corrected long
reads that however did not cover the whole reference genomes. As a result, only the corrected long reads
produced by NaS and HG-CoLoR could be assembled into a decent number of contigs, covering well the
reference genomes, although NaS outperformed HG-CoLoR on the S. cerevisae dataset.

The development of this method shows that, when having anchor points, the previously introduced hybrid
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graph can prove useful for hybrid error correction of long reads, and can even yield better results than a classical
de Bruijn graph. For future works, it could be interesting to focus more on this graph, and directly build it
instead of simulating its traversal with PgSA, in order to directly map the long reads on the graph, like Jabba,
thus skipping the alignment step of the short reads on the long reads, and reducing the runtime.
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Abstract Genome sequencing projects sometimes uncover more organisms than expected, espe-
cially for complex and/or non-model organisms. It is therefore useful to develop software to iden-
tify mix of organisms from genome sequence assemblies. We developed a suite of tools to tackle an
often overlooked question: how to deal with sequences from untargeted or unexpected organisms
(i.e. contaminants but also organelles, commensal or parasitic organisms) in genomic data?
Availability: The tools are written in Python3 and R under the GPLv3 Licence and can be found
at https://github.com/itsmeludo/Phyloligo/.

Keywords multi-species, contaminant filtering, untargeted sequencing, oligonucleotide signature,
metagenomics

1 Introduction

We present PhylOligo, a new package including tools to explore, identify and extract organism-specific
sequences in a genome assembly using the analysis of their DNA compositional characteristics: the oligonu-
cleotide signature.

Compared to existing software, PhylOligo provides several features to explore assemblies including: (i) a
customisable oligonucleotide pattern (ii) an interactive cladogram-based visualisation of the contig signature
similarity and cumulative size to explore the signature clusters and profile putative additional materials (iii) a
species-specific sequence filtering based on a supervised learning of candidate profiles and a double threshold
scan.

Our strategy includes 3 main steps:
a) Assembly exploration using an interactive tree visualisation based on oligonucleotide profiles computed
from all genomic contigs. PhylOligo allows for a visual exploration of the compositional similarity distribution
and structure of the contigs in an assembly based on either continuous (kmers) or spaced-pattern oligonucleotide
frequencies. The oligonucleotide profile of each contig is computed and a pairwise distance matrix based is
produced (Figure 1A) to generate an interactive Neighbour-Joining tree. Branch width is drawn proportional to
the cumulated length of the contigs in a clade, allowing the user to track where the main part of the assembly
clusters (assumed to correspond to the targeted organisms) and what significant clades branch out as hint for
separate organisms (see Figure 1B). Thanks to the Ape package, sequences from a clade are interactively se-
lected on the tree and exported to learn a prototype of their oligonucleotide profile.

b) Oligonucleotide profile prototype learning based on contig subsets selected by the user at nodes of the
tree. ContaLocate then allows the learning of oligonucleotide profiles of the main and presumed additional
organisms identified and sampled by the user at the previous step.

c) Assembly partitioning to locate organism-specific regions and classify contigs or segments according to
the learned prototypes. The assembly is then scanned with sliding windows to locate organism-specific regions
using oligonucleotide divergences computed against the targeted and the additional profiles. The distribution of
the divergence against both is used to establish two thresholds best separating the different modes in the density
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Fig. 1. Visualisation and interactive exploration of assemblies. A: Pairwise compositional divergence of contigs produced
by PhylOligo. Contigs are reordered by hierarchical clustering. B: Contig tree produced by PhylOligo on the tardigrade
genome. The clade in red is the current selection pointed by the user. C: Contigs clustered by HDBSCAN on oligonu-
cleotide frequencies, Data from Magnaporthe oryzae. Red and blue are predicted clusters, grey are unclassified. The
hyperspace is reduced to 2 dimensions with t-SNE. D: Determination of the untargeted threshold in ContaLocate based
on the distribution of distances between the untargeted clade and the scanning windows over the whole assembly.

functions (See Figure 1D). Genomic regions with a divergence simultaneously crossing respective thresholds
to the targeted and to the additional profiles are labelled as part of the additional organism and exported as a
GFF file.

2 Results

Our strategy present several advantages. 1) Unlike sequence homology based methods, PhylOligo allows
the identification of putative uncharacterised and distantly related sequences in assemblies. 2) The double
threshold species-specific filtration prevents the removal of HGTs and the subsequent fragmentation of the
assembly. 3) Chimeric contigs are detected and split. 4) Compared to filtering unassembled reads, learning the
compositional profile on contigs allows for a refined profile, thus leading to a finer filtering.

PhylOligo has been successfully applied to identify untargeted bacterial organisms in four fungi genomic
datasets. The software also identified additional organisms in the scaffolds of the tardigrade assembly.
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Visualization of genomic data is fundamental for gaining insights into genome function. Yet, 
co-visualization of a large number of data sets remains a challenge in all popular genome browsers and the 
development of new visualization methods is needed to improve the usability and user experience of genome 
browsers. 

The Furlong Laboratory presents Dynamix [1], a genome browser plugin for JBrowse [2] that enables the 
parallel inspection of hundreds of genomic data sets. Dynamix takes advantage of a priori knowledge to 
automatically display data tracks with signal within a genomic region of interest. As the user navigates 
through the genome, Dynamix automatically updates data tracks and limits all manual operations otherwise 
needed to adjust the data visible on screen. Dynamix also introduces a new carousel view that optimizes 
screen utilization by enabling users to independently scroll through groups of tracks. 

Dynamix can be experimented navigating the 4CBrowser (http://furlonglab.embl.de/4CBrowser), a 
companion website released with Ghavi-Helm et al. 2014 [3], and the DynamixDemo server that 
demonstrates how Dynamix can be used for rich displays (http://furlonglab.embl.de/DynamixDemo). 
Visualization of genomics data sets remains a challenging area of research, we hope that Dynamix will 
encourage the development of innovative visualization methods.  

Dynamix is hosted at http://furlonglab.embl.de/Dynamix under the MIT licence and has been published in 
Bioinformatics [1]. 
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Genomic context exploration is an important approach to provide informations in phylogenetic and genomic 
analysis : it brings elements to highlight evolutionary events such as duplications or horizontal transfers,  
functional links between genes and to assist in identification of orthologs. There are currently some available 
tools to visualize the genomic context of genes, such as MgcV [1], but they have some drawbacks. Indeed,  
most of these tools are based on non-local databases (generally made up of a set of complete genomes), do 
not allow dynamic navigation along genomes, provide non-publishable figures with a restricted selection of  
export formats (mainly pdf) and are generally slow to generate figures. In this context, we developed an 
application able to quickly generate visualizations of genomic context of genes, GeneSpy. This tool allows  
users to explore the organization of genomes and compare them through a user-friendly interface.

GeneSpy is written in python 2.7 and depends on Matplotlib and Tkinter libraries. GeneSpy uses gff files to 
build its local database. A download utility can be used to retrieve and prepare gff files for a set of assemblies  
from genbank or refseq. The list of target genes can be provided by the user via a tabular text file containing 
assembly identifiers of genomes and accession identifiers of proteins. The tool also supports BLAST reports  
from NCBI. Alternatively, users can search genes using keywords (fragment of name of strain and accession  
number, locus tag, name or annotation).

The context  visualization in  itself  is  heavily customizable.  Many options  are available such as  window 
length, arrow size, type of coloration or verbosity of strains description. By default, the colors used for genes 
are procedurally generated using protein names and annotations for color consistency between contexts.  
Manual editing of color attribution is possible through a dedicated menu. The option to color only the genes  
of interest is also available.

The user can access informations relative to any displayed gene such as accession number, locus tag and 
predicted function. Moreover, it is possible to update the list of target genes by selecting any gene shown in 
the context figure. Thus, the user can simply navigate along the genome.

Figures can be exported in many formats such as png, jpg, tif, svg, pdf and multiple pdf. An iTOL-specific  
export format is also available. It consists of a text file that can be imported in iTOL [2]. This format can be  
used  to  annotate  a  tree  with  relevant  genomic  context  information,  which  can  be  very  useful  to  study 
evolutionary dynamic of genomic regions. It is worth noting that database can be generated independently of  
GeneSpy, meaning that a pre-existing local databases can be reused with GeneSpy.

Thus, we provide a tool able to generate publishable figures of genomic context that is simple to use, fast,  
flexible,  and  adapted  to  any  database.  GeneSpy  is  available  at  https://lbbe.univ-lyon1.fr/GeneSpy/  and 
distributed under CeCILL licence.

This work was supported by grant from ARC1 Santé Rhône-Alpes Auvergne.
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Abstract  
Single-cell RNA-sequencing allows unbiased transcriptome profiling of individual cells, enabling the 

analysis of genes expression at the cellular level. By uncovering cell heterogeneity in a given cell type, 

discovery of rare subpopulations of cells which could be responsible of the onset and progression of specific 

diseases are possible. Here we developed a comprehensible tool for the analysis of RNA-seq data using an 

approach based on Multiple Correspondence Analysis (MCA). MCA is a dimensionality reduction technique 

that allows the representation of both individuals (cells) and the variables (genes) within the same Euclidean 

space, thus allowing the simultaneous identification of subpopulations of cells and their gene signatures. 

MCA was coupled with gene set enrichment analysis; a powerful analytical method for characterizing 

differentially expressed genes/pathways within each groups of individuals. This singular combination allows 

a joint comparison of gene expression and pathway enrichment across all the groups. Combined with a shiny 

data visualization interface, the MCXpress R package can enhance the interpretation of both single and bulk 

RNA-sequencing data analysis. The tool development version is available on github at 

https://github.com/cbl-imagine/MCXpress (MIT License). 
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1 Introduction 
Variants such as, substitution, frame shift and in frame deletions and insertions, in protein coding genes may 
cause deleterious effects manifested as debilitating inherited diseases or syndromes. Variants that cause a 
disease, do so by altering gene transcription or key parts of the proteins resulting in the disruption of a 
protein’s native structure or its ability to execute functions, for example, to catalyze chemical reactions. The 
UniProt KnowledgeBase (UniProtKB) provides protein function information including annotation of protein 
altering variants, with any known functional effects and disease associations taken from scientific literature 
and large-scale public experimental data sets. Providing this rich knowledge at the genetic level is essential 
for discovering the potential deleteriousness of genetic variants. 

2 Human proteome variation 
UniProt has mapped protein annotations in the human proteome to the GRCh38 assembly of the human 
genome. Twenty-seven structural and functional annotations are currently provided including: enzyme active 
sites, modified residues, protein binding domains, protein variations etc. The complete set of human 
proteome sequences, including isoforms are also provided, for comparison to predicted transcripts. These 
mappings and related annotations have been made available as text BED files and BigBed files that are 
compatible with most genome browsers (http://www.uniprot.org/downloads). These files are also bundled 
into a public track hub that is available with the Ensembl and UCSC genome browsers through their public 
track hub registries or can be accessed directly from the genome track hubs registry 
(https://trackhubregistry.org). UniProt protein annotations can also be integrated directly into large scale 
genomic data programmatically via the Proteins API (http://www.ebi.ac.uk/proteins/api/doc/) [1]. 

3 Disease associated variants 
To illustrate how the integration of protein function knowledge with high throughput genomic data provides 
unique opportunities for biomedical research. We examine some specific biological examples in disease 
related genes and proteins illustrating the utility of the combining protein and genome annotations for the 
functional interpretation of variants. Thus, showing that the UniProt genomic mappings, can help scientists 
to rapidly comprehend complex processes in biology. 
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Bayesian inference in phylogeny for genome-scale data

Bayesian inference has permeated the field of phylogenetics. A major challenge in the field
remains how to extend methods to genome-scale data. The temptation is to take short-cuts
by applying fast methods that do not take full advantage of the information contained in
the data. I describe several methods that may be applicable to genome-scale data. First, I
describe new proposal mechanisms for better inferring large phylogenetic trees. Second, I
discuss a class of models that can be used to address questions such as the identification of
sites under the influence of natural selection.
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Abstract The  phylogenetic  analysis  of  conserved  core  genes  has  disentangled  most  of  the
ancient relationships in Archaea. However, some groups remain debated, like the DPANN, a
recently  proposed  deep-branching  super-phylum  gathering  various  lineages  of  nanosized
archaea  with  reduced  genomes.  Among  these,  the  Nanohaloarchaea  thrive  in  high-salt
environments  and  require  high-salt  concentrations  for  growth.  The  discovery  of
Nanohaloarchaea in 2012 was significant because at the time extreme halophilic archaea were
represented by a single lineage, the Halobacteria, a major class belonging to Euryarchaeota.
The phylogenetic position of Nanohaloarchaea is highly debated, being alternatively proposed
as the sister-lineage of Halobacteria or member of the DPANN super-phylum. Pinpointing the
phylogenetic position of extreme halophilic archaea is important to improve our knowledge of
the  deep  evolutionary  history  of  Archaea  and  decipher  the  underlying  molecular  adaptive
processes and the evolutionary paths that allowed their emergence. Using comparative genomic
approaches,  we  identified  more  than 250 protein  markers  carrying  a  reliable  phylogenetic
signal  to  address  this  issue.  By combining  strategies  limiting  the impact  of  biases  on tree
inferences, we  showed  that  Nanohaloarchaea  and  Halobacteria  represent  two  independent
lineages  that  derived  from methanogens  Class  II.  This  implies  that  adaption  to  very  high
salinity emerged twice independently in Archaea and that the grouping of Nanohaloarchaea
within  DPANN  lineages  is  the  consequence  of  a  tree  reconstruction  artifact,  which  could
challenge the existence of this group.

Keywords  Stenosarchaea, compositional bias, long branch attraction, Slow-Fast method, rate
signal

Introduction

Recent advances in high-throughput sequencing technologies have revealed many new major uncultured en-
vironmental groups, most of them being known only through ribosomal RNA or genomic sequences [1–3].
This is for instance the case of Nanohaloarchaea, a group of extreme halophilic nanosized archaea, discov-
ered recently in Lake Tyrell, Australia [4]. Some studies suggested that they represent the sister-lineage of
Halobacteria [4,5], the other lineage of extreme halophilic archaea, while other analyses, based on different
sets of markers, different methods and/or different taxonomic samplings, suggested instead that Nanohaloar-
chaea belong to the recently proposed DPANN super-phylum. This deep-branching group encompasses di-
verse fast evolving, possibly nanosized archaea (e.g. Diapherotrites, Parvarchaeota, Micrarchaeota, Aenig-
marchaeota, Nanoarchaeota, Woesearchaeota, Pacearchaeota) including Nanohaloarchaea [2,3,6]. Regard-
ing  Halobacteria, phylogenetic analyses of the RNA component of the small subunit of the ribosome and
large supermatrices of conserved core genes have revealed a close relationship between  Halobacteria and
methanogens Class II, a group encompassing Methanomicrobiales, Methanosarcinales and Methanocellales,
and indicated that Halobacteria could derive from a methanogenic ancestor [7]. However, the identity of the
closest relative of Halobacteria remains debated. In fact, recently published phylogenies supported Halobac-
teria as  the  sister-lineage  of  all  methanogens  Class  II  [8–11],  of  Methanomicrobiales [12–14],  or  of
Methanocellales [5,15]. 

Elucidating the precise position of  Halobacteria and  Nanohaloarchaea is particularly challenging because
their proteomes harbor atypical amino acid compositions as a consequence of their extremophilic lifestyle.
This can generate a compositional signal that may conflict with and dominate over the phylogenetic signal
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[16], and lead to artifactual tree reconstructions where distant sequences with similar compositions are clus -
tered together  [17,18]. Another source of bias could be linked to the fast evolutionary rate of  nanohaloar-
chaeal and halobacterial proteomes highlighted by their very long branches in phylogenetic trees compared
to other archaeal lineages [4,5]. The phylogenetic position of fast-evolving species and long branches is par-
ticularly difficult to determine because differences in evolutionary rates among lineages can generate a rate
signal that may conflict the phylogenetic signal [16] and cause tree reconstruction artifacts such as the long
branch attraction (LBA) [19]. This well-known tree reconstruction artifact tends to group fast-evolving se-
quences/long branches and slow-evolving sequences/short branches in different parts of the trees when the
rate signal dominates over the phylogenetic signal [16]. Accordingly, we may wonder to what extent the con-
flicting positions observed for Nanohaloarchaea and Halobacteria are the consequence of tree reconstruc-
tion artifacts and if it is possible to overcome them.

To address this issue we performed an in-depth phylogenomic analysis designed to limit the impact of the
non-phylogenetic signal on phylogenetic inferences. We showed that  Nanohaloarchaea and  Halobacteria
branch robustly with Methanocellales and Methanomicrobiales, respectively, meaning that they derive from
two distinct methanogen Class II ancestors. This implies also that adaptation to very high salinity occurred at
least twice in  archaea,  and that the phenotypical similarities of  Nanohaloarchaea  and Halobacteria  result
from convergent evolutionary processes, possibly accompanied by horizontal gene transfers. Finally, our re -
sults indicate also that the grouping of Nanohaloarchaea with other DPANN lineages is the consequence of a
tree reconstruction artifact, challenging the existence of this candidate super-phylum.

Results

The comparison of 155 proteomes from ANME-1, methanogens Class II , Halobacteria and their close rela-
tives:  Archaeoglobales and  Diaforarchaea,  and from  Nanohaloarchaea led to the delineation of 108,007
families, among which 258 presented a broad taxonomic distribution and no or very few evidences of hori -
zontal gene transfers (HGT) among these lineages and/or gene duplications. Diaforarchaea represent the first
diverging lineage, according to previous studies.

To test the impact of missing data on phylogenetic inference, different versions of these supermatrices were
built by gathering protein families present in more than 95% or 70% of the studied proteomes. The 68 pro -
tein markers present in the three Nanohaloarchaea and in more than 70% of the 155 studied proteomes (in-
cluding Halobacteria) were combined to build the FNANOHALO70 supermatrix. The corresponding ML tree
was overall well resolved (Fig 1).  In particular, the sistership between Methanocellales and Methanosarci-
nales was recovered (BV = 100%), indicating that adding Nanohaloarchaea and Halobacteria did not cause
major tree reconstruction artifacts. Regarding extreme halophiles,  Nanohaloarchaea and  Halobacteria did
not group together. In fact,  Halobacteria clustered with Methanomicrobiales (BV = 99%, Fig 1), in agree-
ment with recent studies [12–14], whereas Nanohaloarchaea branched on the stem of Diaforarchaea (BV =
99%, Fig 1).  This indicated that  Nanohaloarchaea are not  related to any methanogens Class II  lineage,
ANME-I or Archaeoglobales, and is compatible with a deep-branching position of Nanohaloarchaea within
Archaea, as postulated by the DPANN hypothesis [2,3,6].
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Fig 1. Maximum Likelihood phylogeny inferred with the FNANOHALO70 supermatrix (18,309 positions,
155 sequences). The tree was inferred with PHYML 3.1 using the LG+I+G4+F model as proposed by IQ-

TREE (BIC criteria). The scale bar corresponds to the average number of substitutions per site. Numbers at
nodes correspond to bootstrap supports (100 replicates of the original dataset).

Sequence compositional heterogeneity is an important source of bias in molecular phylogeny [16,20]. To test
the impact of compositional biases on the inferred phylogenies, we removed from the supermatrices the posi-
tions most strongly responsible for the amino acid composition heterogeneity among sequences. The removal
of  positions  with  the  highest  compositional  bias  did  not  impact  the  phylogenetic  position  of  extreme
halophilic  archaea.  The  clustering  of  Halobacteria with  Methanomicrobiales and  the  branching  of
Nanohaloarchaea on the stem of Diaforarchaea were recovered again with high supports.

The evolutionary rate signal is one of the major causes of tree reconstruction artifacts such as the LBA
[17,19]. This artifact is caused by multiple substitutions occurring at the same sites, a process which erases
progressively the most ancient phylogenetic signal and results in the grouping of sequences according to
their evolutionary rates (i.e. rate signal) in different parts of the inferred trees. To overcome this issue, dedi-
cated methods have been developed.

Among them, the recoding of amino acids allows to hide substitutions among similar amino acids. To test the
impact of the rate signal, we applied two different recoding schemes (dayhoff4 and dayhoff6) to all superma-
trices in a Bayesian framework. The inferred BI trees confirmed the sister-ship between Halobacteria and
Methanomicrobiales. Yet, surprisingly, Nanohaloarchaea branched with Methanocellales in seven out of the
eight recoded supermatrices (Fig 2), suggesting that the branching of Nanohaloarchaea on the stem of Di-
aforarchaea could result from a tree reconstruction artefact due to the rate signal. 
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Fig 2. Bayesian phylogeny inferred with the FNANOHALO70 supermatrix recoded according to the Day-

hoff4 scheme (18,309 positions, 155 sequences). The tree was inferred with Phylobayes using the CAT +

GTR + G4 evolutionary model. The scale bar corresponds to the average number of substitutions per site.

Numbers at nodes correspond to posterior probabilities.

To test this hypothesis, we used another approach to limit tree reconstruction artifacts resulting from the rate
signal. This approach, called the Slow-Fast method (S-F), consists in the progressive removal of the fastest
evolving sites from multiple alignments [21]. The S-F method was shown to be very efficient to reduce tree
reconstruction artifacts because the fastest evolving sites are the most susceptible to be impacted by multiple
substitutions  [17,22]. This approach allows monitoring the support associated to a given branch of a tree
throughout the removal process and thus to determine if the corresponding relationship reflects the phyloge-
netic or the rate signal contained in sequences [17]. To avoid biases in the estimation of evolutionary rates at
each position due to missing data and/or unbalanced taxonomic sampling among lineages, the S-F method
was applied to the supermatrices built with markers present in at least 95% of the studied taxa and by keep -
ing only three to seven representative sequences for each archaeal lineage.

Removal of the fastest-evolving sites did not impact the phylogenetic position of Halobacteria. In fact, the
grouping of Halobacteria with Methanomicrobiales was strongly supported in ML and BI trees inferred with
the S-F supermatrices. This suggested that this relationship was not the consequence of the rate signal. In
sharp contrast, the S-F method showed that a robust grouping of  Nanohaloarchaea with Methanocellales
was observed in ML and BI trees when the fastest-evolving sites were removed (Fig 3).
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Fig 3. Effect of removal of fast-evolving positions on the phylogenetic position of Halobacteria and

Nanohaloarchaea in the FNANOHALO95 S-F matrices. The x axes correspond to the fraction of sites (in %)

kept in the supermatrices. The removal of fastest-evolving sites proceeds from right to left. The y axes indi-

cate the support for the grouping of Halobacteria with Methanomicrobiales (in pink), the grouping of

Nanohaloarchaea with Halobacteria (in red), and the grouping of Nanohaloarchaea with Methanocellales

(in blue) in ML (A) and BI trees (B) resulting from the S-F analysis. Notice that the Halobacteria +

Nanohaloarchaea grouping supported by FNANOHALO95  disappears when fast-evolving site are removed. 
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Discussion 

By focusing our analysis on the part of the euryarchaeal tree that contains  Halobacteria and methanogens
Class II, we were able to assemble larger datasets of conserved markers and to use more intense taxonomic
samplings compared to previous studies. More precisely, we identified 258 conserved protein families widely
distributed in the 155 taxa, among which 68 were present in the three representatives of Nanohaloarchaea
available at the time. This led us to the construction of large supermatrices containing thousands of amino
acid positions. By using various methods allowing to decouple the different types of signal contained in pro -
tein sequences, we showed that the compositional signal did not significantly impact the phylogenetic posi-
tions of Nanohaloarchaea and Halobacteria, while the rate signal had a major impact on the phylogenetic
position of  Nanohaloarchaea. In fact, two independent methods allowing to reduce the impact of multiple
substitutions on phylogenetic inferences, the removal of the fastest evolving sites and the recoding of amino
acids, provided consistent results supporting the grouping of Halobacteria with Methanomicrobiales and of
Nanohaloarchaea  with Methanocellales. The  robust  and  recurrent  grouping  of  Halobacteria and
methanogens Class II in many studies, suggested that they could represent a new super-class, that we pro -
pose to call  Stenosarchaea (from the Greek stenόs, meaning close/joint). Regarding Nanohaloarchaea, our
analyses strongly suggested that they are part of the Stenosarchaea, and more precisely, that they represent
the sister group to Methanocellales.

The grouping of Nanohaloarchaea with Methanocellales and that of Halobacteria with Methanomicrobiales
within Stenosarchaea has major implications and opens new perspectives. First, it implies that both lineages
derive from two distinct but related methanogen ancestors, which is in accordance with the fact that a few ar -
chaeal  lineages,  all  belonging  to  Euryarchaeota,  can  survive  at  high  salt  concentrations  [23].  These
halophilic  or  salt-tolerant  archaea  are  anaerobic  methanogens  living in  hypersaline  sediments.  Most  are
methylotroph  and  belong  to  methanogens  Class  II  and  more  precisely  to  Methanosarcinaceae (order
Methanosarcinales) or Methanocalculaceae (order Methanomicrobiales) [23]. It also implies that adaptation
to extreme high salt concentrations occurred at least twice independently during the evolution of  Archaea.
Thus, the phenotypic properties shared by Nanohaloarchaea and Halobacteria should be interpreted as the
consequence of a convergent evolution that could have been facilitated by HGT. In that context, it would be
interesting to reevaluate the evolutionary history of these lineages, and the role played by HGT in the emer-
gence of Halobacteria and Nanohaloarchaea from methanogenic ancestors. 

Finally, the robust grouping of Nanohaloarchaea with Methanocellales rules out alternative hypotheses for
the branching of  Nanohaloarchaea, and in particular a branching outside of  Stenosarchaea, as expected if
Nanohaloarchaea were part of the candidate DPANN superphylum. This challenges the existence of this
group as it is currently described and questions to what extent similar artifacts could also impact the position
of the other lineages composing this super-phylum, which are all fast evolving. Testing this hypothesis would
require accurate and separate analyses, each focused on one lineage.
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Abstract 

Understanding the origin and evolution of dioxygen reductases, the terminal electron acceptors
of  aerobic  respiratory chains,  can provide precious clues  for  the  emergence of  this  energy
process that is still debated. The haem-copper oxidases superfamily (HCO), belonging to the
dioxygen  reductases, contains  three  families  of  dioxygen  reductases named  A,  B,  and  C
according to a classification based on sequence similarity and phylogenetic analysis of  the
homologous catalytic subunits [1]. A phylogenomic study showed that these enzymes have very
different evolutionary histories [2] with an ancient dioxygen reductase (A-HCO) present prior
to the divergence of major present-day bacterial and archaeal phyla, thus before the emergence
of  oxygenic photosynthesis.  However,  this  result  is  in  contradiction with those proposed by
Ducluzeau et  al.  2014  [3] about  the  structure of  the  A-HCO suggesting that  this  dioxygen
reductase  would  be  the  most  recent.  So  the  question  about  the  origin  of  the  haem-copper
oxidases is  still  unresolved,  and  a  new  analysis  is  required.  The  haem-copper  oxidases
superfamily of the ancestor of Archaea probably used dioxygen [4]. Nevertheless, the previous
conclusions are old and the available data was very limited (73 archeal complete genomes in
2009). Today, with more available data in the public database (252 archeal complete genomes)
it is interesting to reassess the questions about the origin and evolution of the haem-copper
superfamily  for  Archaea.  We  will  present  our  results  about  subunits  of  the  haem-copper
superfamily in Archaea.

Keywords Aerobic respiration, LUCA, Phylogeny, Prokaryotes, Early earth

Introduction

Dioxygen reductases  (O2-Red)  represent  the  terminal  electron-transfer  enzymes of  aerobic  respiratory
chains in the three Domains of Life (Archaea,  Bacteria and  Eucarya). These membrane-bound enzymes
catalyze the reduction of dioxygen (O2) to water by using electrons provided by either a quinol derivate or a
cytochrome  c. Because  O2-Red  are  key  enzymes  of  aerobic  respiration,  understanding  their  origin  and
evolution could provide precious clues for the emergence of this key metabolism, the rise of O 2 on early
Earth and its impact on the evolution of ancient microbial communities.  The O2-Red encompasses HCO
divided into three subfamilies named A, B, and C according to a recently proposed classification based on
sequence similarity and phylogenetic analyses of their catalytic subunits [1,5]. The O2-Red include also the
Nitric Oxide Reductases (NOR) which reduce nitric oxide (NO) to nitrous oxide (N2O) [2]. 

The catalytic subunit of  A-HCO is found in many bacterial lineages  [2]. In archaea, it was detected in
Crenarchaeota and Thaumarchaeota (two phyla belonging to the TACK super-phylum), and in  Diaforar-
chaea and Halobacteria, two euryarchaeotal orders [2].  The catalytic subunit of B-HCO was reported in a
few bacterial lineages, in Crenarchaeota and in Halobacteria [2]. The catalytic subunit of C-HCO is mainly
present in  Proteobacteria [2]. Finaly NOR catalytic subunit was mainly found in  Proteobacteria, in some
other Bacteria, and in a few Archaea [2].

The evolutionary history of HCO O2-Red is highly debated, and three different scenarii have been pro-
posed.  First, it was proposed that the four HCO O2-Red were present in the Last Universal Common Ances-
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tor (LUCA) [6]. More recently, it was proposed that only A-HCO was present in the ancestor of Bacteria, and
possibly in LUCA, while the three other HCO O2-Red subfamilies emerged later, in Archaea (B-HCO) and in
Proteobacteria (NOR and C-HCO) [2,4]. According to these two scenarii, the LUCA and/or the ancestor of
Bacteria could have been able to reduce O2. Because these two organisms are ancestors of Cyanobacteria,
the scenarii implied that some sources of O2 should have been present before the emergence of oxigenic pho-
tosynthesis. In contrast, the third scenario proposed the NOR to be present in the LUCA, while HCO O 2-Red
emerged during the diversification of Bacteria after the emergence of Cyanobacteria and oxigenic photosyn-
thesis, and spread through HGT in archaeal and bacterial lineages [1,3,7]. According to this scenario, HCO
O2-Red acquired their capacity to reduce O2 independently from distinct NOR ancestors after the emergence
of Cyanobacteria and of oxygenic photosynthesis. 

At the time, the data available were mainly limited to Bacteria because the number of genomes (complete
or not) of Archaea was very restricted compared to Bacteria. This lack of data in Archaea limited consider-
ably our capacity to understand the ancient evolutionary history of HCO O2-Red thus of one of the most im-
portant metabolism on earth. Fortunately, the situation is changing rapidly, and now hundred genomes of Ar-
chaea are available in public databases, thanks to ambitious projects aiming at sequencing the cultured and
the uncultured “dark matter” of the microbial diversity [8,9]. This rainfall of genomic data offers the possi-
bility to investigate the evolutionary history of HCO O2-Red in Archaea. 

In Archaea, HCO O2-Red have been extensively studied in Sulfolobales. In these Crenarchaeota, A-HCO
and B-HCO, the catalytic subunits of O2-Red, are associated with several proteins to form various different
protein complexes (Figure 1).

Fig 1. Haem copper oxidases complexes in Sulfolobales.

The four complexes described in  Archaea carried homologous subunits,  suggesting that these respiratory
protein complexes may derive from an ancestral protein complex.

Material and methods

Dataset assembly

The 2,610 bacterial complete proteomes and 391 archaeal complete and incomplete proteomes available at
the NCBI (http://www.ncbi.nih.gov) and the JGI (http://jgi.doe.gov/) were retrieved and gathered in a local
database. These corresponded to 1279 bacterial and 269 archaeal species.

Identification of the homologues of  HCO subunits was performed by combining iterative sequence simi-
larity searches and HMM profiles surveys using the BLASTP v2.2.26  [10] and the HMMER v3.1b1 pro-
grams [11] respectively. 

Classification of HCO catalytic subunit

HCO  catalytic  subunits  were  classified  according  to  the  classifier  tool  available  at
(http://www.evocell.org/hco/) [12].

Phylogenetic analyses

For  phylogenetic  analyses,  multiple  alignments  were  built  with  MAFFT  v7.123b  (option  L-INS-i)
[13] with the BLOSUM30, BLOSUM45 and BLOSUM62 matrix. The accuracy of the resulting alignments
was verified with SEAVIEW 4.5.4  [14] and compared with  NorMD v1.2  [15]. The best alignments were

A-HCO B-HCO
FunctionSubunits Sox Sox Dox Fox

Subunit I SoxM SoxB DoxB FoxA/FoxA’ Reduce dioxygen
Subunit II SoxH SoxA DoxC FoxB Transfer electron to Subunit I
Subunit III Can be fused with SoxM Assist the final step of the folding of the subunit I
Cytochrome b SoxG SoxC Transfer electron to Rieske protein
Cytochrome b558/566 FoxCD Transfer electron to multi blue copper oxidase
Rieske protein SoxF SoxL Transfer electron to Sulfocyanin
Sulfocyanin SoxE Transfer electron to Subunit II
Protein of unknown function SoxI Unknown
Protein of unknown function SoxD Unknown
Protein of unknown function SoxD’ Unknown
Protein of unknown function DoxE Unknown
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trimmed with BMGE v1.1 [16] with the best BLOSUM matrix identified with NorMD and used for phyloge-
netic analyses. To avoid taxonomic redundancy, only one representative strain per bacterial genus was kept
for phylogenetic reconstruction. The best fitting evolutionary models were identified by IQ-TREE (Nguyen
et al. 2015) according to the BIC criterion [17]. Maximum Likelihood (ML) trees were built using PHYML
v3.1  [18] with the NNI+SPR topology search option. The robustness of the resulting trees was estimated
with a non-parametric bootstrap procedure (100 replicates of the original datasets).

The trees were visualized with iToL [19,20].

Analysis of genomic contexts

Genomic contexts were generated with GeneSpy developped by Pierre Garcia (personal communication).

Construction of a reference phylogeny of archaeal species

A reference phylogeny of Archaea was inferred using ribosomal proteins. The 70 ribosomal protein fami-
lies available for 209 complete archaeal  proteomes in RiboDB (https://ribodb.univ-lyon1.fr/ribodb/ribodb-
in.cgi) [21] were retrieved and used as seed to query our local database. 39 on 391 available proteomes con-
tained less than 35 ribosomal protein families. To limit biases due to missing data, the corresponding strains
were not included in the phylogenetic analysis. 

The 58 ribosomal proteins present in at least 70% of the 352 remaining proteomes were kept for phyloge-
netic analyses. For each ribosomal protein family a multiple alignment was built and trimmed as described
above. The resulting datasets were combined together to build a large supermatrix containing 352 sequences,
and 6,257 conserved amino acid positions. This supermatrix was used to inferred a ML tree with PHYML as
described above.

Results

At least one HCO O2-Red catalytic subunit was detected in most bacterial and archaeal lineages. A-HCO
and its accessory subunits homologues were found in many Archaea and Bacteria. In contrast, B-HCO and
its functional partners were mainly present in Archaea, while C-HCO and NOR were almost all present in
Bacteria. For each subunit of the four O2-Red families, we inferred the ancestral presence of the subunit in a
taxon when the gene was widely distributed in this taxon and when we could find the monophyly of the
group.

NOR catalytic subunit presents a scarce taxonomic distribution, being rarely present in more than 50% of
proteomes of bacterial or archaeal order. NOR sequences from different taxa appeared intermixed on the tree,
indicating that  the  relationships among NOR sequences  were inconsistent  with the currently recognized
prokaryotic systematics. This combined to the scarce taxonomic distribution of NOR, indicated that their
evolutionary history was heavily impacted by HGT, as proposed previously [2]. In fact, based on phyloge-
netic and taxonomic criteria, the ancestral presence of NOR can not be inferred in any lineage to the excep-
tion of Halobacteria. Thus, it was very unlikely that this enzyme could have been present  in LUCA as pro-
posed few years ago [3,7], or even in the ancestor of Bacteria or Archaea.

C-HCO catalytic subunit was widely distributed in the Bacteroidetes/Chlorobi group and in Proteobacte-
ria that formed a well supported group, while they were scarce in other lineages. According to our data, the
possible ancestral presence of C-HCO in the ancestor of Chlorobi and of Proteobacteria, two major bacterial
lineages that didn't occupy a basal position in the phylogeny of Bacteria was not sufficient to infer its pres-
ence in the ancestor of Bacteria, as proposed recently [3]. The presence of these enzymes in strict anaerobic
archaea was puzzling. 

Most of the B-HCO homologues are found in Archaea, and more precisely in Geoarchaeota, Sulfolobales
and Halobacteria. Regarding bacterial sequences, the phylogeny of B-HCO revealed a complex evolutionary
history dominated by HGT between Bacteria and Archaea and among Bacteria. In particular, according to
phylogenetic and taxonomic criteria it was not possible to trace back B-HCO in any bacterial lineage. In con-
trast, its ancestral presence in three major archaeal lineages suggested that it originated in this domain of
Life, in agreement with previous studies [2,3].

According to taxonomic distribution and phylogenetic criteria, the ancestral presence of A-HCO could be
inferred in  Cyanobacteria,  the  Bacteroidetes/Chlorobi group,  the  Fibrobacteres/Acidobacteria group,  Al-
phaproteobacteria,  Betaproteobacteria and Planctomycetes. Other  bacterial  A-HCO appeared intermixed
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suggesting that they spread through HGT in present-day bacterial lineages. Regarding Archaea,  A-HCO ho-
mologues were widespread in several archaeal phyla, classes, and orders and formed monophyletic groups
on the ML phylogeny. This was for instance the case of  Thaumarchaeota,  Halobacteria,  Geoarchaeota,
Thermoproteales,  Sulfolobales, uncultured marine group II and Aigarchaeota, suggesting that they could be
ancestral in these groups.  The grouping of sequences from Aigarchaeota, Geoarchaeota, Thermoproteales,
and Sulfolobales, close to a large Thaumarchaeota cluster, could indicate the ancestral presence of this en-
zyme in the ancestor of the recently proposed TACK superphylum. In contrast, the situation was less clear in
the case of Diaforarchaea, because they formed a paraphyletic group that also included archaeal sequences
from other taxa.  

Beside catalytic subunits (subunit I), three additional subunits are shared by the A-HCO and B-HCO: the
subunit II (SoxH, SoxA and DoxC), the cytochrome b (SoxG and SoxC) and the Rieske protein (SoxF and
SoxL). The catalytic subunit and the subunit II co-occurred in almost all proteomes. Surprisingly, in 45% of
Halobacteria strains, a copy of the subunit II was not co-localized with the catalytic subunit whereas an an -
other copy did. At the exception of these Halobacteria, we can clearly distinguish the subunit II of the A-
HCO and of the B-HCO in the phylogeny. We can highlight a topology similar to the one obtained with the
catalytic subunit. Cytochrome b was not found in 30,7% of all proteomes of Archaea and complete genomes
of Bacteria that contain a catalytic subunit. In the B-HCO, only the Sox of Sulfolobales had a copy of cy-
tochrome b in the same genomic context as the catalytic subunit. The cytochrome b of A-HCO are in the
same genomic context as the catalytic subunit only in  Crenarchaeota. Rieske proteins were not found in
42,4% of all proteomes of Archaea and complete genomes of Bacteria that contain a catalytic subunit. The
topology of Rieske protein is very similar to the topology of cytochrome b. It is not surprising because the
two proteins are almost always in the same genomic context. Like the cytochrome b, Rieske protein is not in
the same genomic context as the catalytic subunit at the exception of Crenarchaeota. The subunit III, subunit
of A-HCO, was not found in 14,3% of all proteomes of Archaea and complete genomes of Bacteria that con-
tain a catalytic subunit. The subunit III, in  Archaea, is always fused with the catalytic subunit except for
some Halobacteria. The subunit III present a similar topology to the A-HCO catalytic subunit at the excep-
tion that Thaumarchaeota do not have this subunit.

Regarding other subunits, the sulfocyanin (SoxE) is associated to A-HCO. The subunit is almost found in
Archaea. More precisely, Sulfolobales sequences formed three monophyletic clusters, each of them could be
traced back in the ancestor of this archaeal order. In contrast, the presence of SoxE in other archaeal lineages
(e.g.  Thermoplasmatales,  Aigarchaeota,  Thermoproteales)  likely  resulted  from secondary  HGT.  We can
highlight a curiosity about this subunit because for some strains, SoxE is in the same genomic context as the
B-HCO catalytic subunit. SoxI was very likely present in the ancestors of  Geoarchaeota and  Sulfolobales
and maybe also present in the ancestor of Thermoproteales and Aigarchaeota. This subunit is in the same ge-
nomic context as the A-HCO catalytic subunit. Interestingly, a similar cluster existed in the phylogeny of A-
HCO, indicating that the presence of SoxI was co-opted specifically in the ancestor of this subgroup of A-
HCO and preserved along its subsequent diversification.  SoxD and DoxE associated to the Sox and Dox
complexes (B-HCO), respectively,  were found exclusively and in almost all  Sulfolobales, suggesting they
emerged in the stem of this order. Finally,  the SoxD' subunit (B-HCO) and the Fox complex were restricted
to a subgroup of Sulfolobales strains, indicating that they emerged late during the diversification of this ar-
chaeal order. Thus, they could not be traced back to the ancestor of this archaeal order and this implied that
the corresponding proteins were much younger than the other subunits. 

Discussion

Studying ancient metabolisms opens windows on primitive geosphere and biosphere, and a key to deci-
pher the major transitions in the evolution of Earth [22]. Among them, the origin and rise of O2 represent one
of the most debated questions [23], specifically regarding the divergent conclusions drawn from biological
and geological observations [23,24]. Present-day high level of O2 in the atmosphere resulted of the oxygenic
photosynthesis performed by Cyanobacteria  [22,25–27] (including plant chloroplast that are of cyanobacte-
rial origin), a process that started around 2.45-2.33 billion years ago  [23,27,28]. Recent studies suggested
that  the tectonic  activity around 2.7 billion years  ago could have also contributed to  release  significant
amounts of O2 in the atmosphere (Lee et al. 2016; Sukumaran 2000; Jelen et al. 2016). The presence of small
amount of O2 of abiotic origin in primitive oceans and atmosphere prior 2.7 billion years  remains debated
[29–32]. In this context, studying the origin and evolution of HCO, the terminal electron acceptor of aerobic
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respiratory chains, can provide precious clues for the emergence of this energetic process and the availability
of O2.

The survey of thousands of bacterial and archaeal proteomes encompassing all major lineages allowed in-
ferring the presence of A-HCO in the ancestor of Cyanobacteria, Bacteroidetes/Chlorobi, Fibrobacteres/Aci-
dobacteria,  Alphaproteobacteria,  Betaproteobacteria,  Planctomycetes, and likely in Gammaproteobacteria.
This confirmed previous results suggesting that A-HCO were ancient in Bacteria and may have predated the
emergence of Cyanobacteria and thus of oxygenic photosynthesis [2]. In contrast and contrarily to previous
proposals [7,33,34], we didn’t find any evidence suggesting that B-HCO, C-HCO and NOR could be ancient
in Bacteria.

Regarding Archaea, our data revealed a very dynamic evolution. First, we confirmed that A-HCO catalytic
subunit and some of the accessory subunits were ancient in this Domain of Life  [2,4]. More precisely, we
showed that NOR could have been present in the ancestor of Halobacteria, B-HCO in the ancestors of Sul-
folobales and Halobacteria, and A-HCO in the ancestors of  Thaumarchaeota, Crenarchaeota, Aigarchaeota,
uncultured marine group II/III and Halobacteria. Worth noticing, A-HCO were not restricted to mesophilic
archaea, represented here by Halobacteria, uncultured marine group II/III and some Thaumarchaeota. This
contradicted the recent proposal that the acquisition of the corresponding gene from bacterial donors could
have been a crucial step towards the colonization of low-temperature environments by thermophilic Archaea
[35]. On the contrary, A-HCO and B-HCO were widespread in thermophilic/hyperthermophilic archaeal lin-
eages and we showed that B-HCO likely originated in Archaea and were subsequently transferred to a few
Bacteria.

According to the rooting of the archaeal tree in-between the TACK superphylum and Euryarchaeota, it
was proposed previously that A-HCO could be ancestral in  Archaea [2]. Alternatively, one could propose
that A-HCO and B-HCO were acquired independently and secondarily by HGT after the diversification of
Archaea and the emergence of the main archaeal orders in response to the rise of O2 level linked to the pho-
tosynthetic activity of  Cyanobacteria.  While, this conclusion was not contradict by our data, a new root
splinting the Archaea into two clusters was recently proposed  [36]. Cluster 1 corresponded to TACK, and
two  major  euryarchaeotal  lineages:  the  Methanomada (i.e.  Methanococcales,  Methanobacteriales,
Methanopyrales) and the  Thermococcales, while Cluster 2 encompassed  Diaforarchaea,  Archaeoglobales,
ANME-1, Halobacteria, Methanocellales, Methanosarcinales, Methanomicrobiales. The position of this root
opened the possibility that of a methanogenic and anaerobic ancestor for  Archaea [36]. If confirmed, this
would imply that the absence of any HGT of C-HCO from bacterial donor to archaea (excepted in two anaer-
obic methanosarcinales) was puzzling. However, independently of the root in Archaea our data indicate an
ancient presence of A-HCO in Archaea.

In our study, we also carried out a thoughtful analysis of the other subunits included in the HCO complex
in Archaea. Some subunits escorting the catalytic subunit, Cytochrome B, Rieske protein and the subunit II
present the same evolutionary history than the catalytic subunit in Archaea and form the conserved core of A-
HCO and B-HCO with the catalytic subunit. The subunit III is specific to the A-HCO complex and can be a
part of the conserved core which has been lost by the ancestor of Thaumarchaeota and Thermoplasmatales.
Interestingly,  the other subunits  have more recent  origin and are a crenarchaeal  innovation.  Sulfocyanin
(SoxE) of the A-HCO is particularly interesting because some copies are in the same genomic context as the
B-HCO catalytic subunit. This result supports the hypothesis that the B-HCO could come from a duplication
of the A-HCO in  Crenarchaeota and explains that some specific subunits of A-HCO could work with B-
HCO subunits. According to our results, it seems that the ancestor of TACK might have possessed two oper -
ons (A-HCO), one composed of the catalytic subunit, the subunit II and the subunit III and the other com-
posed of the Rieske protein and the cytochrome b. During evolution, the subunit III was lost by the ancestor
of Thaumarchaeota and Thermoplasmatales and the A-HCO complex has been duplicated in the ancestor of
Crenarchaeota to give the B-HCO complex (with the lost of the subunit III) where the two operons get to-
gether. It is still unclear why Archaea and particularly Crenarchaeota innovate new subunits. Moreover, HCO
was only studied in a few archaeal models and there is a lot of innovations in Archaea with accumulation of
new subunits, so we are wondering if we have discovered all the proteins imply in the aerobic respiration in
Archaea. 

An other interesting point is the presence of O2Red in strains or species described as strict anaerobes, such
as  Methanosarcinales,  some  Deltaproteobacteria,  some  Gammaproteobacteria,  Bacteroidetes,  some
Chlorobi,  Chrysiogenetes  and Deferribacteres. This point has already highlight for  other O2Red,  the Cy-
tochrome bd that was find also in species described as strict anaerobes (some Deltaproteobacteria and two
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Methanosarcinales). It is likely that they are not pseudogenes. This suggest that these enzymes could be
functional and could be, maybe, involved in detoxification [37].
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Since 2010, the Genomicus [1,2] web server is available online at http://genomicus.biologie.ens.fr. 
This graphical browser provides access to comparative genomics analyses in four different phyla 
(Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can manipulate evolutionary genomic 
information from extant species, as well as ancestral gene content and gene order for vertebrates and 
flowering plants.  

Annotated genes are presented in a classical but highly customisable phylogenetic framework, 
while harnessing the added signal provided by local gene organisation. Gene presence/absence, Ka 
and Ks, % Id, genomic distance are available in addition to homology relationships. Genomicus is 
used by a broad community of users that perform >30,000 individual queries per months.  

New analysis and visualisation tools have recently been implemented in Genomicus Vertebrate. 
Entire genomes (karyotype structures) can now be compared between multiple genomes, and synteny 
blocks can now be computed and visualised between any two genomes [3].  

In this tutorial we will take users through the 6 different visualisation and analysis tools via a 
number of real test cases, aimed at answering questions on karyotype evolution, gene synteny 
conservation, gene duplication, gene gain, gene loss and chromosomal rearrangement. 
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The growing tree of Archaea: changing perspectives on the diversity and
evolution of the third domain of life

Archaea occupy a key position in the Tree of Life, and represent a major fraction of the
microbial diversity. Abundant in soils, ocean sediments and the water column, they are key
players in processes mediating global carbon and nutrient fluxes, as well as important compo-
nents of the animal microbiome and human body. The development of culture-independent
sequencing techniques has revealed a myriad of so far inaccessible microbial lineages and filled
up the archaeal tree with entirely new branches. The unprecedented access to genomic data
from a large number of archaeal lineages provides the raw material for dissecting the origin
of this domain, the evolutionary trajectories that have shaped its current diversity, and its
relationships with Bacteria and Eukaryotes. This rainfall of data combined to cutting-edge
methods allowing to disentangle the multiple signals contained in molecular sequences has
shed new light on the evolutionary history of Archaea. Here I will review the major advances
in the field as well as important open issues and future challenges.
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Abstract Chromosomal organization in 3D plays a central role in regulating cell-type specific
transcriptional and DNA replication timing programs. Yet it remains unclear to what extent the
resulting long-range contacts depend on specific molecular drivers. Here we propose a model
that comprehensively assesses the influence on contacts of DNA-binding proteins, cis-regulatory
elements and DNA consensus motifs. Using real data, we validate a large number of predictions
for long-range contacts involving known architectural proteins and DNA motifs. Our model out-
performs existing approaches including enrichment test, random forests and correlation, and it
uncovers numerous novel long-range contacts in Drosophila and human.

Keywords Epigenetics; Chromatin; Hi-C; ChIP-seq; Generalized linear model

1 Introduction

The comprehensive analysis of 3D chromatin drivers is currently a hot topic [1]. A growing body of ev-
idence supports the role of insulator binding proteins (IBPs) such as CTCF, and cofactors like cohesin, as
mediators of long-range chromatin contacts [2]. In this work, we used a generalized linear model with interac-
tions (GLMI) to identify the molecular determinants of loops, including protein and DNA sequence. Using this
model, we uncovered numerous novel DNA loops and underlying mechanisms in Drosophila and human.

2 Results

The model is formulated as follows:

log
(
E
[
y|X

])
= β0 + βX
= β0 + βdd + βBB + βCC + βgg (1)

Variable y denotes the number of high-throughput chromosome conformation capture (Hi-C) contacts for any
pair of bins on the same chromosome. Variable set X = {d,B,C, g} comprises several variable subsets: the
log-distance variable d (polymer effect), the bias variables B (GC content, fragment length and mappability),
the confounding variable set C and the genomic variable of interest g. Model (1) is very general and can be
developed in multiple versions depending on the variable g of interest. In this highlight article, we will only
present the simplest version of the model, although more sophisticated versions accounting for multiple pro-
teins mediating loops have been developed. The model is available in the R package ”HiCglmi” which can be
downloaded from the Comprehensive R Archive Network.

Let consider a pair of bins that we call left bin (L) and right bin (R). The attribution for left and right bins
is arbitrary. Let also consider a genomic feature Fi (whose binding is colored in blue in Figure 1a), that rep-
resent binding sites of the same protein. For the genomic feature Fi, occupancy variables ziL and ziR denote
the occupancies of Fi on left and right bins, respectively. For an occupancy variable, a value of 0/1 means
absence/presence of the corresponding feature on the bin, e.g. absence/presence of the protein on the bin (a
value between 0 and 1 means partial overlap of the feature). A ”homologous interaction” variable g = nii is
the product of ziL and ziR (nii = ziL × ziR). The associated βnii parameter reflects the extent by which the
genomic feature Fi interacts with itself through chromatin contacts (Figure 1a). For instance, distant CTCF
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binding sites were shown to form loops in human [2].

We compared GLMI with existing methods for their ability to identify genomic features known to be in-
volved in long-range contacts (Figure 1b). Here we used the negative binomial regression as the best spec-
ification of the GLMI in the context of Hi-C data overdispersion. We compared GLMI with (1) enrichment
test (ET) on highly confident chromatin interaction pairs as previously [3], (2) correlation (Cor) on highly con-
fident chromatin interaction pairs [4] and (3) random forests (RF) discriminating highly confident chromatin
interaction pairs from non-interacting pairs [5]. We found that GLMI outperformed the other methods to de-
tect long-range contacts between known architectural protein binding motifs. Using GLMI, we also uncovered
novel long-range contacts between architectural proteins in Drosophila (Figure 1c) and in human (data not
shown).

Homologous interaction variable nii
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Fig. 1. a) Illustration of homologous interaction variable. b) Comparison between GLMI, random forest (RF), enrichment
test (ET) and correlation (Cor) to detect known long-range contacts between protein motifs. c) Heatmap of long-range
contacts between architectural proteins in Drosophila.

3 Conclusion

Here, we propose to use a generalized linear regression with interactions (GLMI) to study the roles of
genomic features such as DNA-binding proteins, motifs or promoters to bridge long-range contacts in the
genome, depending on transcriptional status or motif orientation. GLMI has multiple assets over existing
approaches such as enrichment test, correlation and random forests. Compared to enrichment test or correlation
that respectively assesses the protein enrichment or correlation at highly confident loops, GLMI quantitatively
links the frequency of all long-range contacts to complex co-occupancies of proteins while accounting for
known Hi-C biases and polymer background. Moreover, GLMI accounts for colocalizations among protein
binding, a strong issue when analyzing protein binding sites known to largely overlap over the genome. In
contrast to random forests which are efficient predictive models but sometimes poor explanatory ones, GLMI
allows to identify key chromatin loop driver proteins and motifs. GLMI can also uncover numerous mechanisms
behind loop formation using higher-order interaction terms and proper confounding variables (see original
article). For instance, GLMI can determine if a cofactor is necessary to mediate long-range contacts between
distant protein binding sites.
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Structure modeling is key to understand the mechanisms of RNA retroviruses such as HIV. Many in silico
prediction approaches suggesting structural models of moderate to good accuracies are available. However,
the prediction methods could be further improved by taking advantage of both next generation sequencing
technologies and different experimental techniques such as enzymatic and SHAPE probing data [1]. In a
published article [2], we introduce and use a structural modeling method based on the integration of many
experimental probing data to direct predictions with the aim to find the most accurate structure lying in the
intersection of disjoint sources of experiments.

Method. High-throughput experimental data can be derived from two sources of experimental data: SHAPE [1]
and enzymatic probing. We used the stochastic sampling [3] mode of RNASubopt to sample structural models
from the Boltzmann distribution in a way that favors/forces compatibility with the derived constraints. Namely,
SHAPE reactivity profiles were used as soft constraints, meaning that observed reactivity values were translated
into pseudo-energies. Position-specific susceptibilities to RNAses cleavage were used as hard constraints by
setting arbitrary cut-offs above which specific base are forced to be paired and unpaired. Both types of con-
straints reduce the space of possible conformations, leading to a set of structures that are maximally compatible
with the provided data.

We posited that the optimal structure(s) should be energetically stable and supported by several experimen-
tal data. Thus, for each type of probe, we generate a set of structures compatible with experimentally-derived
constraints. We merge those sets, and performed a structural distance-based clustering across experimental
conditions, to generate several sets of structural models that are well-supported by experimental data. Clusters
were scored using three criteria, namely, their stability, coherence and diversity (recurrence across structural
conditions). Within the set of clusters returned by our clustering algorithm we elect clusters on the Pareto
frontier, ie clusters that are not strictly dominated with respect to these three criteria. Finally, representative
structures (centroids), corresponding to Maximum Expected Accuracy structures are built and returned.

Results. The HIV-1 sequence probed in this study corresponds to the 5’UTR preceding the gag coding region
from the NL-4.3 strain (Genbank: AF324493.2). A sample set of 12 000 structures, covering 6 sources of ex-
perimental data, was generated. The clustering step led us to elect two optimal clusters, whose corresponding
centroids were then assessed in the light of their compatibility with specific SHAPE data. This allowed us nar-
row down our proposed models to a single candidate, whose base pair conservation/covariation was confirmed
by comparative analysis.

Conclusion and perspectives. Our integrative approach allowed us to implement a consensus structure com-
patible with many different experimental probing data. As further work, we project to use our approach with
other sources of experimental probing data and to exploit the alignment to build an additional constrained
sample instead of using it for validation.
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Whole Genome Sequencing (WGS) allows the identification of rare variants in non-coding regions with
potential regulatory consequences. In the study of rare genetic diseases, where the number of sequenced
individuals is typically low, computational approaches are needed to prioritize variants for further functional
follow-up. Over the last years, a number of methods have been developed to predict pathogenicity of non-
coding variants (e.g. CADD, GWAVA, FunSeq2[1]).  Such methods are often based on machine-learning
algorithms  trained  on  curated  disease-causing  variants,  and  exploit  features  such  as  DNA methylation,
histone modifications and transcription factor binding sites . However, their predictive performance is still
low and has been shown to mainly rely on sequence conservation scores. 

Here,  we  present  NCBoost,  an  XGBoost-based  [2]  meta-classifier,  trained  on  non-coding  pathogenic
variants  from the Human Gene Mutation Database (HGMD).  NCboost  exploits  a  comprehensive set  of
purifying selection signals at three levels: the affected position, the surrounding non-coding region and the
closest  gene.  In  order  to  propose  an  integrative  strategy  for  non-coding  variants  prioritization,  we
additionally included the functional  scores  of two unsupervised methods for the  detection of regulatory
variants:  DeepSEA[3]  and  Eigen[4],  both  of  them  integrating  epigenetic  functional  and  conservation
features. 

NCboost performance was evaluated both by 10-fold cross validation and against an independent set of
pathogenic  variants  from  ClinVar  database.  A detailed  comparative  benchmark  against  state-of-the  art
methods is presented and results discussed in terms of the quality of the annotation sets and the targeted
regulatory regions.
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High-quality whole genome sequences (WGS) of patients with rare or common diseases are increasingly
being used to search for causative genetic variants that may explain the disease phenotype. In a large fraction
of cases, no coding mutation in a known disease gene can be found, raising the possibility of at least two
alternative causes: (1) a deleterious coding mutation in a new disease gene (2) a non-coding variant, for
example modifying the function of an enhancer or a promoter of a disease gene. In the first case, a candidate-
gene approach can be employed to investigate additional possibilities. In the second case, while methods
exist to automatically annotate variants as potentially overlapping a regulatory region, investigators remain at
loss  for  a  reliable  guide  to  efficiently  prioritize  the  many variants  that  generally  fall  in  this  category,
especially with respect to their impact on the patient’s disease phenotype.

We present  here  a  method  aiming at  prioritizing  non-coding  variants  in  a  disease-oriented  manner. By
integrating functional, biochemical, and evolutionary information, our goal is to identify variants that are
likely to be functional,  with regards to the considered phenotype.  This phenotype-oriented prioritization
relies on the use of resources that link regulatory regions with target genes. In the context of a disease with
known curated genes, this enables us to yield predictions of potentially causal variants that can be further
investigated.

To evaluate our method, we are working in collaboration with the BRIDGE project from the University of
Cambridge. More than 9,000 high-quality whole genome sequenceus from patients affected by rare diseases
are  now  available,  with  a  wide  range  of  phenotypes,  organized  in  15  sub-projects.  We  applied  our
classification pipeline to cohorts of patients grouped by disease-phenotypes, and present here the specific
properties of the predicted causal variants.
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Abstract

Small RNAs are small sequences, generally non-coding and playing a role in gene silencing effects,
thus allowing the inhibition of the regulation or the translation of their target messenger RNA.

After  the sequencing,  reads obtained from small  RNA libraries require a specific bioinformatics
treatment in order to identify and quantify small RNAs. Here we focus on the analysis of micro RNAs.

After a quality control step, the 3’ adapter sequence is trimmed from the reads (Cutadapt). Then,
miRDeep2[1],  a  software  able  to  quantify,  identify  micro  RNAs  (miRNAs)  and  discover  new miRNAs
through a secondary structure analysis, is used. It first maps the reads to a reference genome allowing 5 mul -
ti-mapping positions, then quantifies the miRNAs. We compared miRDeep2 to other tools and chose it for its
performance in term of quantification of known miRNAs. From the quantification results, a gene differential
expression analysis (edgeR[2], DESeq[3], DESeq2[4]) is done. The analysis ends with a target mRNA prediction
(miRGate) and functionnal enrichment of Gene Ontology terms with TopGO (Bioconductor).

The workflow is used on the Montpellier GenomiX facility to provide a new analysis service.
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Les maladies cardiovasculaires sont l’une des principales causes de mortalité dans les pays 
occidentaux. Suite à un infarctus du myocarde (IDM), 30% des patients développent un remodelage 
ventriculaire gauche (RVG) pouvant aboutir à une insuffisance cardiaque (IC).  

REVE-2 est une étude multicentrique de 246 patients hospitalisés pour un premier IDM 
antérieur. Un suivi échocardiographique et des prélèvements sanguins sont réalisés à 4 temps après 
l’IDM : à l’inclusion (baseline), 1 mois, 3 mois et 1 an. A chaque temps, 25 variables moléculaires ont 
été dosées dans le plasma des patients (19 protéines et 6 ARNs non codants). L’expression de ces 
variables a été comparée entre les patients avec un RVG élevé (>20%) et un RVG faible (<20%) 
calculé entre l’échographie à un an et à l’inclusion. 

Un réseau basé sur les interactions moléculaires connues a été construit à partir de l’ensemble 
des variables moléculaires dosées dans le plasma des patients de REVE-2. Pour cela, la plateforme 
EdgeBox (EdgeLeap), composée de 12 bases de données publiques (ENCODE, EnsemblGenes, 
HMDB, Microcosm, miRBase, miRecords, miRTarBase, Reactome, STRING, TargetScan, Tfe et 
WikiPathways) a été utilisée. Le réseau inclut les variables REVE-2, les voisins directs de ces 
molécules et les molécules faisant partie des chemins les plus courts lorsque 3 interactions relient 2 
variables REVE-2. Le réseau appelé REVE-2 est constitué de 1310 molécules dont 1263 protéines, 24 
microARNs, 22 métabolites et un ARN long non codant. L’analyse du réseau a identifié 40 clusters 
qui ont été annotés pour les processus biologiques dans Gene Ontology (GO). Le réseau est visualisé 
sous Cytoscape (version 3.2.1). Une analyse des modules actifs a été réalisée pour chaque temps 
(inclusion, 1 mois, 3 mois et 1 an) à partir des variables REVE-2 significativement modulées entre les 
2 groupes de patients (Pinet et al., 2017). La majorité des changements d’expression des molécules du 
réseau est observée en baseline et à 3 mois post-IDM, correspondant respectivement à la phase post-
IDM et au développement du RVG. Une analyse de la centralité de chaque molécule a permis de 
déterminer leur importance dans le réseau, une centralité élevée suggérant un rôle crucial de la 
molécule dans le processus physiopathologique. Cette analyse a permis d’identifier de nouvelles 
molécules, non encore quantifiées chez les patients REVE-2, potentiellement impliquées dans le 
développement du RVG post-IDM. Les facteurs de transcription EP300, CTCF et ESR1 sont exprimés 
dans le cœur et ont été identifiés comme régulant l’activité de SOD2, protéine intervenant dans la 
régulation du stress oxydant dans les cardiomyocytes. Quatre ARNs non codants, les miR-26b-5p, 
miR-17-5p, miR-335-5p et miR-375, ont une centralité importante. Les deux premiers sont exprimés 
dans le cœur, contrairement aux 2 derniers. Les taux plasmatiques du miR-26b-5p sont diminués chez 
les patients avec une IC aigue et le miR-17-5p est impliqué dans l’apoptose des cardiomyocytes et la 
fibrose cardiaque.  

L’analyse du réseau REVE-2 permet d’étudier les mécanismes physiopathologiques associés 
au RVG post-IDM au cours du temps, ainsi que d’identifier de nouveaux biomarqueurs potentiels pour 
détecter le RVG associé à un risque élevé d’IC. 
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1 Introduction

Endurance horses can run up to 160 km per race. Mitochondrial DNA variations may affect the efficiency of
electron transport chain and ROS (Reactive Oxygen Species ie: peroxide) production, thus contributing to
endurance performance. We studied the mitochondrial genome variability among 205 endurance horses for
which racing performance were known. The objectives of this study were to propose a new strategy to call
genetic variants in mitochondrial genome, and determine whether some variants are associated to endurance
performance. 

2 Material & methods

Sampling & sequencing: We designed 5 overlapping amplicons to specifically amplify mitochondrial gen-
ome from total DNA extracted in peripheral blood. Then we sequenced all samples with Illumina Miseq that 
produces 250 bp paired reads.

Bioinformatics: We chose a Arabian reference genome (GenBank ID JN398380.1) that we pseudo-circular-
ized in silico to improve terminals' alignments. The cleaning and mapping pipeline is standard. We filtered 
reads with mapping quality < 60. We used the GATK package [1] to detect variations. Most parameters fol-
lowed the best practices and some were fine-tuned. 

Statistics: Association between SNPs and performance in endurance was tested using mixed model with 
fixed SNP Effect and random additive genetic effect with relationship matrix.

3 Results & conclusion

For the 205 horses, we found 590 combined variable positions (one position varies every 27 bps in average).
Only 5 contain indels. 72% have already been found in previous studies. 80% of the protein coding variants
are silent and the transition/transversion ratio is 22.5. Furthermore, we could observe 1.5% of non-haploid
genotype (potential heteroplasmy) but some of them are probably numts (nuclear sequences of mitochondrial
origin [2]). Preliminary study of statistical analysis can not yet link any variants to performance in endurance
racing. Further analysis is still required.
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Multiple myeloma (MM) is a hematological malignancy characterized by proliferation of malignant
plasma cells. Despite the evolution of treatments over the last few years, MM remains an incurable disease,
the vast majority of patients relapse of their disease in the years following treatment. MM  represents about
20% of deaths from hematologic malignancies and 2% of cancer deaths. Although many types of genetic
lesions (translocation, deletions, amplifications, mutations) have been identified, they don’t fully explain the
molecular mechanisms of relapse. We hypothesized that epigenetic changes contribute to the resistance of
MM. Modified epigenetic genes could drive a novel mechanism of drug resistance in MM through changes
in epigenetic states, subclonality and diversity. To test this hypothesis, we sought to highlight changes in the
composition and diversity of epigenetic alleles during the progression of MM.

We used ERRBS (Enhanced Reduced Representation Bisulfite Sequencing) technique to analyze the
DNA methylome of 17 patients at diagnosis and their relapse of MM, and 3 normal plasma cells (NPC) as
control.  This technique covers about 6% of CpGs of the genome and provides a single base resolution.
Bisulfite reads were aligned using Bismark aligment software [1] to the bisulfite-converted hg19 genome,
with non-directional model.  We calculated the epigenetic changes between two stages using methclone [2].
This tool detects locus of 4 adjacent CpGs (minimum depth of 60X), called epiallele. We were particularly
interested  in  the  epiallele  shift  at  relapse  compared  to  diagnosis.  Epigenetically  shifted  loci  (eloci)  are
defined by a significant entropy shift (S < -70).  

 We showed that epigenetic allelic diversification occurs during the initiation of the disease and also
during progression and is highly variable between patients. Moreover, localization of eloci indicate important
perturbations of regions with potential regulatory effects on gene expression during MM progression. These
results are similar to observations made in other tumors, such as acute myeloid leukemia [3]. 
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Nuclear factor κB (NF-κB) subunits RelA, RelB, cRel, p50 and p52 are each critical for B cell function
such as regulation of cell proliferation or immune response. The NF-κB pathway is constitutively activated
for more than 20% of patients with multiple myeloma (MM), a hematological malignancy characterized by
an accumulation of abnormal plasma cell in bone marrow. Two different cytoplasmic mechanisms have been
described [1] during NF-κB activation. First, the canonical pathway involving RelA:p50 dimer is essential for
fast immune response. Second, a non-canonical pathway is activated in organogenesis, development and cell
survival. It involves p52:RelB dimer. NF-κB nuclear activity and its effect in MM was studied using ChIP-seq
experiments performed for each NF-κB subunit in MM cell line (MM.1S) in which the two NF-κB pathway
are constitutively activated due to mutations inactivating TRAF3, a cytoplasmic inhibitor of the two NF-κB
pathways of interest. Here, we present a complementary approach to characterize NF-κB nuclear activity in
MM by combining different NGS datasets.

First, a ChIP-seq analysis is performed. This approach combines a quality assessment with fastqc, an align-
ment on hg19 human genome with bowtie2 and finally a peak calling using stringent threshold (p-value <
1e-7 and FDR < 1%) with macs2. We finally obtained 19,199 peaks for NF-κB subunit. In order to realize
functional annotation of NF-κB peaks and MM.1S cell line, we used ChromHMM [2] with five histone marks
to define 10 different chromatin states. We defined as Promoters all states showing enrichment for H3K4 tri-
methylation and H3K27 acetylation. Enhancers were defined as enrichment for H3K4 mono-methylation and
H3K27 acetylation. To characterize how both pathway interacts in MM.1S, all κB regions are clustered using
the k-mean method of seqMiner. It allows to identify different pattern of co-binding and correlate them to
ATAC-seq enrichment. We also performed motif discovery using MEME-suite and motif enrichment determi-
nation with HOMER and ROC curves. Finally, we compared our results with DNAse-seq data of GM12878 (B
cell lymphoma cell line) and ChromHMM data to compute differential enrichment of nucleosome free regions
in this cell line.

Our analysis revealed that majority of NF-κB ChIP-seq peaks are located in promoters and in free accessible
regions. Surprisingly, no κB motif enrichment was found for RelA and p52 subunit, but only in promoters
binding RelB and in enhancers binding RelB and/or p50 subunit indicating the major role of this dimer for
NF-κB specific binding. We also demonstrated that an interaction between the two NF-κB pathways exists
in MM as it was shown in other malignancies [3]. Some differences on the changing of regulatory regions
between those two cell lines shows the lack of enhancer location and κB motif enrichment in MM.1S cell line
and implies specific mechanisms for this malignancies.
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Summary

In the last 12 months, the throughput of the MinION [1], a third generation sequencer provided by Oxford
Nanopore Technologies (ONT), has dramatically raised. Today, with the last R9.4 chemistry more than one
million of long sequence reads can be sequenced and much more are expected by the end of the year with the
frequent updates (every 2-3 months) of the flowcell chemistry.

ONT choose to create one raw file (FAST5 file) for each read produced by the MinION. Moreover the
basecalling [2] of  raw data is an intensive computational  step as a neuronal network algorithm is used.
Hence, MinION data management and quality control is a disk space and time consuming task. Dealing
manually with the various input and output file formats from sequencer software requires many hours/days to
generate FASTQ files and QC reports.

In this poster, we present the best practices to deal with MinION data from raw data to QC reports in an
efficient manner. We now plan to create a new tool  in order to automatically handle data transfer, read
demultiplexing conversion and quality control once a sequencing run has been finished as we previously
have done with Aozan [3] for Illumina sequencing.
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La technologie oxford nanopore MinIon est une technologie de séquençage qui permet l'obtention 
de lectures plus longues que la technologie illumina. 

La technologie de séquençage ne repose pas sur des techniques d’imagerie comme illumina mais 
consiste à mesurer la différence de potentiel détecté lors du passage du brin d’ADN dans les pores. 

On obtient alors des signaux électriques qui vont être convertis en lecture. Les données sont 
produites sous un format fast5. Les outils de suivis de runs existants ne sont plus adaptés ni aux 
métriques à suivre ni au format de fichier généré d’où la nécessité de développer des outils de 
contrôle qualité spécifiques.

Une bibliographie des outils d’analyses de la qualité des runs existants (poRe[1], poretools[2], 
ioniser[3], minotour[4]) a été réalisée pour prendre les meilleurs aspects de chaque outil afin de les 
combiner dans un nouveau pipeline d’analyse du run. 

Ce poster présente le pipeline et les résultats produits par celui-ci de façon à permettre l'évaluation 
optimale des résultats d’un run MinIon.  Notre pipeline a été développé et appliqué sur des données 
de runs de RNASeq MinIon comparant les transcrits WT et KO Egr2[5].
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Les technologies de séquençage de 3ème génération comme celle proposée par Oxford Nanopore 
(ONT), permettent d’obtenir des lectures longues de plusieurs milliers de kilobases. Ces lectures 
longues ouvrent des champs nouveaux dans un contexte transcriptomique comme l’accès direct aux 
transcrits alternatifs et aux modifications post-transcriptionnelles. 

 

Contrairement aux séquences issues des technologies de 2ème génération, les séquences longues 
comportent beaucoup d’erreurs, principalement des insertions-délétions. Ces erreurs peuvent être 
corrigées en utilisant des méthodes hybrides, les séquences courtes de type Illumina viennent corriger 
les lectures longues, ou des méthodes non-hybrides, basées sur une couverture importante du 
transcriptome. Cette étape de correction alourdit l’analyse des données menant à l’obtention d’un 
transcriptome de référence. 

 

La qualité des séquences en sortie de MinION s’améliorant à chaque version de chimie, de flowcell, de 
logiciel d’appel de base, nous nous proposons de tester l’impact de la correction d’erreur sur différente 
version de séquençage MinION de façon à envisager l’opportunité ou non de la correction des lectures 
en RNA-Seq. 
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Summary

Since the release of Oxford Nanopore Technologies (ONT) MinION sequencers in 2014 [1] the number of
reads produced with this new sequencing technology is still increasing. All the protocols remain in very
active development (ONT provides updates of its chemistry and bioinformatics tools every 2-3 months).
Hence the bioinformatical tools must be up to date throughout the development of MinION technology.

The IBENS (Institut de Biologie de l'École normale supérieure) genomic facility is currently developing a
new data analysis workflow for RNA-Seq experiments using ONT sequencing output: Toullig. This pipeline
is based on Eoulsan [2] and its bundled RNA-Seq pipeline for the Illumina reads.

The final goals of Toullig is to perform differential expression analysis from ONT long reads and produce
a reference transcriptome by combining data from both Illumina and ONT technologies.

In this poster, we present our work on the Toullig pipeline with a focus on the long read mapping [3,4,5,6]
and mapping quality control [7,8] steps.

The  new Eoulsan  modules  for  Toullig  and the  toolbox  for  manipulating  ONT data  are  available  on
GitHub [9].
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Almost 6 million people are affected by cardiovascular disease (CVD) and 26% of deaths are 

attributed to CVD in the UK each year. Thus, early detection of CVD onset is critical to improve quality of 

life and to decrease the economic burden on healthcare providers. The identification of predictive biomarkers 

and interpretable disease signatures by combining data obtained with different high-throughput omics is the 

ultimate step towards reconstruction and analysis of complex multi-dimensional diseases, enabling deeper 

mechanistic and medical insight. To this end, we collected data on 169 blood donors and 22 patients 

representing three different diseases with high CVD risk. For each individual, monocytes and neutrophils 

were isolated and underwent whole genome sequencing, ChIP-sequencing for histone modifications 

representing regulatory elements (H3K4me1, H3K27ac), RNA-sequencing and DNA methylation analysis. 

Additionally, plasma metabolites and lipids were quantified in all individuals.  

We are currently integrating the different data types, working to select relevant covariates using penalized 

likelihood approaches, followed by clustering via variational Bayes mixture models and other clustering 

methods [1,2,3] according to continuous responses represented by clinical values associated with a high CVD 

risk factor. Genetic contribution to a high CVD risk factor is analyzed by performing quantitative trait loci 

mapping using histone modifications, methylation, transcripts expression, lipidomic and metabolic data.  

Our aim is to identify metabolic and/or epigenetic signatures that could be applied for the detection of CVD 

from an early onset. 
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Les techniques traditionnelles de détection des agents infectieux (PCR, recherche d’antigènes ou 

d’anticorps via la technique ELISA) par mise en culture (sur cellules ou œufs embryonnés), sont à la fois très 

lourdes, coûteuses et souvent pas suffisamment sensibles. Des approches dites « sans a priori » sont désormais 

susceptibles de les supplanter.  

Les nouvelles générations de séquençage (NGS) sont devenues essentielles pour l’étude de l’identité et 

de la variabilité des génomes microbiens. Les techniques de type MiSeq (Illumina) et MinIon (Oxford 

Nanopore) sont aujourd’hui complémentaires, de par la nature et le volume de séquences générées. Une 

première étape d’étude bibliographique a permis de découvrir plusieurs pipelines répondant à la problématique 

de détection de virus. Trois d’entre eux ont été étudiés plus spécifiquement : Kraken [1], Truffle [2] et VIP [3]. 

Le pipeline Kraken [1] utilise une méthode d’alignement exact de K-mers pour réaliser une affiliation 

taxonomique des séquences d’agents pathogènes présentes dans des données NGS. Les K-mers sont recherchés 

dans la base de données Kraken. La correspondance exacte des 31-mers rend le pipeline stringent. Est-ce un 

facteur rédhibitoire pour détecter spécifiquement les séquences virales de données NGS de métagénomique 

virale ?  

La détection de virus peut être réalisée à l’aide de l’outil Truffle [2] qui utilise des e-sondes représentantes 

des virus recherchés. Par conséquent, cet outil nécessite la connaissance des virus potentiellement présents 

dans les jeux de données. Ces e-sondes sont générées et par la suite, recherchées par alignement dans les 

données NGS. Un score est calculé pour chaque e-sonde. Le point fort de ce pipeline est l’obtention de scores 

représentatifs de la présence du virus, via une analyse statistique. 

Le pipeline VIP [3] utilise quant à lui, une méthode d’assemblage de novo. Après un contrôle qualité et la 

suppression des séquences hôtes éventuelles, les lectures sont ensuite assemblées en contigs puis assignées via 

un alignement nucléotidique contre des bases de données virales spécifiques (ViPR/IRD), ou contre les bases 

de données virales du NCBI. A partir de cette assignation un assemblage de novo permet de reconstruire le 

génome des virus détectés. En complément, une analyse phylogénétique est proposée. Ce pipeline développé 

pour la détection de virus humains dans le cadre clinique, peut être appliqué à la détection de virus d’intérêt 

vétérinaire.  

Cette étude a permis une prise en main de ces pipelines pour rendre chacun d’eux compatible, avec des 

jeux de données provenant de séquençages de tissus animaux. Les pipelines ont été testés et comparés afin 

d’optimiser leurs paramétrages. D’autre part nous réalisons une étude de faisabilité de l’intégration du pipeline 

VIP à la plateforme web d’analyse de données, Galaxy [4]. La mise à disposition d’un pipeline d’identification 

et de découverte de virus, est importante pour le diagnostic microbiologique, la surveillance de virus d’intérêt 

en santé publique et plus largement, la découverte de nouveaux virus. 
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The 3' end maturation of precursor mRNAs includes 3' end cleavage and addition of the polyadenylated
tail. In addition, alternative polyadenylation (APA) occurs in about half of the genes in mammals. There are
two types of alternative polyadenylation. The first one is  located upstream of the last exon of the gene and is
called intronic polyadenylation (IPA). The second is located within the last exon of the gene and is called
polyadenylation  in  tandem.  APA is  widely regulated  in  oncogenic  transformation  and  cell  response  to
genotoxic  (DNA-damaging)  agents.  3'-seq  (high-throughput  sequencing  of  3'-ends  of  polyadenylated
transcripts) is a particular type of RNA sequencing technique. This methods allows sequencing the 3' end of
the transcript upstream of the polyadenylated tail, in order to evaluate APA regulation.

The aim of this work was to develop a bioinformatics pipeline for differential 3'-seq analysis, called 3-
SMART (3'-seq Mapping Annotation and Regulation Tool). Our pipeline includes 6 steps : 1/ Quality control
and trimming of reads ; 2/ Reads mapping to genome ; 3/ Identification of peaks ; 4/ Annotation of peaks
(IPA or  last  exon of  genes) ;  5/  Filtering out  of  artefactual  peaks corresponding to  internal  priming of
oligo(dT)  primers  during  reverse-transcription  ;  and  6/  Differential  analysis  of  each  IPA between  two
conditions.  We applied this  approach to  a  set  of  experimental  data  obtained  in  our  lab  to  analyze  IPA
regulation in lung cancer cell response to cisplatin, a genotoxic anticancer drug. We found that cisplatin up-
regulates IPA in many genes. The 3-SMART pipeline was implemented in bash and required a linux system.
The pipeline is available at  GitHub (https://github.com/InstitutCurie/3-SMAR  T).
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1 Introduction

Life-sciences are nowadays conducted in multi-disciplinary and multi-centric studies. In this context, the
same software components must be deployed in multiple environments for reproducibility and scalability issues.
In addition, data analysis pipelines are usually composed of multiple components, continuously evolving, which
leads to maintenance and long-term support challenges. To promote FAIR 1 principles, providing controlled
software environments becomes mandatory. We propose a set of best practices taking advantage of proven or
promising tools: Git, Conda, SnakeMake[1], Jenkins and Docker.

2 Motivations

Bio-informaticians and software developers need to build data analysis pipelines in controlled environ-
ments to ensure long-term re-execution and better reproducibility. From an end-user point of view, typically a
biologist, data analysis pipelines should be automatically installable in a local or dedicated computing infras-
tructure, including any software or data dependency. Pipelines should be launched in three steps: i) environment
setup/activation, ii) parameters tuning, and iii) pipeline execution.

3 Approach and Results

The BiRD pipeline registry results from applying these guidelines in the context of Exome sequencing
and RNAseq (variant calling, differential gene expression, gene fusion detection, single-cell). These pipelines
are described in a GitLab web portal. GitLab allows i) to document the pipeline an its usage, and ii) to host
and version the associated source code. To ease installation and dependency management, we packaged and
deployed the executable software components through the Conda package manager in a dedicated repository 2.
To assess their long-term re-execution, workflows and associated software environments are nightly assembled
into minimal Docker images through a Jenkins continuous integration system.

4 Conclusion and perspectives

The best practices hereby proposed aim at promoting findable and accessible data analysis pipelines through
web-based resources. This process allows to re-package and re-execute pipelines in the long run, and to adapt
to continuously evolving environments. Our future works include two main directions: i) handling data re-
sources as part of the pipeline distribution process (e.g. BioMaj), and ii) studying how to promote interoper-
ability between multiple systems and infrastructures. To enhance trust for end-users and to encourage reuse,
provenance metadata and controlled vocabularies (e.g. EDAM) offer interesting perspectives to associate pro-
duced/analyzed with large-scale bio-resource registries such as BioTools.
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Paris-Saclay, 2 rue Gaston Crémieux, 91057, Evry, France

Corresponding author: vallenet@genoscope.cns.fr

1 Introduction

The analysis of genomes from NGS platforms needs to be automated and fully integrated. However, main-
taining consistency and accuracy in annotation is a challenging task because millions of proteins in databanks
are not assigned reliable functions.

The LABGeM team of the Genoscope sequencing center focuses its research activities on the development
and application of new methods for genome analysis. These tools are then made available through MicroScope
(http://www.genoscope.cns.fr/agc/microscope) [1], an integrated platform dedicated to microbial genome an-
notation and comparative analysis, which is being developed in our group since 2004.

2 Methods

The resource provides data from complete and ongoing genome projects together with post-genomic ex-
periments (i.e. transcriptomics, re-sequencing of evolved strains) allowing users to improve the understanding
of gene functions. We will present an overview of the MicroScope analysis pipelines and illustrate the use of
several new functionalities in the context of data discovery and expert annotation, which concern:

- comparative genomics with synteny computations and pan-genome analyses,

- the prediction of virulence and antimicrobial resistance genes,

- the detection and annotation of genomic regions of interest, like, secretion systems, integrons and sec-
ondary metabolite biosynthesis gene clusters,

- and metabolic network reconstruction assisted by the GROOLS expert system (https://github.com/grools)
[2].

3 Conclusions

To date, MicroScope contains data for about 7,000 microbial genomes, part of which are manually curated
and maintained by microbiologists ( > 3,200 personal accounts in March 2017). The platform enables collab-
orative work in a rich comparative genomic context and improves community-based curation efforts.
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1 Abstract

About 25% of the protein families collected in the Pfam database are annotated with unknown functions [1].
Besides, in databanks in which proteins are mainly annotated based on sequence similarity only (e.g. TrEMBL,
NR), the level of misannotation reaches about 60% for superfamilies [2]. To detect possible errors or to suggest
hypothetical functions for these proteins, we developed a bioinformatics approach, called NetSyn, based on
genomic neighborhood.

NetSyn aims at exploring conserved genomic contexts (i.e. syntenies) to classify proteins within a family.
It consists of (i) a pairwise comparison of gene chromosomal organization to find conserved syntenies, (ii) the
representation of the results using a non-oriented weighted graph where nodes represent proteins and edges the
average score of the number of genes involved in the synteny, and (iii) nodes are are clustered using the weighted
Markov Cluster Algorithm [3].Each cluster is supposed to gather iso-functional proteins. The software can be
used either to study multi-functional enzyme families or to find interactions between several families.

As a proof of concept, NetSyn was tested on two families. In the β-keto acid cleavage enzymes family, 7
profiles of active sites have been described, each one has been linked experimentally with specific enzymatic
activities [4]. NetSyn was able to retrieve the proteins associated with the 7 known activities and to disclose
4 other clusters of proteins that might have new functions. In the amidinotransferases family [5], proteins
annotated as arginine deiminase were split in two different clusters. One of them probably contains proteins
that might not be correctly annotated as these proteins do not share similar genomic context with characterized
arginine deiminase. Our method points out another cluster in which half the proteins are annotated as ”Unknown
function”. Because they are highly connected with enzymes experimentally characterized as dimethylarginine
dimethylaminohydrolase, these proteins might share the same enzymatic activities. The program is available to
the scientific community on GitHub.
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Le plancton des océans est responsable de plus de la moitié de l’oxygène produit sur la planète. Il n’en 

demeure pas moins très peu étudié et l’on connait encore mal l’impact que pourrait avoir le réchauffement 

climatique et la pollution sur ce dernier. Son rôle dans l’absorption du CO2 et la régulation du climat pourrait 

en effet être directement affecté. C’est dans le but de répondre à ces questions que l’expédition Tara, à laquelle 

le Genoscope participe, fut lancée entre 2009 et 2013 sous le nom de Tara Oceans [1].  

Un des objectifs est l’étude précise des génomes de protistes marins. Ces derniers n’étant pour la plupart pas 

cultivables en laboratoire, la solution mise en place fut de recourir au séquençage en cellule unique. Le 

protocole de ce dernier consistait à extraire l’ADN d’une seule cellule, à l’amplifier par MDA [2] et enfin à le 

séquencer. Les étapes d’extraction et d’amplification génèrent toutefois de nombreux problèmes rendant 

l’assemblage de leur génome difficile. Certaines régions peuvent en effet être non capturées lors de l’extraction 

de l’ADN tandis que d’autres ne sont pas amplifiées. L’amplification appliquée à ces protistes génère de plus 

une couverture verticale très irrégulière. 

Des outils adaptés sont donc nécessaires pour assembler ces génomes. Un workflow spécifique a ainsi été 

mis en place au Genoscope pour traiter ces données. Une idée proposée par ce workflow consiste notamment à 

se servir de la synergie de plusieurs cellules pour résoudre au mieux les problèmes de régions non couvertes. 

Cette technique dite de « co-assemblage » nécessite néanmoins de savoir à l’avance si ces cellules 

appartiennent au même organisme. L’ADN ribosomique 18S (gène marqueur chez les eucaryotes) peut 

apporter un début de réponse. Cette séquence n’est cependant pas toujours très résolutive et ne reflète pas 

totalement la diversité des génomes.  

Pour répondre à cette problématique nous avons utilisé différentes méthodes et outils associés. Deux 

méthodes principales ont été retenues. La première consiste à se servir de la technique des graphs de De Bruijn 

colorés sur un premier co-assemblage [3]. Chaque couleur correspondant à une cellule, il nous est possible 

d’observer par quelles cellules sont recouverts les contigs. Les régions génomiques partagées entre les cellules 

nous informent ainsi sur leur proximité ou leur éloignement. La deuxième méthode consiste quant à elle à 

découper les lectures en mots chevauchants de longueur k (k-mers) et à mesurer la proportion de ces mots qui 

sont partagés entre deux cellules séquencées de façon indépendante [4]. Plus le taux de k-mers partagés par 

deux cellules est élevé, plus on peut supposer que celles-ci appartiennent à la même espèce. L’utilisation 

conjointe de ces méthodes nous aide donc à choisir les cellules pouvant être ou non co-assemblées. 
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Proteomic data is obtained using a combination of liquid chromatography and tandem mass spectrometry 

(MS/MS) where peptides are most commonly identified by matching MS/MS spectra against theoretical 

spectra of all candidate peptides represented in a generalist protein sequence reference database[1] . The 

limitation of this approach is that variant peptides are missing from this reference database, thus they cannot be 

detected. 

Proteogenomics[2] is an alternative approach where the reference database is replaced by a customized protein 

sequence database generated using genomic information extracted from RNA-seq data[3]. This strategy allows 

the detection of novel SAAVs, INDELs and splice junctions.  

Using exploratory proteogenomics on a colorectal cancer cell line, we identified over 134 Single Amino Acid 

Variants (SAAV), from which 88 were also found by CPTAC colorectal cancer study[4]. However, in such 

analysis a significant number of alterations found by RNA-seq are not detected at the protein level (3605 

non-synonymous mutations); therefore, we are aiming to address them using a targeted approach [5]. 

Our perspective is to develop a bioinformatic methodology capable of assessing the impact of the genetic 

alterations on the proteome in a cancer context. 
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The major goal of our laboratory is to understand and quantify human preimplantation development, from 
fertilization to implantation in the uterus, and to predict its outcome. Specifically, we aim at deciphering the 
molecular mechanism driving cell fate during this first step of our existence. Understanding human 
preimplantation is therefore critical to improve assisted reproductive technologies (ART) and broaden the use 
of human pluripotent stem cells in regenerative medicine. It is during this timeframe that embryonic cells make 
their first choice of cellular fate, moving from one totipotent cell in the zygote to an embryo stratified by three 
cell types in the mature blastocyst. Moreover, the main objective of in vitro fertilization is to support the 
development of the zygote into a blastocyst, before transfer in infertile patients. To discover how early cell fate 
specification is regulated, our team develops several strategies to model embryos. To reach this goal, we 
employed two transcriptomics approaches: single-cell RNA-Seq and DGE RNA-Seq. 

Firstly, we used Single-Cell RNA-Seq to identify unknown subpopulation of preimplantation embryo cells 
and associated genes network. For this purpose, we designed a single-cell analysis pipeline written with 
snakemake, a new and handy workflow tool. Biological data in single-cell are highly heterogenous and require 
unsupervised approaches. Thus, the pipeline answer to these constraints and includes complete analysis from 
FASTQ to identification of cell subpopulations with dimension reduction methods. We also analyzed cell 
trajectories with pseudo-time methods (Slingshot, Monocle2 [2]) to pinpoint critical moment of cell fate 
decisions. Then, we determined specific gene networks associated with subpopulations, embryo lineage or 
embryo stage with Weighted Gene Correlation Analysis (WGCNA [3]). We observed that WGCNA is a 
particularly suitable tool for single-cell analysis, giving coherent results from noisy and heterogenous data. 
Here we will present the pipeline and show how it has solved the problem of heterogeneity and lack of 
biological material inherent to human embryo. Secondly, a novel, cost-efficient RNA-Seq method, digital 
expression RNA-Seq (DGE-Seq) was employed to sequence human induced naive pluripotent stem cells 
(hiNPSC), a recently characterized state of pluripotency in human [4]. As a main result of this work, we show 
that hiNPSC have a more similar metabolism to preimplantation embryo than usual hIPS cells. This makes 
hiNPSC an appropriate model of preimplantation development. 

Here we present methods of computational biology that guided our research strategy, and promoted the 
use of transcriptomics in Nantes. Both approaches contributed significantly to our understanding of 
preimplantation development, opening new avenues of research in the fields of ART and regenerative medicine 
fields. 
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Abstract 

In the isopod crustacean Armadillidium vulgare, genetic sex determination follows female 
heterogamety (ZZ males and ZW females). Z and W sex chromosomes show no apparent 
heteromorphy. WW female individuals are viable and genetic sex determination in the closely related 
species Armadillidium nasatum follows male heterogamety (XY males and XX females). These 
observations suggest that the evolution of A. vulgare sex chromosomes is at an incipient stage of the 
specialization of a pair of ancestral autosomes carrying sex determinants. To test this hypothesis and 
identify W-specific sequences, we sequenced and assembled the genome of A. vulgare by combining 
Illumina and PacBio sequencing technologies. The 1.7 Gb genome of A. vulgare is highly repeated, 
as simple repeats and transposable elements represent ~70% of the genome. To identify sex linked 
sequences, we obtained male and female Illumina sequencing reads independently and used two 
different bioinformatics approaches: Chromosome Quotient (CQ) and Y Genome screening (YGS) 
methods. These analyses confirmed the homomorphy of A. vulgare sex chromosomes and allowed us 
to identify candidate W-specific scaffolds. 
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female heterogamety, homomorphy, W-specific sequences, hybrid de novo genome assembly, highly 
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Chordomas are rare bone tumors, often observed in cranial, spinal and sacral sites. With a slow evolution, 

these tumors are clinically diagnosed at a late stage, decreasing patients’ life expectancy [1]. However, these 

tumors remain poorly described. This project aims to identify and characterize somatic alterations involved in 

this pathology. To this end, a series of tumors were analyzed by means of high-throughput exome sequencing. 

On Illumina platform, paired-end 100x100 exome-Seq was performed for eight primary tumors and 

matching germline DNAs obtained from blood samples. After quality control and mapping files cleaning, 

somatic variants search was performed. Therefore, three variant callers were used in parallel to increase the 

sensitivity and the confidence of predicted variations (SNV). After Annovar annotation, variants were 

considered as somatic when absent in the germline samples and if their reported frequency in 1000Genome 

database was below 0.1%. Finally, variants were validated by IGV visualization discarding sequencing and 

alignment errors. In another hand, copy number variations (CNV) were predicted using Facets and Sequenza 

tools, to determine putative copy number alterations. 

The number of identified somatic mutations ranged from 12 to 32 per sample, except one tumor exhibiting 

166 somatic variants. Among the mutated genes, known drivers, such as KIT and PIK3CA, were detected. 

Mutated genes highlighted recurrent pathways involved in biologic processes such as chromatin organization, 

and epigenetic modifications. With CNV analysis, we identified a chromothripsis phenomenon as formerly 

described [2]. In our study, such events were observed in 2 out of 8 tumors. Furthermore, we characterized a 

high frequency of CDKN2A/B homozygous deletion in 80% of samples; a much higher rate than previously 

reported [3]. Strikingly, the most extensively mutated sample, presented a homozygous deletion encompassing 

MLH1 gene, suggesting a DNA mismatch repair deficiency in this tumor.  

The integrated analysis of SNV and CNV profiles emphasized several molecular pathways involved in 

chordomas. In particular, the MEFC2 gene, regulating bone differentiation, showed a biallelic inactivation i.e. 

a stop gain variation coupled with a loss of heterozygosity suggesting a complete loss of the protein function. 

In conclusion, we observed different variations already described in the literature, but we also characterized 

novel putative genes involved in chordoma, not linked to the pathology yet. To validate our hypotheses, 

exome-Seq will be performed on a new sample series and RNA-Seq data will be generated to complete the 

study. 
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Among the genetic characteristics that influence our physical identity all along our life, the most important is
surely our sex. The ultimate goal  of  male and female sex differentiation and development is to provide
organisms the necessary attributes for sexual reproduction. In mammals, the genetic sex of individuals is cast
at  fertilisation with the bring of  an X or  a  Y chromosome from a spermatozoa to  a bearing X oocyte.
Phenotypic sex is only revealed during foetal development, when the gonads start to differentiate as ovaries
or testes (around 6 embryonic weeks in human, and at embryonic day 11.5 in mouse). Consequently to the
ovary or testis differentiation, the whole embryo will adopt the secondary sexual characteristics such as male
and female reproductive tracts and appendixes.

Current  knowledge  of  sex  determination  was  built  on  gene  by  gene  knock-in/knock-out  in  mice  and
transcriptomic analysis on pool of purified cells. The first method suffers from a very low throughput and
produces a partial knowledge of the function of one or a limited set of genes. The second method caveat
resides in the lack of specific reporters for the different cell types within the gonad and makes difficult the
appreciation of the cell type heterogeneity, especially before sex determination. Moreover, a pool of purified
cells results in an average message of non synchronous differentiating cells and thus blur the chronology of
gene expressions.

In this study,  we used transgenic mice carrying the Nr5a1-GFP reporter to isolate by FACS the gonadal
somatic cells at five key stages of sex determination and gonad development in male. We proceeded to the
RNA-sequencing of 391 single cells and identified the different cell types present in the developing testis
and reconstructed their cell lineages. At E10.5, we detected one homogeneous progenitor cell population of
NR5A1+ cells  expressing epithelial  and stem cell  marker genes, consistently with their  bi-potential state
before sex determination. From E11.5, one fraction of these cells activated a strong genetic program and
initiated  their  differentiation  as  Sertoli  cells  and  the  other  fraction  of  progenitor  cells  evolved
transcriptionally and progressively start to express steroidogenic lineage markers such as Arx and Pdgfra and
are restricted to the interstitial compartment of the testis. From E12.5, we detected few fetal Leydig cells
differentiating from the interstitial progenitors.

This study represents the most granular transcriptomic database of gonadal somatic cells during early testis
development. With these data, we contribute in the deeper understanding of the cell differentiation during sex
determination.
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1 Introduction 
Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9) target            

specificity is determined by a short 20bp sequence of a single guide RNA (sgRNA). Consequently, large                
scale oligo synthesis of guide sequences suggests a new way to interrogate gene function at a genome-wide                 
scale. It has been shown that infecting cell with Cas9:sgRNAs libraries using lentiviruses can facilitate both                
positive and negative loss-of-function screening in mammalian cells [1, 2]. When Cas9-induced            
double-strand breaks are introduced into coding sequences, error-prone repair machinery will often introduce             
« indel » potentially leading to loss-of-function allele [3]. In order to check the Genome-scale CRISPR              
Knock-Out (GeCKO) screening modification efficiency, off-target modification rate, consistency between          
unique sgRNAs targeting the same genes and validation rate of screen hits, we decided to propose a full R                   
package that goes from FASTQ files to an HTML report giving all quality control and statistical analysis                 
results of your GeCKO experiments taking into account process data difficulties such as results ranking. 

2 Data pre-processing, Quality Control and Statistical analysis 
Original human GeCKOv2 library is composed of 123’411 sgRNAs (~ 6 per gene + 2000 negative                

controls). First, we propose to clean the library by merging redundant sequences and removing the ones that                 
have multi-hits on hg38 genome, obtaining 113'761 guides. These sequences were detected (with or without               
mismatches) and counted on each sample sequenced reads (FASTQ files) in order to generate a count table                 
as output for further analysis. Nine criteria are used to assess the experiment quality. An R markdown                 
notebook is automatically generated with all the corresponding values/figures. 

From the count table, data are normalised using classical RNAseq methods from R package edgeR. We                
propose to compute the normalisation factor either on the whole dataset or on the non-targeting guides only.                 
Differential abundance of guides is estimated with the limma/voom framework. From the moderated             
t-statistics estimated by limma, we derived a one-sided p-value to test explicitly the depletion or the                
enrichment of guides. A gene-level score is then computed by the RRA method [4] and p-values are derived                  
from a null distribution estimated from random genes sampled into non-targeting guides scores.  
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Underlying molecular mechanisms in human tissues tend to be more documented everyday for a certain
number  of them [1].  Usually studied in pathological  context,  deepening the understanding of  molecular
mechanisms  lead  to  a  better  prevention  and  treatment  strategies  of  related  diseases.  Still,  many
(patho)physiological reactions remain unpredictable [2,3] if solely observed at the molecular level. 

However,  the  recent  surge  of  high-throughput  omics  technologies  (e.g.  transcriptomics,  proteomics,
metabolomics) allowed the emergence of new discoveries by system-wide analyses. A  popular approach to
analyze  these  large  data  is  the  modeling  of  gene  similarity  based  networks.  Also  called co-expression
networks, they group highly dependent genes by modules. Those modules can mostly be related to and used
to further understanding of phenotypic traits information. Besides summarizing gene expression, this method
allow to functionally annotate unknown genes.

Here, we emphasis on epidermal data which remains one of the easiest tissues to explore because of its
ease of access for sampling (unlike tissues from internal organs). Helped by the R package WGCNA, first
step of the pipeline involves the network creation. It is based on previous defined similarity and a threshold
consisting of numerical set value (called hard-thresholding), or a function with a defined parameter value
(called soft-thresholding). Module detection inside the network is then performed in order to group highly
co-expressed  genes.  This  process  is  then  repeated  on  several  pertinent  data  sets  in  order  to  identify
epidermis-specific modules and compare them against each other. 

Because those modules are more likely to mediate phenotypic traits of interest [4], a further investigation
aims at comparing the activity of epidermis-specific modules under different conditions. On one hand, skin-
linked factors like UV exposure, skin diseases or scaring will be studied. On the other hand, we will look
into more general element  such as sex or age impact. Most data comes from available public databases,
essentially GTEx [5] or GEO [6], and internal sequencing data of in-vivo skin samples will complete them.
Finally, the main frame is to lead to a refining of module functional characterization, and therefore allow
some supervised learning for ulterior prediction models.

Since transcriptomic impacts other omics stratum in many ways, the incoming challenge is the association
of those outlined epidermis-specific gene modules with other biological networks such as protein-protein
interactions networks or metabolic pathways in the same tissue [7].
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Summary 

Single cell RNA sequencing (scRNA-seq) provides new opportunities to characterize cell transcriptomic
heterogeneity, e.g. the discovery of new cell populations and the reconstruction of cell lineages. Sequence
reads are produced from individual cells using two main approaches: full transcript amplification or partial
amplification with single molecule tagging using Unique Molecular Identifiers (UMI) [1]. These different
protocols combined with various computational analyses result into numerous possible computational
workflows.

Here we present a new workflow dedicated to scRNA-seq data analysis. Still under development, this
workflow is based on the Eoulsan framework [2], starts with raw FASTQ files, and encompasses various
quality control, normalisation, read mapping, and more advanced steps. 

The first steps of the analysis (from read filtering to expression estimation) can be distributed on computer
clusters to greatly reduce processing time. Most of the popular frameworks or job schedulers like Hadoop,
TORQUE or HTCordor are currently supported by Eoulsan. Noteworthy, we take full advantage of the
Docker-Galaxy framework introduced in Eoulsan 2 [3] to propose a series of modules allowing the analysis
of both read-based and UMI-based data. Downstream steps include a wide range of tools for gene differential
expression (SCDE [4], SCDD [5]), cell clustering and lineage reconstruction (Monocle 2 [6], Destiny 2 [7]).  

The experimental design ofr an Eoulsan scRNA-seq workflow is stored in simple text file, while
parameters are stored in a second xml file, ensuring flexibility and traceability.  Keeping track of each
successful step, this approach allows to swiftly resume large analyses upon trouble-shooting, and further
ensure reproducibility.

  In conclusion, Eoulsan scRNA-seq provides an integrated workflow for scRNA-seq data analysis on
standalone workstations or on computer clusters. With its modular structure and distributed data processing,
it can handle large amounts of data in a reproducible, yet flexible manner.
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1 Introduction

Sequencing of (meta-)genomes and (meta-)transcriptomes generates huge sets of sequences, that are often
chopped in voluminous sets of k-mers for their further analysis. Such instances constitute challenges for high
performance computation. To extract relevant pieces of information from the large data sets generated by
current sequencing techniques, one must rely on extremely scalable methods and solutions. In this work we
present a straightforward indexing structure called quasi-dictionary that scales to billions of elements and we
propose direct applications based on k-mer diversity to explore (meta-)genomics/transcriptomics data sets.

2 Quasi-dictionary applications to sequencing data

The quasi-dictionary structure is tailored to handle huge quantities of k-mers to index. It relies on a MPHF
library [1] combined with a fingerprint system. We present two applications of such a data structure for short
reads data: SRC COUNTER and SRC LINKER. Both can be used to compare two samples or sample versus
itself in particular when traditional methods do not scale. SRC COUNTER links any read to its estimated
abundance in a collection of samples. SRC LINKER connects any read from a given sample to similar reads in
the data set [2]. Furthermore we present an application of SRC LINKER to long reads. Contrary to the previous
applications, the input are long, erroneous reads from last generation of sequencing (PacBio, Nanopore).

3 Results

We present the quasi-dictionary data structure performances and its applications results and practical use
cases, notably at work on marine data sets. We state the memory and time performances of the quasi-dictionary
as well as the practical impact of its false positives. We also compare SRC LINKER with state of the art tools
for short and long reads for retrieving similarities between reads. As for short reads, we demonstrate our gain
in scaling, that applies in particular in meta-genomics field. With long reads, we show the benefits of having a
lightweight data structure to deal with high error rates with robustness, combined to scalability.

We highlight the fact that SRC LINKER is one of the few tools that can be applied successfully to explore
short as well as long reads sequencing data. Finally the data structure and its applications remain simple, which
make them easily adaptable for further challenges.
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Transcriptome sequencing technologies (RNA-seq) are increasingly used to accurately and sensitively mea-
sure gene expression levels, across a wide variety of biological samples [1]. The utility of RNA-seq goes be-
yond the simple assessment of gene expression levels, as it allows detection and quantification of alternative
transcript isoforms, as well as annotation of new genes and isoforms. Here, we propose a method to annotate
cleavage and poly-adenylation sites of messenger RNAs and long non-coding RNAs [2,3] from RNA-Seq data.

Our computational pipeline comprises three steps:
• First, we efficiently search for polyA tails in RNA-Seq data, allowing for sequencing and biological

errors. This step results in a complete set of reads with polyA tracts, which includes genuine 3’ ends of
transcripts but also encompasses polyA repeats present in the genome.

• Second, to filter out these repeats from the dataset and to enrich for genuine polyA tails, the reads are
artificially cleaved to remove the polyA tail and the remainder is aligned on the reference genome. We
then select the reads for which the polyA tract does not map on the genome, as expected given that
polyA tails are added post-transcriptionally to messenger RNAs.

• Third, the predicted poly-adenylation and cleavage sites are assessed by checking the flanking nu-
cleotides and the presence of a poly-adenylation signal, and finally compared to known cleavage sites.

The running time of this method with a sample of 100 millions reads of 100 bp is approximately of 20
minutes (test run on Ubuntu 16.04 LTS with 16Go RAM and i7-6700HQ CPU @ 2.60GHz). Thus, this method
can be easily applied to the vast quantities of RNA-Seq data that are accumulating today. Our method is thus
considerably faster than other programs that detect polyA sites from RNA-Seq data, such as KLEAT [4] and
ContextMap 2 [5].

We applied our method to a collection of RNA-Seq data, derived from four major organs (brain, kidney,
liver and testis) and five developmental stages (from early organogenesis to adult and aged individuals), for
mouse and rat. For a standard RNA-Seq sample, the fraction of reads with polyA tail detected is approximately
3/1000 reads. We annotated over 100,000 putative polyA sites in each species and we confirmed about 10,000
sites annotated in the Ensembl database and 3,000 sites using polyA-sequencing data, from Derti et al [6].

Ongoing analyses include comparative analyses of the predicted polyA sites across species, organs and
developmental stages. We also plan to use our method to refine the 3’ ends of long non-coding RNAs, whose
annotation is currently challenging.
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Alors qu'il a fallu treize ans et plusieurs millions de dollars pour séquencer et assembler les trois milliards 

de nucléotides composant le génome humain [1], un tel séquençage nécessite aujourd'hui seulement quelques 

jours et à peine quelques milliers de dollars. L'International Rice Research Institute (IRRI), dans le cadre du 

consortium GRISP (Global Rice Science Partnership), a initié un programme de séquençage de l’ensemble 

des variétés de riz, et aujourd’hui plus de 3000 génomes sont déjà disponibles [2]. 

Pour analyser et stocker efficacement cette importante masse de données, il est nécessaire de représenter 

les génomes dans une forme permettant leur consultation rapide, tout en économisant le plus possible 

l'espace nécessaire à leur stockage. 

La structure de données qui fait actuellement le succès des méthodes d'analyse de génomes est le FM-

index [3]. Il s'agit d'une structure compressée exploitant les propriétés de réorganisation des données de la 

Transformée de Burrows-Wheeler (BWT) [4] appliquées sur le génome à indexer. Cependant le FM-index 

n'est pas optimisé pour compresser une collection de génomes similaires. Ce qui veut dire que si l'on souhaite 

analyser les 3000 génomes de riz, on va devoir créer 3000 index pour pouvoir ensuite interroger chaque 

index l'un après l'autre. 

Nous avons exploré et comparé les méthodes existantes (PanTools, TwoPaco, CHICO, etc.) permettant de 

construire efficacement un index commun aux 3000 génomes. Nous développons aussi une méthode basée 

sur un découpage des génomes par k-mers. Pour cela, nous avons dans un premier temps étudié l'évolution 

du nombre de k-mers communs entre différents génomes complets de riz. La représentation des ensembles de 

k-mers communs entre les différents génomes sous forme de diagrammes de Venn nous a confirmé la 

pertinence de notre approche. En raison du volume de données qui seront indexées, nous avons défini une 

représentation de l'ensemble des k-mers et de leurs présence/absence basée sur des structures succinctes. Les 

problématiques qui émergent sont d'une part la mise à jour dynamique de la structure, par exemple lorsqu'un 

génome est ajouté ou retiré de l'ensemble des génomes déjà indexés; et d'autre part la formulation et 

l'optimisation des requêtes que notre structure d'index doit permettre. Enfin, les problématiques liées à la 

représentation et l'exploration visuelle de l'index demeurent un sujet d'étude qu'il conviendra de traiter par la 

suite. 
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Links between epigenetic marks and transcription regulation have been increasingly explored in recent
years. Major technical advancements allowed the generation of massive, under-exploited datasets by consortia
and individual laboratories. We present a systematic integrative re-analysis of Roadmap Epigenomics RNA-seq,
WGBS, DNAseI and histone marks ChIP-seq data in 33 human cell types. We combined two complementary
approaches to link epigenetic marks at location of interests (transcription start sites, transcription end sites,
exons) to transcription features (transcription level, exon inclusion ratio, cryptic transcription start sites): 1- for
all genes/exons within a cell, and 2- for every single gene/exon across all 33 cell types.

Results generated include the confirmation of many known relationships (i.e. promoter DNA methylation
is negatively correlated to gene expression, while H3K4me3 at promoter is positively regulated to gene expres-
sion) at a large scale, but also the confirmation or rejection of less accepted correlations. For example, while we
did find a slight decrease of DNA methylation density at non-included region within a cell, we could not find
any trend linking changes of exon methylation to changes of inclusion ratio when carrying the analysis across
cells. A web portal will be developed in the near future to allow easy exploration of the results.
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Fig. 1. Promoter DNA methylation and gene expression level in pancreas. A. Gene expression level in all 44114 genes annotated by
Gencode. First side bar indicates the gene type (yellow, protein coding genes), the second side bar indicates the 5 bins used in panel F-J
(purple: highly expressed genes, green: lowly expressed genes). Protein coding genes are globally more expressed than other types of
genes. B-E. Stacked profiles of CpG density (B), the mCpG ratio (mCpG/CpG) (C), the mCpG density (D), and the WGBS coverage
(E) at promoter, sorted according to their expression level. Promoter CpG density is positively correlated with expression level, mCpG
ratio and mCpG density are negatively correlated to expression level. Coverage of CpG rich region is lower than at CpG poor regions.
F. Boxplot of gene expression level in each of the 5 bins defined in A, and used in G-J. G-J. Average profile of CpG density (G), mCpG
ratio (H), mCpG density (I) and WGBS coverage (J) +/- SEM for each bin of promoters.
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The existence of spun and colored flax fibers dating from the Upper Paleolithic suggests that man
has long exploited the biotechnological natural process known as dew-retting to extract these fibers from the
flax plant for textile production [1,2]. This process is achieved directly on the soil surface of the field [3,4].
Despite many studies of this process to evaluate the degree of retting [5], relatively little is known about (i)
the  composition  and  the  evolution  of  the  microflora  population  during  retting,  (ii)  the  kinetics  of  the
microbial  communities  colonizing  the  plant  material  and  (iii)  the  composition  and  the  evolution  of
Carbohydrate Active enZymes degrading plant cell walls [6]. 

To improve our understanding of dew-retting, we first used a metabarcoding approach to identify the
membership and structure of the microbial communities (focusing on bacteria and fungi). This approach also
allowed  us  to  identify  (i)  some  potential  bacterial  major  enzymatic  functions  related  to  carbohydrate
degradation based on functional prediction using PICRUSt (http://picrust.github.io/picrust/) and (ii) a strong
pattern of fungal  trophic modes  [7,8].  In a second step we developed a metatranscriptomic approach to
access of the evolution of the exogenous (soil) and endogenous (plant) enzymatic arsenal potentially across
the Tree of Life, involved in the degradation of carbohydrate and aromatic substances in decomposing plant
matter.

The  methodology  used  to  explore  microbial  and  enzymatic  diversity  using  High  Throughput
Sequencing (Illumina system) will be described. We will then correlate colonization complexity dynamics to
the progress in plant  cell  wall  degradation.  Finally,  the microbial  ecology of the retting process will  be
compared to other natural plant material (e.g. forest litter) degradation processes.
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Alternative splicing (AS) leads to the production of different transcripts from each gene and relies on
splicing factors (SFs) site recognition. Massive splicing variations are observed in many diseases. However,
identifying  which  mechanisms  that  are  responsible  for  these  variations  is  challenging.  To  address  this
concern, we developed “Splicing Lore” whitch aims at predicting the SF(s)  regulating the inclusion rate of
exons from a selected list of alternative exons. 

Splicing Lore contains the list of exons regulated by 64 SFs, which corresponds to 94 publicly datasets.
These datasets were analyzed with an homemade pipeline (FaRLine) allowing to quantify the effect of SF
downregulation  on  the  inclusion  rate  of  human  exons.  The  results  were  stored  in  a  MySqL  database,
Splicing Lore DB that will be available for download.

An user-friendly interface allows to enter a list of exons and interrogate Splicing Lore DB. This allows
users to know which SF(s) can regulate at least part of the exons of interest. Splicing Lore provides support
toward the identification of the molecular mechanisms driving splicing variations across physiological or
pathological situations.

Keyword : alternative splicing, splicing factor, RNAseq, database, interface
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Human cytomegalovirus (HCMV) is a DNA β-herpevirus of critical importance to human health during 

pregnancy. HCMV primary infection of pregnant women could lead to congenital infection of fetus and could 

have severe clinical complication in child [1]. With 10–100 billion fragments per milliliter of plasma, 

circulating cell-free DNA is an information-rich window into human physiology, with rapidly expanding 

applications in genetic prenatal diagnosis. The whole genome sequencing (WGS) of cell-free plasma DNA is 

classically used to diagnose fetal aneuploidy during pregnancy. Because WGS has also become a standard tool 

for pathogen discovery in biological samples [2], the purpose of this study is to propose a new method to detect 

and quantify circulating viral DNA during pregnancy using the same sequencing results as noninvasive 

prenatal testing whole genome sequencing data.  

Our approach used the human unmappable reads to search viral specific reads and quantify the species viral 

load on low depth sequencing data, by combining multiple steps of alignment on reference genome to filter 

host reads and mapped exogenous reads on in-house validated reference genome of different viral species. 

Different quality steps checked that sequencing results had a sufficient quality to be analyzed and that the 

alignment on targeted viral genome is homogenous. We used sequenced ranged samples to calibrate our 

method and determine a mean depth threshold to classify infected and non-infected samples with a sensitivity 

of 100% [88%-100] and a specificity of 100% [94%-100%]. Because the mean depth was linearly correlated 

to the theoretical viral concentration of each sample, we constructed a model able to determine the viral load 

of each sample. 

Our method was then applied to a cohort of 538 pregnant women to validate our approach with real clinical 

samples. In this validation cohort, we found two positive samples for HCMV with very low viral load. The 

serologic status of these two samples revealed that the patients were immunized against HCMV at the 

beginning of their pregnancy, suggesting a possible viral reactivation or secondary infection. In the same 

cohort, we also found three samples positive for HBV. For two of them the serologic status was known: these 

women were positive for HBV infection, confirming that our pipeline can detect several targeted viral species.  

In summary, this study demonstrates the whole potential benefit of WGS based monitoring for pregnant 

women to perform complete prenatal diagnosis based on a single test. 
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Deciphering the function of a protein is an intricate task that needs integrated approaches. In silico methods 

based on sequence and structure give good insights to solve this problem but few permit to integrate their 

results. An approach based on residue interaction networks analyses and in particular centrality analyses 

showed to give clues to the involvement of key residues in function and folding of a protein - e.g. [1, 2]. These 

networks are built from a protein structure where nodes are residues and edges are detected interactions 

between residues. Next to these methods, flexibility of a backbone and changes upon mutation provide 

additional information that help to select such key residues in the design of mutagenesis experiments and to 

unravel the function of a protein [3, 4]. 

We developed an app called RINspector for the Cytoscape network analysis and visualization software [5] 

to analyze residue interaction networks and visualize flexibility predictions associated to a protein chain. This 

app performs centrality analyses based on shortest path lengths, with associated Z-scores, and queries the 

DynaMine server [6, 7] to retrieve a prediction of the dynamic of a protein chain. Results can be visualized on 

an interactive flexibility graph which permits selection of residues that can be mutated to compare the new 

graph with the wild type. A connection is made between the flexibility graph, the residue interaction network 

and the protein structure (if structureViz app/Chimera installed [8, 9]) to select a residue simultaneously in the 

three representations thus to directly visualize this residue in its context. Our tool can help with the rapid 

identification of key residues for protein function and stability.  

RINspector is available in the Cytoscape app store. 
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The biochemical interaction map database, KEGG [1], contains approximately 500 Pathway maps. Creating 

parametric kinetic models manually for all of the interactions contained within all of the available maps would 

be tedious and would require the knowledge of tens of thousands of unknown kinetic parameters. A few 

approaches have been proposed to perform this task automatically such as for instance Path2Models [2]. 

However, these approaches do not cope with parametric problem. We propose a new method to automate this 

process including the generation of semi-quantitative kinetic laws. The analysis of such large dynamic models 

could allow for increased comprehension of the different phenotype or behavior of the cell and could elucidate 

new key proteins. 

Using PySB [3], a framework for building mathematical models of biochemical pathways, we develop a tool 

that generates biochemical kinetic models from static interaction maps. The models are built as Python 

programs using PySB libraries for mechanistic interactions. PySB allows one to divide models into modules 

and to call libraries of reusable elements that encode standard biochemical actions. Species in the PySB model 

can be described with multiple sites and states, which reduce considerably the numbers of entities to declare. 

To each interaction we associate a semi-quantitative parameter (integer) representing the order of magnitude 

of the interaction timescale. The values of these integers rank the interactions according to their timescales. 

Each interaction of the static model provides a system of rules. These rules are parametrized consistently with 

the interaction timescale orders. We consider that all internal processes, with exception to the limiting step, are 

more rapid than the timescale of the interaction. The choice of the limiting step can correspond either to 

quasi-equilibrium or to quasi-stationary conditions. The parametrized kinetic models are further analyzed. We 

are interested in classifying possible states and transitions between these states. We use tropical equilibration 

branches, a concept recently introduced in [4], as proxies for metastable states of the biochemical system.  

As case studies we consider signaling models MAPK and TRAIL to compare our model to known models 

created using the classical approach.  
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1 Introduction

Les modalités d’évolution récente des populations contemporaines deviennent une question majeure
à l’heure de quantifier les impacts des changements globaux. Par exemple, dans le cadre d’une espèce inva-
sive comme le frelon à pattes jaunes (Vespa velutina) en France, l’analyse d’un jeu de données génétique
peut permettre la compréhension des réactions de l’espèce à son nouvel environnement.

En couplant des modèles démographiques spatialement explicites à des modèles de coalescence, il
est possible d’inférer les paramètres des lois de croissance et de dispersion de l’espèce par Calcul Bayésien
Approché (Approximate Bayesian Computation, ABC) [1]. Des modèles environnementaux permettent de re-
présenter les lois de croissances ou de dispersion comme une fonction des patrons paysagers locaux [2].

Toutefois, les méthodes de simulation antérieures reconstruisent le coalescent jusqu’à l’ancêtre com-
mun le plus récent (MRCA) des gènes échantillonnés [3]. Or, le MRCA étant situé dans une fenêtre spatio-
temporelle lointaine, cela force à renseigner des processus historiques anciens peu informés et/ou peu infor -
matifs. La nouvelle méthode présentée ici permet d’éviter les coûts d’une prise en compte de l’histoire an -
cienne (coût en hypothèses, en calcul et en données) en recentrant l’analyse sur les processus de coalescence
très récents, c’est à dire ceux qui permettront d’informer l’histoire invasive du frelon asiatique.

2 Méthode

La nécessité d’envisager de nombreux modèles de différents niveaux de complexité, conjointement
au besoin de performance imposé par l’ABC, nous a mené à développer des bibliothèques template C++
pour la simulation de processus de coalescence. Ces bibliothèques génériques, modulaires et extensibles,
sont destinées à être rendues libres et offrent dans la définition du modèle simulatoire une liberté et une effi -
cacité à notre connaissance sans équivalents actuels.

Lors d’une simulation, la coalescence peut être interrompue brutalement à la date où les données de -
viennent trop insuffisantes pour renseigner le processus, menant ainsi à une forêt de généalogies de gènes
partitionnant le jeu de données génétique. Forêt de coalescents simulée et jeu de données observé sont alors
convertis en partitions floues sans perte d’information, suite à quoi la procédure ABC permet d’accepter les
valeurs de paramètres ayant servi à la simulation si la distance de transfert floue [4] calculée entre la partition
simulée et la partition observée est inférieure à un certain seuil.
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Summary : On this poster, we present PROqPCR, a user friendly tool enabling the PROcessing of quan-
titative Real-Time Polymerase Chain Reaction (qRT-PCR) data. The qRT-PCR is a common-used technique,
which allows to quantify the transcriptome for pre-defined specific genes [1]. Despite the emergence of next
generation sequencing, the qRT-PCR remains widely used in the laboratories. Indeed, one use of this experi-
ment is, for instance, the mandatory validation of the results when high-throughput experiment is performed.

When a qRT-PCR experiment is performed, many files are created by the quantitative PCR instrument, and
there is a long and repetitive treatment to do to carry out the analysis (averaging over replicates, normalization).
That’s why we automated it in a web application. This application allows biologists to perform easily the pro-
cessing of qRT-PCR data by providing only the experimental design and the files created by the software of the
quantitative PCR instrument.

At the end of the analysis, the biologist can visualize and explore the results from several graphs. Three
different graphs are proposed and can be downloaded in png format:

1. Barplot of all conditions for a given gene;

2. Barplot of all genes for a given condition;

3. Comparison of barplots for selected genes in all conditions.

Moreover, two graphs are also provided in order to facilitate the comparison between the results of qRT-PCR
with that of a RNA-seq experiment.

PROqPCR is written in R using the Shiny library, which provides access to powerful R-based functions and
libraries through a simple user interface.
PROqPCR is free, open source and is available at https://qpcrapp.shinyapps.io/proqpcr/.
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Saint-Étienne-du-Rouvray, France
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Summary : RNA sequencing constitutes a method of choice to quantify gene expression. This experiment
provides discrete read counts assigned to target genome regions measuring the expression level. Our goal is
to perform differential analysis from these data, that is to say compare the counts of a given region between
two conditions. Many methods of differential analysis were developed to compare two conditions using mainly
statistical tests [1,2]. Here we propose a mixture model to search the differentially expressed genes. The idea
is to classify the genes into three groups : one group where expression is the same between the two conditions
and two groups where expression is higher in a condition than in the other one.

We developed a Bivariate Negative Binomial Mixture Model. Let Xt = (X1t, X2t) be the counts for each
gene t in the conditions one and two, and Zt the group this gene belongs. As Xt is bivariate, we have proposed
to work with a mixture model in two dimensions. Moreover, the RNA-seq data are modeled using a Negative
Binomial distribution because these data are discrete and overdispersed.
As written in Shi and Valdez [3], X = (X1, X2) follows a Bivariate Negative Binomial distribution if there
exists the independent variables Y1, Y2, Y3 such as Yi ∼ NB(θi, αi) with i = 1, 2, 3 and{

X1 = Y1 + Y3
X2 = Y2 + Y3.

Thus, Xi ∼ NB(θi + θ3, αi + α3), with θi = θ3αi
α3

.
The Bivariate Negative Binomial Mixture Model is written as :

P(x|ψ) =
K∑
k=1

πkMNB(x|(θk, αk)), with

- K the number of groups (here K = 3 as written before)
- MNB is the Multivariate Negative Binomial distribution
- ψ = (π1, ..., πK , θ1, ..., θK , α1, ..., αK), where θk = (θk1, θk2, θk3) et αk = (αk1, αk2, αk3)
- 0 < πk ≤ 1, k = 1, ...,K et

∑
k πk = 1.

The parameters are estimated with the EM algorithm [4]: π and θ have explicit estimators but α is estimated
numerically. Then the genes are classified in one of the three groups according to the Maximum A Posteriori
rule based on the posterior probabilities.

Through a simulation study, we will compare the obtained results with a Bivariate Gaussian Mixture Model,
a Bivariate Poisson Mixture Model and the model we have developed. Moreover, we will compare our model
with methods commonly used like DESeq2 [1]. Finally, we will apply the model on real data from an RNA-
seq experiment on the Phaeodactylum Tricornutum diatom. In order to handle with replicates, we propose to
average the replicates which is rounded at the closer integer.
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Pentatricopeptide repeat (PPR) proteins are modular proteins which bind RNA [1]. They are found in
every eukaryotes with a high number in Plants. There are about 500 PPRs in Arabidopsis. PPRs are key
regulators  in  mRNA processing  of  organelles.  For  example  they  are  involved  in  splicing,  editing  and
stability[1].  The  goal  of  our  project  is  to  detect  RNA binding  sites  of  PPRs  using  RNA-footprinting
experiments.  Arabidopsis  thaliana  will  be  the  plant  model  for  this  study.  PPR binding  sites  are  small
sequences of 8-30bp. Thus reads obtained from RNA-footprinting experiments are small. Correctly mapping
those reads on chloroplast and mitochondrial genomes is difficult [2] yet crucial for our project.

Indeed it is important to correctly map those small reads to identify real PPR binding sites. Mapping
small  RNAs can be complicated,  because they can match at  different  positions on the genome. Default
parameters of mapping tools do not allow multiple hits and they can not be used in this case. In the case of
PPRs, there are different causes to explain multiple hits. Firstly, some regions are repeated regions. Such
regions lead to artefactual multiple hits. Secondly, some PPR proteins can bind to several identical RNA [4]
at different position on the genome. In that case, we get “real” multiple hits.

The goal of our study is to identify the best tool to map our small RNA reads. We used pIRS [3] to
simulate data and assess the mapping quality. pIRS allows to include  SNP and InDel error rate parameters.
Those parameters are important, because the PPR recognition code is inaccurate [1]. The analysis of RNA-
Seq simulation showed two results. Firstly, they enabled to identify complex regions prone to multiple hits.
We excluded those regions from the rest  of our analysis.  Secondly,  they allowed us to calibrate quality
threshold to use in case of multiple hits.

To conclude this  precise  quality  assessment  of  mapping tools  for  small  reads  will  facilitate  the
identification  of  real  PPR binding sites  using peak  detection approach mostly developed for  ChIP-Seq.
Finding those sites  is  the main goal  of  our project.  In  particular,  some of these sites can be related to
cytoplasmic male sterility. Finding these sites will provide easy ways of producing F1 hybrids which are of
high agronomical value.
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The Assistance Publique – Hôpitaux de Paris (AP-HP) is a teaching hospital groupment with a European
dimension  globally recognized.  The  AP-HP is  organized  into  twelve  hospital  groups,  for  a  total  of  39
hospitals localized in Paris and its region. Currently, those hospitals attend each year 8 million patients.

One  year  ago,  a  new  bioinformatics  platform  was  created  for  multiple  missions:  the  progressive
centralization  of  the  storage  of  genomic  data  produced  by  hospitals,  their  analyses  in  controlled  and
standardized workflows and the provisioning of tools for results exploitation.

In this abstract, we present our solution to develop and standardize medical diagnosis pipelines. The goal
of this project is to propose a development environment for tools and parameters testing and an analysis
environment with fixed pipelines and for results reproducibility. We decided to use Docker [1], Galaxy [2],
and Snakemake [3] technologies. Docker allows to eliminate tool dependencies problems and sets a version
tool in an image. We created a Docker image per tool per version. Galaxy is a web-based platform, designed
to provide easy access to a versatile toolbox for biological users. Using Galaxy interface, scientists can test
tools,  tool  versions  and  parameters  but  also  design  new  workflows.  When  the  pipeline  is  validated,
Snakemake rules are written, versioned and tagged. Snakemake is a workflow management system with
implicit rule implementation (input and output logic). The advantage over Make is the capability to allow
Python to be interspersed through the pipeline and thereby reducing a lot of ambiguity [4]. As other pipeline
frameworks,  error  recovery,  automatic  parallelization  and  workflow  integrity  features  are  included  in
Snakemake. With this project, on one hand, those Docker images are executed by a Galaxy instance. On the
other hand, those same Docker images are run by Snakemake pipelines. To ease medical diagnosis routine,
AP-HP's scientists are able to execute tagged workflows with their data through a web interface.

Furthermore, every Docker tools and Snakemake pipelines are tested with GitLab-CI [5]. GitLab is a web-
based repository manager.  GitLab-CI provides  continuous integration features,  so that  when a new tool
version is added in a Docker image, GitLab will build, run the container and automatically test the tool.

Key words: Galaxy, Docker, Snakemake, diagnosis pipelines and continuous integration
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Iron-sulfur (Fe-S) clusters are cofactors conserved in all domains of life. A-Type Carriers (ATC) proteins
play a crucial role in Fe-S biogenesis by delivering clusters to their targets [1]. In  E. coli, the ErpA ATC
protein is essential in aerobic growth, whereas NfuA plays an important role in stress conditions, such as
oxidative stress or iron deficiency.

Recent work in our laboratory showed that  erpA expression is regulated by IscR, the main Fe-S cluster
homeostasis regulator, and by the non-coding RNA RyhB, expressed in iron deficient conditions [2]. While
both regulators repress  erpA and nfuA expression in opposite conditions in regards to iron concentration,
these genes present different expression profiles.

In order to understand the mechanisms underlying  erpA and  nfuA regulation, we used a mathematical
modeling approach relying on logical formalism. This model takes into account environmental conditions
that perturb Fe-S biogenesis such as iron and oxygen levels. The model was validated with experimental
data, allowing us to make predictions in different mutants and to infer qualitative network properties. For
instance, the model suggests different inhibition thresholds for RyhB.

(Work in progress)
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1 Introduction

Most of bacterial genomic studies exploring the host adaptation focus on the accessory genome describing
how gain and loss of genes explain evolution processes leading colonization of new habitats. In this context,
we  propose  a  robust  phylogenetic  inference  based  on  single  nucleotide  polymorphisms  (SNPs)  and
recombination events,  identification of fixed SNPs and small  insertions/deletions (InDels)  distinguishing
homoplastic and non-homoplastic core-genome variants, and gene-annotation enrichment analyses in order
to describe the main metabolism pathways impacted by these fixed variants during adaptation of Salmonella
enterica subsp. Enterica to multi-host (S. Enteritidis), mammalian (S. Dublin), and avian (S. Pullorum and
S. Gallinarum) hosts [1].

2 Results

The developed workflow ‘VARCall-GO’ produced a robust phylogenetic inference based on SNPs. The
monophyletic clade S. Dublin diverged to the polyphyletic clade S. Enteritidis which includes the divergent
clades  S. Pullorum and  S. Gallinarum. Firstly, this workflow gave the opportunity to detect intragenic and
non-homoplastic  fixed  variants  supporting  the  phylogenetic  reconstruction  [2].  Secondly,  it  identified
representative metabolic pathways related to the host adaptation using the first gene-annotation enrichment
analysis [3] based on bacterial core-genome variants. The host adaptation of Salmonella serovars were driven
by fixed variants impacting mainly biosynthetic and metabolic processes of carbon sources alternative to
glycose, amino acids, and ion transport, especially potassium.

3 Conclusion

We propose a new core-genome approach coupling identification of fixed SNPs and InDels with regards to
the inferred phylogenetic clades, and gene-annotation enrichment analysis in order to describe the adaptation
of Salmonella serovars Dublin, Enteritidis, Pullorum, and Gallinarum. All these generic bioinformatic tools
can be applied on other bacterial genera without additional developments.
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Horizontal gene transfer (HGT) is often reported as being the motor of bacterial adaptation. Among the
various processes involved in HGT, plasmid transfers were shown to be of prime importance for many
bacterial families [1,2]. Plasmid-encoded accessory genes enrich the species’ gene pool and provide new
adaptive traits in response to environmental modifications, such as the use of  new antimicrobials or the
colonization of a new ecological niche [3,4]. Therefore, in order to further our understanding of bacterial
adaptation  and  ecology, it  is  pivotal  to  improve  our  knowledge  on  (1)  plasmid  genomic  structure,  (2)
mechanisms involved in plasmid transfers and (3) their limits. Phylogenomic networks are usefull tools to
picture HGT among prokaryotes [1]. Indeed, each edge of the network represent an HGT event between two
genomes (i.e. nodes of the network). Using this approach, it was demonstrated that HGT is limited by the
taxonomic relatedness of the organisms,  the characteristics of the host genomes (such as GC content  or
codon usage) and the ecological niche they occupy. 

Copper-based  antimicrobial  compounds  are  widely  used  to  control  plant  bacterial  pathogens.
Xanthomonas citri pv. citri (Xcc), a major citrus pathogen, has adapted in response to this selective pressure
[5,6]  and  it  was  demonstrated  that  its  copper-resistance  was  plasmid-borne.  In  order  to  understand  the
genetic basis of this adaptation, we fully sequenced 13 copper-resistant strains from the Xanthomonadaceae
family:  six  Xcc  strains  [7],  six  Xanthomonas strains  pathogenic  to  solanaceous  species   [8]  and  one
commensal Stenotrophomonas strain [9]. Genome comparison between the six Xcc strains revealed that the
copper-resistance genes were encoded on an adaptive transposon located on a conjugative plasmid. Most
strains of other  Xanthomonas species encoded a highly conserved copy of the entire plasmid, but one that
displayed a similar adaptive transposon inserted in a distinct plasmid. The commensal  Stenotrophomonas
strain  presented  with  a  chromosomally  encoded  copy of  the  transposon.  These  findings  highlighted  the
existence of two overlapping levels of mobility (transposon and plasmid) [10].

To further investigate the spread of copper-resistance genes among the Xanthomonadaceae family, we
searched for homologues of every plasmid's genes in the public NCBI databases NR and WGS. Based on
sequence identity, we constructed and analysed phylogenomic networks. It revealed that homologues of the
plasmid present in Xcc were only identified from Xcc and few Xanthomonas species pathogenic to solaneous
species. In contrast, genes homologous to the adaptive transposon were detected from 14 species included in
five  genera  (Xanthomonas,  Stenotrophomonas, Pseudoxanthomonas,  Pelomonas  and  Pseudomonas)  and
grouping in three families. Globally, homologues of genes encoded on the transposon were found further
apart in the taxonomy than plasmid backbone homologues.

A similar approach using all available plasmids from the Xanthomonadaceae family was applied to more
finely define the reach of gene exchange for bacteria in this family. The analyses of the resulting networks
would certainly help uncover the global context of gene exchange, their limits and specificities. It may also
reveal specific trends for genes involved in adaptation within the particular context of agricultural settings.
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Résumé

Un super-arbre est un arbre phylogénétique construit à partir d’une collection d’arbres, dits arbres sources,
partageant complètement ou partiellement un même ensemble d’espèces. Les informations portées par chaque
arbre source peuvent être complémentaires et contradictoires entre elles. Un super-arbre représente une synthèse
d’hypothèses relationnelles qui couvre l’ensemble des organismes présents dans chacun des arbres sources. Il
permet de révéler des liens de parenté non visibles dans les arbres sources pris séparément. Afin de résoudre
les problèmes de compatibilité entre les parties communes des arbres sources, de nombreuses méthodes de
construction de super-arbre ont été développées. La plateforme ATGC (www.atgc-montpellier.fr) de l’IFB (Ins-
titut Français de Bioinformatique), adossée à l’équipe MAB (Méthodes et Algorithmes pour la Bioinforma-
tique) du LIRMM, est dédiée à la bioinformatique pour la génomique évolutive comparative et fonctionnelle.
Nous souhaitons développer un portail web convivial dédié aux analyses phylogénomiques intégrant les outils
de référence du domaine, et notamment les outils de construction de super-arbres. Ce portail permettra de gui-
der les biologistes dans leurs analyses afin de leur fournir des services adaptés à leurs problématiques. Pour
ce faire, nous avons réalisé un état des lieux des méthodes et outils de construction de super-arbre existants et
identifié les plus utilisés. Nous avons sélectionné ceux qui pourraient être directement intégrés à la plateforme.

Plusieurs approches sont utilisées dans la construction de super-arbres : l’approche libérale ou de “vote” qui
résout les conflits en “faisant voter” les arbres sources et en optant pour l’alternative topologique qui maximise
un critère d’optimisation, celui-ci variant d’une méthode à l’autre (MRP - représentation matricielle avec parci-
monie, similarité, bipartitions, quadruplets, SPR - subtree pruning and regrafting, ...) ; l’approche consensus qui
utilise des méthodes issues de la théorie des graphes, l’approche “veto” dont la topologie des super-arbres in-
férés respectent la topologie de chacun des arbres sources ; ou de nouvelles approches basées, par exemple, sur
le maximum de vraisemblance ou sur l’analyse des relations entre paires de taxons. Les outils actuels se basent
sur ces approches et implémentent certaines de ces méthodes. Notre étude nous a permis de préselectionner un
ensemble d’outils implémentant les principales méthodes : PhySIC IST (Scornavacca et al., 2008 ; approche
libérale et approche “veto”), L.U.St (Akanni et al., 2014 ; approche par maximum de vraisemblance), COS-
PEDTree (Bhattacharyya et al., 2016 ; approche par paire de taxons), SPRsupertrees (Whidden et al., 2014 ;
approche libérale) et Clann (Creevey et al., 2005 ; approche libérale et approche consensus). Parmi les mé-
thodes de super-arbre, la méthode MRP est la méthode la plus populaire (Olaf R.P. Bininda-Emonds, 2004), et
les articles la décrivant (Baum, 1992 et Ragan, 1992) ont respectivement été cités 459 et 529 fois. Par la suite,
nous porterons donc une attention particulière à l’implémentation et l’utilisation de cette méthode.
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Le projet ANR Proteogam propose de définir des marqueurs moléculaires d’un organisme sentinelle afin de 

tester rapidement son état de santé pour sonder la qualité biologique de l’eau d’une rivière. L’organisme 

sentinelle choisi est le gammare, un petit amphipode d’eau douce, présent dans tous les cours d’eau d’Europe. 

Les marqueurs moléculaires sont des protéines dont l’abondance peut varier en fonction de la présence de 

polluants dans les eaux de rivière. Typiquement, les concentrations de protéines présentes dans les gonades 

peuvent signer la présence de perturbateurs endocriniens. 

Le Gammare est une espèce dite « non-modèle » car il n’existe, pour cette espèce, pas de séquence 

génomique de référence permettant l’attribution des spectres MS/MS enregistrés en protéomique. Les 

génomes de référence les plus proches sont ceux de Hyalella azteca et Daphnia pulex qui restent cependant 

trop éloignés pour une attribution suffisante. Pour pallier ce manque d’information, une base de données de 

référence peut être constituée par assemblage de novo de lectures de transcrits matures. Pour sonder la diversité 

des populations de Gammarus fossarum, la stratégie protéogénomique mise en œuvre nécessite la combinaison 

des outils bioinformatiques d’assemblage de données RNAseq et d’attribution protéomique [1]. Cette stratégie 

requiert un environnement de travail souple et reproductible, permettant la gestion simple et efficace de 

données volumineuses et de formats multiple.  

L’environnement de travail choisi est Galaxy avec une solution portable aisée à l’aide de Docker, un 

programme de gestion de containers permettant son exécution sous Windows en mimant UNIX. L’interface 

proposée utilise donc Galaxy docker développé par Björn Grüning [2] .Une utilisation de docker dans le 

Galaxy docker a été choisie afin d’utiliser un container par outil. Cette séparation par outils permet via 

l’utilisation d’un gestionnaire d’installation (conda) d’apporter une gestion des versions et une mise à jour 

simple de chaque outil indépendamment ainsi qu’une forte reproductibilité des variables d’environnement au 

lancement de chaque outil.  

La présentation détaillera l’implémentation pour l’évaluation de stratégies d’exploration de la diversité 

moléculaire par protéogénomique, notamment la réalisation de la gestion des données issues de nouvelles 

technologies de séquençage ARN et leurs assemblages.  
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Pea (Pisum sativum L.) is a model plant and an important protein crop used in human and animal
feed.

The  laboratory  developed  a  13.2K SNP Infinium genotyping  array  and  built  individual  and
consensus genetic maps for [1] which gave information on the genome structure. We developed a
pipeline on GBS (Genotyping by sequencing) data to enrich the consensus map with more markers
to get a more accurate map.

New  sequencing  technologies  as  GBS  (Genotyping  by  Sequencing)  allow  to  access  genetic
information  like  markers  cost-effectively.  GBS is  a  simple  and reproducible  genome reduction
approach  using  enzymes  of  restriction  sensitive  to  methylation  before  sequencing.  It  allows
reducing the number of sequence reads and can allow to avoid repetitive regions[2]. A Genotype by
Sequencing (GBS) experiment was conducted by Warkentin et al.  on a recombinant inbred line
Cameor x Melrose produced by INRA.

Our pipeline first mapped the reads on the temporary reference assembly using bwa mem[3] and
kept  unique  mapping with  MAPQ (PHRED MAPping Quality)  higher  or  equal  to  30.  Optical
duplicates were removed with the picard tools[4].  We then called the variants using SAMtools
mpileup  and  BCFtools[5].  The  results  showed  that  abnormal  numbers  of  heterozygous  were
detected for all sites where the depth of sequencing was less than 3 reads.

To support low depth sites, we first called SNPs from the 7x resequencing data of the parents. We
filtered them to only keep SNPs that are non-variant between Cameor resequencing reads and the
Cameor genome  assembly,  and  variant  between  Melrose resequencing  reads  and  the  Cameor
genome assembly. This defines the set of possible SNPs in the progeny. Only GBS polymorphic
sites that are common with parents polymorphic sites are taken into account. All GBS sites with a
read depth below 3 was then called again using an in-house Python script.

We finally obtained a 473 587 SNPs of which 468 448 SNPs were placed on the genetic map.
This  map combined with  a  bionano map and a  whole  genome profiling  map will  allow us  to
rearrange scaffolds in our assembly and to do further analysis. We are working to encapsulate the
pipeline in a reusable package.
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Au cours de la synthèse d’une protéine à partir d’un ARN messager, la machinerie ribosomale 
traduit 61 codons en 20 acides aminés. Le code génétique est de ce fait « dégénéré » : seuls 2 acides aminés 
sont codés par des codons uniques alors que les 18 autres sont codés par des combinaisons de 2, 3, 4 ou 6 
codons. Même si ces derniers sont généralement appelés « codons synonymes », leur utilisation ne se fait pas 
de manière aléatoire. Les préférences d’usage de certains codons varient entre organismes, entre gènes à 
l’intérieur d’un génome et même entre les positions d’un même gène. On parle de biais d’usage des codons 
[1]. Celui-ci peut être dû à un biais mutationnel : lors de la synthèse ou de la réparation de l’ADN, tous les 
nucléotides ne sont pas utilisés de manière identique, ce qui peut influencer la composition nucléotidique et 
donc biaiser l’usage du code [2]. Le second moteur du biais d’usage des codons est la sélection 
traductionnelle : elle repose sur l’hypothèse que certains codons confèrent une traduction plus efficace lors 
de la synthèse protéique [2]. 

 

Pour estimer le degré d’usage non-aléatoire des codons synonymes, plusieurs mesures ont été 
développées depuis les années 1980. Ces mesures appartiennent principalement à deux classes : l’une où les 
fréquences des codons synonymes d’une séquence requête sont comparées à celles d’un jeu de données de 
référence [3] et l’autre où l’hypothèse nulle correspond à un usage aléatoire des différents codons synonymes 
[4]. 
 

Notre objectif est de développer une nouvelle mesure qui combine ces deux approches : elle calcule 
le biais d’usage des codons d’une séquence requête face aux préférences d’usage des codons dans un jeu de 
données de référence tout en normalisant selon une hypothèse d’usage aléatoire des codons. Nous avons 
effectué le développement de cette mesure et l’avons implémentée au sein d’un outil codé en Python, R et 
C++. Nous avons ensuite réalisé une étude comparative entre notre mesure et les autres outils et mesures de 
biais d’usage des codons.  

Dans un second temps, notre outil sera utilisé pour mesurer le biais d’usage des codons d’un large 
panel de virus humains en utilisant comme référence celui de leur hôte humain. D’éventuelles différences de 
biais d’usage des codons détectées par notre outil permettront d’aborder des phénomènes tels que le contrôle 
spatio-temporel différentiel de l’expression génique à l’intérieur d’un même génome ou l’exposition 
différentielle au système immunitaire des protéines virales en fonction des interactions hôte-parasite [5]. 
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Abstract 

Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids 

in a common inclusion [1,2]. The intracellular pathogens are thought to have donated those critical 

transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis 

[3,4]. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three 

Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol [1]. 

We now turn our attention to the reasons underlying other chlamydial lateral gene transfers evidenced 

in the descendants of plastid endosymbiosis. In particular, we show that half of the genes encoding 

enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan 

concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In 

addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses 

in animal hosts [5,6]. We propose that Chlamydiales have donated their tryptophan operon to the 

emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have 

allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. 

It would also have allowed possible export of this valuable amino-acid in the inclusion of the 

tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to 

transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters 

homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida 

thereby considerably strengthening our proposal. 
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Homologs, genes that derive from a common ancestor, can be separated in two classes: paralogs -deriving 

from an ancestral gene by a duplication event, and orthologs - deriving from an ancestor by a speciation 

event. Orthologs generally perform a similar function in different species with possible species-specific 

adaptations. Prediction of correct orthology relationship is critical in many functional and evolutionary 

applications: phylogenetic tree inferences, gene function predictions, genome annotation, selection of a 

relevant model organism for experimental studies... OrthoInspector [1] is one of the leading algorithm [2] 

for pairwise orthologous relationship predictions. In addition to the independent software package, the 

OrthoInspector website (www.lbgi.fr/orthoinspector) currently offers precomputed databases, with a 

sampling of 259 eukaryotes, 1568 bacteria and 120 archaea. 

Here, we present our current developments to build a new release of OrthoInspector databases. This major 

update aims at presenting a comprehensive set of species. As a starting point, we used a selection of non-

redundant proteome representing a wide variety of taxa: the Uniprot Reference Proteomes (Nov 2012) [3]. 

Statistical analyses of proteome contents were used to identify and filter low-quality proteomes. The  4752 

selected proteomes (representing 87% of the original set) were used as our dataset for the BLAST all-

versus-all [4] searches, first step of OrthoInspector calculation. With more than 20 million BLASTP 

searches, this step is computationally expensive. Thus, we segmented the BLAST database to parallelize 

this step and to perform it on the EGI computing grid [5]. Computing of orthology relationships were in 

turn parallelized on our local infrastructure. The final computed databases of orthology relationships 

provide a major breakthrough in terms of covered species with 711 eukaryotes, 3862 bacteria and 179 

archaea. It makes OthoInspector database the most comprehensive orthology database available to date. 

In parallel, we are developing new features to the OrthoInspector suite to improve the possibilities offered 

by OrthoInspector package and website. This includes support for SQLite databases, automatic update 

procedures to keep our resources up-to-date with Uniprot Reference Proteomes and more importantly, a 

definition of ortholog families. Families will be available in complement to the pairwise relationships 

currently supported. We plan to provide evolutionary characterization of these gene family through 

multiple sequence alignment, domain conservations and integration of cross-references toward external 

biological resources. 
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L’accroissement des données de NGS implique que les équipes disposent de solutions performantes,
souples et reproductibles pour le traitement de données volumineuses. De telles infrastructures sont très
lourdes pour être proposées au niveau local. L’Institut Français de Bioinformatique (IFB)[1] est une
infrastructure nationale de service en bio-informatique pour les sciences de la vie. Elle met à disposition un
cloud académique et anime un réseau national de plateformes bioinformatiques. Cette e-infrastucture de
calcul est l’environnement adéquat pour répondre aux besoins de traitement des données biologiques. Elle
met à disposition des machines virtuelles pré-configurées, des clusters sur-mesure et prochainement des
gestionnaires de données volumineuses dont les données de référence.

Le projet européen CYCLONE H2020 [2] a pour mission d’aider aux développements de solutions pour
déployer facilement des infrastructures complexes, il apporte notamment des utilitaires pour la construction
de VPN et une authentification sécurisée.

La solution présentée ici répond à un cas d’utilisation proposé par CYCLONE sur une solution prenant en
charge l’étape de mapping, qui est consommatrice en ressources mémoire (chargement des index), en
ressources de calcul et surtout en temps (taille des données d’entrée). Cette étape est préalable à tout
traitement sur les données de séquençage. Elle est facilement automatisable. La solution développée par
l’IFB propose un déploiement en un clic d’un cluster configurable en fonction des besoins de l’analyse à
réaliser et prêt à l’emploi, elle comprend :

• un cluster swarm docker [3] extensible et configurable ;

• un accès à un gestionnaire de données (tel que iRODS), performant avec des volumes importants, à la
charge de l’utilisateur de télécharger ces données dans son espace sur le cloud ;

• une interface graphique de gestionnaire de conteneurs Docker, l’analyse sera faite par des outils dockerisés
référencés, par exemple dans BioShadock [4], BioContainer ou Docker-hub. Dans notre cas, l’outil
TopHat2 [5] est utilisé pour comparer les temps de traitement avec les résultats obtenus classiquement.
D’autres étapes peuvent être intégrées : par exemple un pipeline de contrôle qualité ;

• un accès à une banque de données de référence gérée avec BioMaj [6] ;

• un réseau virtuel privé (VPN) pour isoler le cluster et l’accès aux données, la solution CNSMO a été
développée dans le cadre du projet CYCLONE ;

• un accès sécurisé au cluster grâce à la fédération d’identités eduGAIN pour les accès SSH et Web ;

• au terme de l’étape de mapping, l’analyse peut être poursuivie avec d’autres outils mis à disposition dans
le cloud au sein du cluster ou dans d’autres machines virtuelles, disponibles dans le catalogue RAINBio
[7].

L’IFB-core travaille parallèlement à la mise en place d’une fédération de clouds avec les plateformes
bioinformatiques françaises partenaires. Les utilisateurs pourront alors rapprocher au mieux les
environnements de calcul de leurs données. 
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Genomic issues such as complex genome assembly, structural variant discovery or phasing can be addressed 

by Long Read technologies.  

Thanks to its experience on short reads sequencing using the Illumina technologies, the GeT-PlaGe core facility 

began to evaluate and use long read technologies since the beginning of 2015 : Pacific BioSciences RSII, 

Oxford Nanopore Technology MinION and 10XGenomics Chromium. Results from different genomes 

sequenced by those platforms and sequences obtained on a PacBio Sequel from another France Genomic core 

facility will be presented and compared on this poster. 

As DNA quality is the most important requirement to obtain an efficient sequencing, sample requirements for 

each technology, and quality controls performed on GeT-PlaGe will be detailed in a first point. Secondly, we 

will compare sequencing data in terms of file format, sequence metrics, barcoding solutions and needed IT 

resources. Current projects will also be presented concerning de novo assembly results obtained using Long 

Read technologies, for several genomes (bacteria, plant and fish). 
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Abstract

Several mechanisms have been hypohesized to explain species divergence, from genomic incompatibilities
to divergent selection pressures [1]. Given the current availability of full genomes for many non-model organ-
isms sampling various branches of the vertebrate phylogeny, we can now combine genomic data with patterns
of speciation from more complete phylogenies [2]. As Ohno [3] initially postulated, duplicated genes are good
candidates for generating functional novelty and adaptation. We first dated duplications using dS (synonymous
substitution rate) calculations, in order to obtain a fine estimation of the rate of gene duplication through time
and lineages. This method however is sensitive to multiple bias (fast evolving branches, quality of gene align-
ments, etc). We are currently working on improving these dating method, and aim towards more sophisticated
models of gene evolution that could estimate duplication ages (either adapting existing models or developping
one). Our broader aim is to compare duplication rates with the diversification rates of taxons, and to assess the
role of gene duplication in evolution.
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The “Institut de Recherche en Horticulture et  Semences” (IRHS) hosts some collections of biological
resources for bacteria, fungi and plants. These collections are part of certified Biological Resource Centers
(BRC):  the  “Collection  Française  de  Bactéries  associées  aux  Plantes”  (CFBP)  for  microbes  and  more
recently the “Collection FRuits  À PÉpins et  Rosiers” (FrAPeR) and the “Collection Apiaceaes” for  the
plants. The management of these last two has leaded to the development of a tool for tracking the material
and logging phenotyping and characterization of these resources.

We have developed a webservice oriented database (ELVIS [1]: Expérimentations en Laboratoire Végétal
Information System) coupled with a dynamic web interface (PREMS [2]:  Plant  REsources Management
System). These tools take care of specificities linked to the material maintenance (seeds for annual / biannual
plants or vegetative reproduction for perennial plants) as well as confidentiality for breeding program.

Featured functionalities:

- Orchard / field location (apple tree, rose...) or geolocation (wild material characterization) through multi-
referential tagging

- Material characterization (plant phenotyping in field, greenhouse, laboratory)

- Material input / output tracking

- Material sample and exploitation tracking (sample, location, transformation)

- Document association (MTA, protocols)

As a webservice oriented application, ELVIS can implement API to communicate with other systems like
SIReGal  [3],  the  national  portal  of  INRA for  plant  genetic  resources  and through this  be a  part  of  the
European  network  for  genetic  resource  management.  Moreover,  the  local  installation  of  PHIS,  the
PHENOME [4] information system, in the laboratory allows us to build interoperability bridges.

ELVIS is built with Python and PostgreSQL and is freely available under open source CeCILL license.
The webservice API uses the JSON-RPC protocol.

PREMS is powered by Qooxdoo [5] and also available under open source CeCILL license.
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Le peuplier noir (Populus nigra) est une espèce majeure de la forêt alluviale en Europe occidentale et un
support de la biodiversité écosystémique. Pour explorer les composantes de la variabilité génétique au sein
de cette espèce parentale de peupliers hybrides commerciaux, nous avons initié une approche intégrative
combinant  des  données  génomiques,  transcriptomiques  et  phénotypiques  dans  une  vaste  collection
d'individus échantillonnés à partir de populations naturelles et évalués dans un même site expérimental. De
par leur grande abondance et facilité d’accès par séquençage, les SNPs (Single Nucleotide Polymorphisms)
sont des marqueurs moléculaires de choix pour les études de génétique quantitative (incluant  les études
d’association), de génétique des populations ou de sélection génétique. Chez le peuplier noir, si les premières
études de polymorphismes de séquence se sont focalisées sur le reséquençage de quelques gènes candidats
[1,2,3] ou sur l’identification de variants rares [4], des travaux plus récents se sont intéressés à une analyse
plus globale avec le développement d’une puce de génotypage à partir de SNPs détectés par séquençage de
génomes  complets  [5].  Nous  rapportons  ici  l'analyse  de  polymorphismes  SNPs  dans  des  séquences
transcrites produites par RNA-seq. Plus précisément, nous présentons un pipeline de détection et de typage
de SNPs à partir de données RNA-seq ainsi que sa validation grâce à des données déjà existantes. 

L'ARN a été extrait à partir de jeune xylème et de cambium recueillis sur 24 arbres correspondant à 2
répétitions de 12 génotypes originaires de 6 populations naturelles représentatives de l’aire de distribution de
l'espèce en Europe occidentale. Après quantification de l'ARN par tissu, les ARNs de xylème et de cambium
du même arbre ont  été mélangés et  soumis à un séquençage à haut  débit  sur un HiSeq2000 d’Illumina
(séquences pairées de 100 pb). Nous avons mis en place un pipeline de détection de SNPs à partir de données
RNA-seq.  Les  séquences  ont  d'abord  été  nettoyées  puis  alignées  sur  le  génome  de  référence  (Populus
trichocarpa). Ensuite, nous avons effectué un post-traitement des données d’alignement et nous avons lancé
la découverte de variants à l’aide 3 outils en plusieurs modes, combinés à plusieurs paramètres de filtration.
Les  résultats  obtenus  par  ces  différentes  techniques  ont  été  comparés.  Enfin,  les  SNPs  détectés  par  les
différents outils ont été annotés. Pour valider la technique, nous avons comparé les génotypes trouvés à des
résultats de génotypage issus d’une puce Illumina Infinium 12k fournissant 7 903 SNPs polymorphes et qui
avait été utilisée pour génotyper une collection de peupliers noirs incluant nos 12 génotypes étudiés [5]. Le
taux moyen de similarité de génotypage aux positions communes entre les SNPs de la puce et ceux trouvés
par RNA-seq (d’un même individu) est supérieur à 98%. Ces résultats démontrent la faisabilité et l’intérêt du
RNA-seq pour la découverte et le typage de SNPs dans des populations naturelles.
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Next generation sequencing technologies are still associated with relatively high error rates, about 1%,
which correspond to thousands of errors in the scale of a complete genome. Each region needs therefore to
be sequenced several times and variants are usually filtered based on depth criteria. The significant number of
artifacts, in spite of those filters, shows the limit of conventional approaches and indicates that some sequencing
artifacts are recurrent. This recurrence underlines that sequencing errors can depend on the upstream nucleotide
sequence context. Our goal is to search for overrepresented motifs that tend to induce sequencing errors.

Previous studies showed that some motifs, such as GGT [1,2], induce sequencing errors in the Illumina tech-
nologies. However, these studies were dedicated to exact motifs, and did not take into account approximate
motifs, limiting the statistical power of such approaches. On the other hand, some tools, such as FIRE [3],
DREME [4] and Discrover [5], were developed to search for degenerate motifs over the 15-letter IUPAC al-
phabet in the context of chip-seq studies. However, these tools use greedy algorithms, implying a lack of
sensitivity. So we developed an exact algorithm to search for degenerate motifs by enumerating all possible
IUPAC motifs. This algorithm is based on mutual information and uses hashtables with graphs data structure
to store the motifs. It is independent from the sequencing technology.

Experimental results on real data show that there are many overrepresented motifs upstream of sequencing
artifacts. These latter are identified through the strand bias between forward and reverse reads. The homopoly-
mer of length 3 CCC seems to be sufficient to induce errors on IonTorrent. On Illumina, motifs are mainly
composed of GGC followed by GGT (like: TGGCNGGT) or homopolymers. We have also noticed a base
quality fall after the detected motifs. Our exact algorithm requires less than one minute (Intel R© Core

TM
i5-4570

CPU, 3.20GHz), and less than 2GB of RAM to search for full degenerate motifs of length 6 on a dataset of
approximately 24000 sequences, extracted from 11 exomes sequenced on IonTorrent Proton.

Availability: https://github.com/bonsai-team/DiNAMO
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Post translational modifications (PTM) enhance the functional diversity of proteins. Among these PTM, 
glycosylation represents one of the most abundant and complex modification of proteins and N-glycosylation 
is determinant for cell survival. For 96% of N-glycosylproteins, glycosylation occurs at the canonical motif 
[N]-!P-[S/T] known as sequon [1]. In the laboratory, we study the evolutionary relationships and molecular 
evolution of glycosyltransferases that are Golgi enzymes implicated in the last steps of glycosylation [2] like 
B4GALNT2 implicated in the synthesis of blood group antigen Sda [3]. This enzyme is a glycoprotein and our 
working hypothesis is that the gain or loss of an ancestrally conserved N-glycosylation site in this enzyme 
might have resulted in the evolution of protein structure, subcellular localization and functional modifications 
with impact on the phenotype [4-7]. As a first towards answering this question, we identified over 150 
B4GALNT-related sequences (37 B4GALNT1 paralogues and 85 B4GALNT2 orthologues) from public 
databases (NCBI, Ensembl, CAZy) using a BLAST approach. We carried out sequence-based analysis using 
various multiple sequence alignment algorithms (MUSCLE, ClustalΩ, MAFFT, T-Coffee, ClustalW) to 
delineate informative regions and define conserved sequence motifs. Furthermore, we used NetNGlyc 1.0 
server [8] and GlycoMine [9] to predict potential N-glycosylation sites. We found differentially conserved 
N-glycosylation sites in the homologous B4GALNT sequences: a canonical sequon, [N]-!P-[S/T], present in 
11 mammalian B4GALNT2 sequences, which has disappeared in the human B4GALNT2 sequence [10]. This 
N-glycosylation site is also present in some ancestral B4GALNT sequences and has disappeared in the 
paralogous B4GALNT1 sequences suggesting no major role for this N-glycan. Interestingly, two atypical 
N-glycosylation sites [N]-X-[C] and [N]-[G] were predicted in mammalian B4GALNT2 sequences. Despite 
the fact that the [N]-[G] site is present in almost all the mammalian B4GALNT2 sequences, we found using 
PNGase F, an enzyme that remove N-Glycans, that the human B4GALNT2 enzyme is not glycosylated at this 
position, but at a second unusual [N]-X-[C] glycosylation site. This latter was found to be highly conserved in 
nearly all B4GALNT sequences except the teleostean B4GALNT2 sequences further suggesting an important 
functional role, which is currently investigated. 
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Metagenomics consists of experimentally characterizing a microbial ecosystem as a whole without prior
isolation of the different microorganisms composing it. Many microorganisms are not culturable and separate
analyses of each microorganism result in a warped understanding of the ecosystem, as they overlook close
relationships between these microorganisms (mutualism, parasitism). Metagenomics enable us to apprehend
a microbial ecosystem globally.

Metagenomics data raise many methodological questions, as studies are increasingly moving beyond the
mere constitution of a catalogue of species or genes and towards more complex analyses accounting for
spatial data, time series and covariates. In particular, it is not clear how best to perform interaction studies
and, more precisely, how to detect associations within the ecosystem [1].

In recent years, several statistical methods were developed to detect significant cooccurrences between
species, in different ecosystems and under different experimental conditions. These methods assume that
cooccurences are indicative of biological interactions between species [1] and interactions are thus revealed
by reconstructing the cooccurrence network. SparCC [2], REBACCA [3] and SPIEC-EASI [4] are recently
developed tools for the problem of network reconstruction in microbial ecology.

On this poster, we present a benchmark on the main reconstruction methods. Accuracy and running time
was assessed on both simulated and real metagenomic data.
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1. Introduction 

In quantitative metagenomics, sequenced reads are usually mapped onto a reference gene catalogue 
yielding a gene abundance table (or counting matrix). The increasing number of metagenomic studies 
and reference gene catalogues makes it necessary to develop efficient new tools able to deal with those 
abundance tables, in order to ensure standardization of analysis as well as making it easier and faster for 
the user, especially concerning repeated tasks. Here we present ShRCAn, a user-friendly software that 
takes an abundance table as input to preprocess the data, perform the preliminary analysis, and enable 
data visualization. 

2. Materials and methods 

ShRCAn (Shiny application for Raw Counting matrix Analysis) is written in the free language R. It uses 
the package shiny, that helps in building interactive applications in R; the package MetaOMineR 
(momr)[1] that provides useful functions for analysis of metagenomic data; the package ggplot2 that 
creates graphics; and optionally the package PARConnector that enables to use the ProActive Parallel 
Suite, a scheduler which manages high-performance computing to reduce execution time by 
parallelizing the tasks. 

3. Results 

The workflow starts with preprocessing of the raw matrix, which consists in clustering of samples (to 
detect contamination), downsizing, RPKM-normalization, and metagenomics species (MGS) matrix 
generation. Then statistical computations between different classes of samples are performed, including 
richness comparisons or MGS contrast studies based on discriminant genes. The results are finally 
displayed as boxplots or barcodes. Furthermore, ShRCAn is designed in such a way that it is always 
possible to easily add new analytical steps at the end of the workflow in order to improve its capabilities. 

4. Conclusion 

ShRCAn is an interactive shiny application that provides a user-friendly and standardized way to process 
gene abundance table, from pre-processing to statistical analysis. Automation and speedup of the data 
preprocessing allows the bioanalyst to have more time in the interpretation of biological results.  
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Anaplasma phagocytophilum is a tick-borne pathogen infecting multiple vertebrate host species, 

including humans. The tick species Ixodes ricinus is considered as its main vector in Europe. While the 

prevalence of A. phagocytophilum in ticks is often low, i.e. below 5 % in questing I. ricinus nymphs, it can 

reach higher values in host populations. As an illustration, roe deer frequently shows a prevalence of A. 

phagocytophilum infection above 80 %. Roe deer are considered as a major reservoir for this pathogen, but the 

genotypes they carry are different from the ones that infect domestic animals and humans. We thus investigated 

whether roe deer was the main source of A. phagocytophilum genotypes circulating in questing I. ricinus 

nymphs collected either in pastures or in forest of a French fragmented agricultural landscape. 

We first identified infected samples from 1,837 I. ricinus nymphs, sampled on geo-referenced transect lines, 

and 75 roe deer, tracked with GPS devices. Molecular characterization has been performed with 

high-throughput sequencing to take into account potential co-infections. A target region of around 350 bp was 

amplified by nested PCR for each marker gene: groEL, an housekeeping gene (coding for a chaperone protein), 

msp4 and ankA, 2 genes associated to host specificity. We defined different alleles for each locus and analyzed 

the observed multilocus genotype structure. 

The analysis of high-throughput A. phagocytophilum sequences resulted in the delineation of several 

genotypes for each locus: 4 for msp4, 5 for ankA and 9 for groEL with a frequent occurrence of co-infections. 

A graph approach focusing on the distribution of alleles among hosts and vectors identified two groups of 

alleles at the different loci, i.e. alleles in linkage disequilibrium, respectively associated to roe deer and tick 

samples. A multidimensional scaling (MD) approach combined with a multivariate analysis of variance also 

indicated that ticks and roe deer carried different genotypes. 
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The fungal genus Mucor belongs to the Mucoromycota phylum, one of the five groups of the early 
diverging fungi. Mucor species are ubiquitous, they show diverse lifestyles and may have contrasting 
impacts on human activities. Indeed, some pathogenic Mucor species represent a threat for human health, 
some others can be involved in food spoilage whereas some few others can be used for Asian fermented food 
manufacturing or cheese ripening. Despite these impacts on human activities, little is known on the genus 
Mucor and most of the studies focused only on human pathogens. Here, we are investigating on specificities 
linked to Mucor species lifestyles. We engaged a transcriptomic analysis focused on five species: M. fuscus 
and M. lanceolatus, two technological species used in cheese ripening, M. racemosus, a recurrent cheese 
spoiler, M. circinelloides, a pathogenic species and M. endophyticus, a plant endophyte species.  

Strains of M. fuscus UBOCC 1.09.160 (MF), M. lanceolatus UBOCC 1.09.153 (ML), M. racemosus 
UBOCC 1.09.155 (MR), obtained from the Université de Bretagne Occidentale Culture Collection, M. 
endophyticus CBS 385-95 (ME) and M. circinelloides CBS 277.49 (MC) ordered from the Centraal Bureau 
Voor Schimmelculture CBS were grown on a standard medium and total RNA was extracted. Between 25 
millions (ML) and 35 millions (ME) pairs of reads were obtained from the paired end sequencing. 
Transcriptomes were assembled de novo with Trinity, low coverage transcripts were detected with RSEM 
and removed from transcriptomes. Since the percent of gene with isoforms was different among species 
(from 7% for ME to 31% for ML), a single transcript per Trinity gene was selected to create the studied 
transcriptomes. Completeness of these new transcriptomes were assessed with BUSCO. Ribosomal RNA 
were detected with RNAmmer, CDS were predicted with Transdecoder. On these predicted proteomes, 
protein domains, signal peptides and transmembrane domains were annotated with respectively HmmScan 
against PFAM-A, signalP and tmhmm. Homologies were searched against Uniref90, swissprot-uniprot and 
tree Mucoromycota species. To this functional annotation were added GO terms and EC numbers transferred 
from Mucoromycota homologies. EC numbers were also inferred by profile detection with PRIAM. 
Orthogroups were predicted with OrthoFinder allowing us to propose a core transcriptome and transcripts 
specific to groups of species. Each of these groups of transcripts was functionally characterized by 
examining the composition of functional annotation (GO terms, EC numbers, protein signal...). A special 
interest was given for groups composed only by transcripts of species sharing the same lifestyle such as the 
technological species MF and ML. In the same time was investigated the repartition of genes suspected to 
show specificities linked to Mucor species lifestyles like excreted proteins and secondary metabolites. These 
investigations allowed to spot groups of transcripts that could be linked to a given species. This study is 
expected to give new hints regarding adaptation to specific habitat and/or lifestyle. 
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In the post-NGS area, sequencing bacterial genomes is very cheap (few hundreds €). Most of 
the time, users are no longer content to analyse a single genome; they want to compare large 
collections of related genomes (strains). This entails that biologists have to pay too much 
attention and dedicate their time to sequence the genomes, instead of thoroughly analysing the 
genomic data. Thus, this brings light to the increasing need for automating the annotation of 
bacterial genomes and carrying out efficient data mining. 
In that context, IFB hub and the IFB-MIGALE platform developed a virtual environment 
(appliance), based on virtual machines, called "bacterial genomics" that aims to provide 
biologists and bioinformaticians access to suitable resources via the cloud. For example, Prokka 

[1] is a software tool for the rapid annotation of prokaryotic genomes. Insyght [2] developed 
by IFB-MIGALE is a tool for the visualization of the syntenies (local conservation of the gene 
order along the genomes) and the exploration of the landscape of both conserved and 
idiosyncratic genomic regions across multiple genomes. The platform automatically launches 
a set of bioinformatics tools (e.g. BLAST, HMMER, Prodigal…) to analyse the data and stores 
the results in a relational database (PostgreSQL). These tools use several public reference data 
collections. A web interface allows the user to browse the results. Setting up the platform 
requires solid skills in system administration since many bioinformatics tools with different 
dependences need to be installed as well as a relational database management system, a web 
server and servlet container, etc. Moreover, performing the analysis of a large number of 
genomes requires large computing resources and the use of parallel computing. 
The goal is to deploy the “appliance” in one click over one or more cloud infrastructures. To 
achieve this, new features to automate deployment of complex application were added to the 
IFB’s cloud portal [3] through the connection to the SlipStream cloud broker [4]. Developed 
by SixSq, SlipStream is a multi-cloud application management platform. It automates the full 
application management lifecycle, within Infrastructure as a Service (IaaS) cloud 
infrastructures. Such complex application deployments can be done over several cloud 
infrastructures and provide scientists with high-level cloud features such as the dynamic 
allocation of a dedicated network for the isolation of the virtual machines, with the replication 
of the user data and with a direct link from the cloud portal to the Insyght web portal [5]. The 
appliance is available in the RAINBio catalogue of virtual images on the Biosphere web portal 
[6], and several tutorials on IFB bioinformatics cloud services usage are also available online 
on the main IFB website. 
	
[1] Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul 15;30(14):2068-9. 

PMID:24642063 
[2] Lacroix T., Loux V., Gendrault A., Hoebeke M., and Gibrat J.F. Insyght: navigating amongst abundant 

homologues, syntenies and gene functional annotations in bacteria, it's that symbol! Nucleic Acids Res. 2014 
Dec 1; 42(21): e162. doi: 10.1093/nar/gku867 ; PMCID: PMC4245967 

[3] https://biosphere.france-bioinformatique.fr/  
[4] http://sixsq.com/products/slipstream/index.html 
[5] https://cyclone.france-bioinformatique.fr/usecases/view/125 
[6] https://biosphere.france-bioinformatique.fr/catalogue/appliance/19/ 
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Abstract 
Introduction. MED13L is a well conserved gene involved in the structure of the Mediator Complex. 
Truncating variations were reported in patients with intellectual disability (ID). Hence, MED13L was included 
in sequencing panels for ID diagnosis and the analysis of missense variations was not obvious. Here, we 
compared 15 bioinformatics predictive tools to aid in the MED13L missense interpretations. 

Methods. All missense positions for MED13L were extracted from ExAC database, and considered as class-1 
or 2 [1] if there were also present in EVS database or if the allele counts were upper than 1 in ExAC. All class-4 
and 5 missenses [1] were found in Clinvar, Decipher, Pubmed, or in our in-house MED13L database as french 
referent laboratory for MED13L pathogenic variations for the healthcare network “DefiScience”. Fifteen in 
silico predictive tools were used. They were based on evolutionary conservation (FATHMM, 
MutationAssessor, PhD-SNP, PANTHER, SIFT), on protein structure/function and evolutionary conservation 
(Align GVGD, MutationTaster, PolyPhen2, SNAP2, UMD-predictor), on protein function (SNPs&GO), on 
similarity between variant sequence and homolog sequence (PROVEAN), or on combined tools (CONDEL, 
CADD and REVEL) with different cut-offs. We compared sensibility (SE), specificity (SP), accuracy (ACC), 
and Matthew’s correlation coefficients (MCC) [2]. A second analysis was performed on missense considered 
as deleterious for CONDEL. All databases were consulted in January 2017. 

Results. We analysed 513 missense variations from MED13L. Eleven missenses were considered as class-4 or 
5 and 502 as class-1 or 2. All pathogenic missenses were never found in ExAC database. Their median PhyloP 
score was 5.731 [4.304 to 6.172] and median Grantham score was 94 [15 to 145]. The median number of allele 
count in ExAC for benign missenses was 7, with a mean count of 25, a median PhyloP score of 2.872 [-2.455 to 
6.318] and a median Grantham score of 58 [0 to 215]. CONDEL showed the best performance in MCC 
measures with 0.33, and all pathogenic variations were properly classified (SE = 100%). With caution, due to 
the small number of pathogenic missenses, the higher SE values (100%) were obtained with CONDEL, 
Polyphen2, CADD (cut-off 15 and 20), UMD-predictor, PANTHER and MutationTaster. Conversely, these 6 
tools shared lower SP. After filtering on non-deleterious variations for CONDEL (n = 239), CADD (cut-off 20) 
showed the best compromise with a SE of 100%, a SP of 22.67%, and a MCC measure of 0.12. 

Conclusions. Considering MCC as the best parameter to measure predictor’s performance and the need to 
keep all pathogenic variations, CONDEL seems to present the best compromise. Moreover, combination 
between combined tools CONDEL and CADD (cut-off 20) has allowed us to reduce the number of class 1 and 
2 variations without affecting the number of class-4 and 5 variations in MED13L gene analysis. 

References 
[1]  Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus 

recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular 
Pathology. Genet Med. 2015 May;17(5):405–24.  

[2]  Johnson MM, et al. Screening for deleterious nonsynonymous single-nucleotide polymorphisms in genes involved in 
steroid hormone metabolism and response. Cancer Epidemiol Biomark. 2005 May;14(5):1326–9.  
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Real-time quantitative polymerase-chain-reaction (RT-qPCR) is frequently used as a standard technique
for various applications such as research or clinical diagnostic. To date, several data analysis strategies have
been proposed to extract meaningful information from single RT-qPCR curves [1,2,3]. Most of them are in
fact semi-automated because they were developed in the context of low-throughput RT-qPCR data where
each reaction can be visually investigated and its analysis manually corrected. We observed that portability
of those methods to high throughput data was far to be straightforward and lacked robustness. In fact several
of them could simply not be fully automated. To address this question we have developed an absolute high
throughput qPCR data analysis approach based on a robust fitting of a four or six parameters sigmoid model.
We take  advantage of  the  throughput  such  that  the  search  of  the  optimal  parameters  for  each  curve is
achieved using information gathered from the fitting of large sets of curves obtained from the whole dataset.
Our approach brings the level of robustness required to address high throughput qPCR data.
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1 Introduction 
In 2015 UniProt removed 46.9 million unreviewed UniProtKB/TrEMBL records found in redundant 

proteomes (see: http://www.uniprot.org/help/proteome_redundancy). The redundancy pipeline [1] computes 
proteome redundancy for bacteria proteomes and, since UniProt 2016_08 release, for fungi proteomes as 
these two divisions constitute the majority of the new proteomes sequenced. Since 2015 the number of 
removed records has steadily increased such that UniProtKB (2017_01 release) was composed of 81.2 
million protein identifiers (PIDs) from the INSDC (International Nucleotide Sequence Database 
Collaboration), generating 73.7 million UniProtKB/TrEMBL records with 153.5 million PIDs excluded 
because they were classified as redundant. Therefore, two-thirds (65.3%) of the INSDC proteins are missing 
in UniProtKB and by removing these sequences is the UniProtKB no longer a comprehensive resource? 

2 153 million protein identifiers not in UniProtKB 
A large proportion of new genomic sequencing data are from closely related organisms already sequenced 

and published in the INSDC. This means that the protein sequences from these organisms are not unique but 
do generate new PIDs. Therefore, these redundant protein sequences are stored in UniParc, UniProt’s 
sequence archive by default. It contains all the protein sequences, including those from the INSDC, where a 
unique sequence will have a unique UniParc identifier (UPI) and then identifier cross-references to database 
sources having the unique sequence. Therefore, a UPI can have multiple links to UniProtKB and INSDC as 
long as the sequence represented by that UPI is the same. Among the 153.5 million PIDs not integrated into 
UniProtKB 149.7 million have a UPI which also links to a UniProtKB accession. Only 3.8 million PIDs 
(2.5%) represented in 666,988 UPIs (unique sequences) do not have identical sequence in UniProtKB. 

Question: Of the 666,988 missing sequences is UniprotKB missing important functional knowledge that 
requires new UniProtKB/TrEMBL records with unique annotations? Before answering this question, it is 
important to know that annotations made in UniProtKB/TrEMBL come from automatic annotation pipelines 
using InterPro integrated signatures and if two different sequences contain the same set of InterPro integrated 
signatures, then both records will have exactly the same annotation. We evaluated if any of the 666,988 UPIs 
match a sequence in the Pan-Proteomes or UniRef90 using Blastp. Then we analyzed whether statistically 
significant subject/query hits have a differential InterPro integrated signature set by using InterProScan to see 
if UPIs would make new unique automatic annotation. 65,238 and 582,164 UPIs have a significant hit 
(identity>80% and hit coverage>50% length of query and subject) in Pan-Proteomes and UniRef90, 
respectively. From these hits, 122 UPIs have a differential InterPro integrated signature set that could 
potentially lead to a new annotation. However, 18,803 UPIs did not return a significant Blastp hit; where 
9,811 UPIs are fragments, identity and coverage of the query is > 90% but subject coverage is < 50%. The 
other 8,992 UPIs, 2,643 UPIs have InterPro signature set that could potentially lead to a new annotation.       

3 Conclusion 
It is correct not to integrate 65.3% of INSDC into UniProtKB. The CDSs from INSDC have a high level 

of redundancy, 97.5%, to CDSs sequences already present in UniProtKB. Of the remaining 2.5% sequences 
that are technically missing from the UniProtKB only 4.2% of these sequences (2,765/666,988) could 
potentially add valuable knowledge to the knowledgebase by inferring new functional annotations. 

References  
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 Protein secretion systems exist in many bacterial and archaeal species and are important for bacterial 
virulence. These systems are complex machineries made of many different proteins that interact together to 
allow other proteins to pass through the cell wall and be secreted outside of the cell. The proteins constituting 
these systems show various evolutionary rates and patterns of conservation within the secretion systems. Many 
of these systems were co-opted in complex evolutionary processes from other molecular structures.  
 The co-option is the emergence of new complex forms and molecular systems from other systems with 
different functions. This process of co-option (or exaptation) of functional or structural traits is thought to be a 
major driver of functional innovation [1]. The appendages of bacteria provide some striking examples of these 
processes. For example, the type III secretion system (T3SS) was co-opted from the bacterial flagellum [2]. 
 Biochemical, phylogenetic, and structural evidence show that the family of molecular machineries 
including type II secretion system (T2SS, involved in protein secretion), type IV pilus (T4P, involved in cell 
motility, adherence and virulence), Tad pilus (idem), the competence apparatus (Com, involved in natural 
transformation) and the archaeal flagellum (Archaellum, motility) share homologous genes and have a similar 
genetic organization [3].  

 We designed custom comparative genomic tools to detect and distinguish macromolecular systems in 
genome sequences, based on their particular components and genetic organization (MacSyFinder, [4]). This 
allows us to investigate the evolutionary origins of these machineries by phylogenetic and comparative 
genomics approaches, and thus to decipher some mechanisms of co-option involved in the diversification of 
microbial cellular machineries. Another goal would be the use of these phylogenetic analyses to facilitate the 
discrimination between related systems, and produce tools to perform the automatic annotation of an unknown 
system. 

 We have detected more than 6400 systems of these family of systems among all the bacteria (mostly in 
Proteobacteria), and we have identified their key components (ATPase, inner membrane platform, major pilin, 
prepilin peptidase, secretin) on a dataset of more than 5750 complete genomes. For each key component, we've 
established a phylogeny, and we are now trying to reconcile them and understand the biological reasons of their 
discordance by inferring the phylogeny of this family of systems.  

 The systems analyzed are probably among the most complex network of molecular co-options analyzed 
to date and should provide an excellent basis to (i) infer the frequency of horizontal transfer of each type of 
derived molecular system, and (ii) study the evolution of the genetic organization of the loci encoding these 
systems in the light of their evolutionary history. 

 

1. Gould, S.J. and E.S. Vrba, Exaptation-A Missing Term in the Science of Form. Paleobiology, 1982. 8: 
p. 4-15. 

2. Abby, S.S. and E.P. Rocha, The non-flagellar type III secretion system evolved from the bacterial 
flagellum and diversified into host-cell adapted systems. PLoS Genetics, 2012. 8(9): p. e1002983. 

3. Korotkov, K.V., M. Sandkvist, and W.G. Hol, The type II secretion system: biogenesis, molecular 
architecture and mechanism. Nature Reviews. Microbiology, 2012. 10(5): p. 336-51. 

4. Abby, S.S., et al., MacSyFinder: A Program to Mine Genomes for Molecular Systems with an 
Application to CRISPR-Cas Systems. PLoS ONE, 2014. 9(10): p. e110726. 
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1 Abstract

Gigabase-scale genome projects and large metagenomics studies have flourished thank to high-throughput
sequencing technologies. However, performing de novo assembly of such data remains challenging. In the
landscape of assembly software, the tools that produce high-quality assemblies typically require significant
computational resources, while the fast and memory-efficient ones yield relatively inferior results. We present
Minia-pipeline: an assembler that combines efficiency and high-quality results. Minia-pipeline is geared to-
wards large datasets of metagenomes and eukaryotic genomes, and recently provided high-ranking assemblies
in the Critical Assessment of Metagenomic Interpretation challenge. This poster describes the overall archi-
tecture of the pipeline, key algorithmic improvements, and demonstrate its effectiveness on both large genome
and metagenome samples. The pipeline is modular and integrates several components: an error-correction
module, a unitig assembly tool (BCALM 2 [1]), a multi-k contigs assembly module (Minia 3), and a scaffolder
(BESST [2]). Software is available at https://github.com/GATB/gatb-minia-pipeline

References
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1 Inria, Université de Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

2 Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en
Informatique Signal et Automatique de Lille, F-59000 Lille, France

Corresponding author: pierre.marijon@inria.fr

Third-generation long-read sequencing technologies tackle the repeat problem in genome assembly by pro-
ducing reads that are long enough to span most repeat instances. In principle one expects that with such reads
most bacterial genomes will be assembled into a single contig [1]. However in practice, some datasets fail to
be perfectly assembled even with leading assemblers, and are fragmented into a handful of contigs. As a mean
to investigate those cases, we consider the string graphs that are generated by assemblers during intermediate
stages of the assembly process. We seek to establish a coherent framework for analyzing these graphs, in the
hope that they will help us determine the biological causes that led the assembler to output shorter contigs. This
poster presents some preliminary results of such an analysis.

We visualized, analyzed and compared assembly graphs generated by Canu [2] and Miniasm assemblers
[3] on biological (MBRAC-26 [4]) and synthetic datasets (created with LongISLND [5]). We introduce the
concept of graph projection of an assembly graph onto another, taking advantage of the recent GFA format.
We are thus able to observe how reads that are neighbors of contigs extremities overlap, in terms of error
rate and overlap length. We implemented an automatic and user-friendly snakemake pipeline that generates a
HTML report for each assembly. We identified cases of contigs that were not joined by the assembler despite
indications in the string graph that such joins could have been made. These cases highlight potential directions
on how to improve the assembly process. In future work we will take advantage of this investigation to propose
alternative assembly hypotheses based on string graph analysis.
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1 Objectif

Avec l’évolution des technologies de séquençage haut débit, la bioinformatique est devenue un point de
passage obligatoire en biologie ou encore en médecine pour le diagnostic moléculaire. L’analyse de ces données
génomiques nécessite le plus souvent des compétences informatiques hors de portée d’un non-bioinformaticien
qui souhaite gagner en autonomie. Plusieurs startups ont d’ores et déjà pris le devant pour répondre à cette
demande en produisant des logiciels payants accessibles à tous à l’aide d’interfaces graphiques simples et
épurées. Labsquare est une communauté de développeurs qui veut se poser comme alternative aux solutions
commerciales en produisant des interfaces graphiques libres et accessibles dans le domaine de la génomique en
suivant le même modèle que certaines associations à but non lucratif comme Framasoft ou KDE.

2 Communauté

Nous sommes pour l’instant une petite équipe composée de bioinformaticiens, developpeurs, designers,
médecins et généticiens. Nous communiquons et travaillons ensemble grâce à des outils comme Github, Gitter
ou Framatalk.

3 Technologie

Le framework C++ Qt est une de nos technologies préférées en nous permettant de réaliser des interfaces
graphiques modernes et multiplateformes. A titre d’exemple Rstudio, Mendeley, Bandage et Alamut sont codé
avec Qt. Les applications labsquare sont et seront toujours libres sous licence GPL3 en respectant les standards
du GA4GH (Global Aliance for Genomics and Health).

4 Applications

Quatres applications sont déjà disponibles ou en cours de developpement.

FastQt est le clone de FastQC[1] et permet d’analyser des fichiers FASTQ.
https://github.com/labsquare/fastQt

CuteVCF est un viewer de fichier VCF.
La prochaine version, CuteVariant se calquera sur le fonctionnement de variant-tools[2].
https://github.com/labsquare/CuteVCF

CutePeaks Un simple visualisateur de fichier AB1 ( Sanger trace file ) .
https://github.com/labsquare/CutePeaks

BigBrowser Un genome browser mixant les caractéristiques d’IGV[3] [4] et d’Alamut visual.
https://www.youtube.com/watch?v=Y7ouuS8Ooo0
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1 Introduction 

In genome wide association studies, although it is a strong biological assumption, SNP (Single 

Nucleotide Polymorphisms) additive model is often used before testing the association between a 

phenotype of interest and SNPs. SNP additive model refers to the coding of SNP by the number of rare 

allele and allows to consider SNPs as continuous variables and to use statistical methods that only allow 

continuous predictors (for example lasso or PLS regression). Yet, data on the impact of this choice is 

lacking. The objective of our study was to test, in a simulation framework, the influence of SNP coding 

on the selection of SNPs linked to a phenotype of interest. 

2 Methods 

We used data from EPIMAD registry [1] on the severity of Crohn’s disease. 156 patients have been 

genotyped for 369 variants. We used the following simulation framework : the 12 most significant SNPs 

in univariate analysis were considered as “influent” and others as “non influent”. We randomly 

permutated all “non influent” SNPs, using the same permutation for all SNPs in order to keep the 

correlation structure between SNPs. “Influent” genes were not permuted in order to keep their relation 

with the dependent variable. This sample set was used to test the selection of SNPs with the lasso [2] 

and stability selection method [3] with 5 SNPs codings : additive, dominant, recessive and heterozygote 

models and finally the group-lasso method [4] that allows to code SNPs as dummy variables. 

3 Results 

With a threshold of 0.6 in stability selection, heterozygote and group-lasso models permitted to select 

more “influent” SNPs than other models, including the additive model : heterozygote and group-lasso 

selected 7/12 SNPs whereas additive model selected only 3/12. All models failed to select all “influent” 

SNPs and to avoid false positives. This might be related to the simulation framework using real data : 

“influent” SNPs might be only slightly related to the dependent variable or correlated to other SNPs. 

Our study highlighted that the additive genetic model can fail to select the real variables and that more 

interest should be given to the research and use of statistical models allowing qualitative variables, 

especially group methods in the field of sparse regression methods. Yet, our study needs to be replicated 

on another public data set with more strong association of SNPs and the dependent variable. Sparse-

PLS regression methods need also to be tested since they might better take correlation between SNPs 

into account. 
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Visualization  and mapping of  DNA molecules  at  single  molecule  level  genome-wide  is
possible thanks to  a new device based on microfluidics developed by BionanoGenomics.  DNA
fibers stained with a fluorescent intercalator, YOYO-1, and labeled by incorporation of fluorescent
nucleotides  using  a  nicking endonuclease  creating  a  restriction map (barcode),  are  stretched in
nanochannel arrays and imaged automatically.  We typically collect, in a single run, over 32 000
images and more than 15 000 Mbp of DNA in the form of >100 Kbp long DNA molecules. This
device, made for finding structural variations in a given genome and for de novo assembly, is now
being used for the study of replication origins.

From each of the images the DNA molecule intensity profile is extracted after having achieved
preprocessing  and  registration  steps  on  the  raw  images.  Based  on  the  analysis  of  these  one
dimension profiles, we would like to know if there is a correlation between tracts of higher intensity
(doubling) and replication bubbles that has been observed in previous studies performed in our lab.
To do so, adaptation of the provided proprietary softwares and new tool development are required.
One of the tools that I have already implemented, enables us to visually check the DNA molecule
detection and the optical mapping performed and see where origins of replication are fired molecule
by molecule genome wide. I will be presenting the current effort I put to automatically analyze the
thousands  of  DNA molecules  in  order  to  validate  our  observations  regarding  this  doubling  of
intensity. 
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1 The Norine database

Norine, first released in 2006 [1], remains the unique platform dedicated to computational analysis of non-
ribosomal peptides (NRPs). Among others, NRPs can act as antibiotics, siderophores, surfactants or protease
inhibitors. The Norine database is the reference NRP knowledge base, containing more than 1200 peptides
composed of almost 530 different monomers (various building blocks including amino acids). Each referenced
NRP have a dedicated web page with various informations, including the most important, their composition
and their biological activities. The monomeric representation, correspond to the nearest representation of the
NRP assembly process. The other representation is the atomic representation, obtained by reconstruction after
a mass spectrum analysis. The knowledge of the monomeric representation allow to understand the synthesis
pathway. It has also been proved [2] that, the activity of the molecule can be predicted from this representation.

2 Improving the data quality and quantity

We developed a tool called smiles2monomers (s2m) [3] that automatically creates NRP annotations. From
a SMILES [4], s2m infers the monomeric structure of the NRP. In Norine, a significant amount of NRP entries
(around 30%) are annotated with both structures. We used s2m on the atomic structures to verify the integrity
of the data and we found a few errors (50 NRPs with a wrong atomic or monomeric structure). To avoid the
insertion of new errors, we included the s2m software in the crowdsourcing tool MyNorine.

We identified 3 main databases that could be sources of new NRPs for Norine: MIBiG [5] (stores gene clus-
ters of secondary metabolites), BIRD [6] (Centralisation of external resources about ”interesting” molecules),
StreptomeDB [7] (molecules produced by bacteria in the Streptomyces genus). The Norine database is well
known for the quality of its manual annotations. So, we did not want to add wrong informations from an auto-
matic filling of the database. For this reason, we created a strict validation pipeline for the potential new entries.
After the filtering process, we found 472 NRPs unreferenced in Norine: 235 from MIBiG, 162 from BIRD and
75 from StreptomeDB. Those data represent an increase of 30% of the entries in the Norine database.

3 Conclusion

In this poster we present an update of the data from the knowledge base Norine. Using tools like smiles2monomers,
we detected a few errors in the annotations. We corrected them and created safeguards to avoid errors in future
user submissions. In a second time, we used several tools to retrieve and filter many possible new NRP entries
in the database. The work on automatic filing scripts led us to a data increase of 30%. So, in the coming release
of Norine we strongly improve the data quantity and quality available for all.
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Nonribosomal Peptides (NRPs) are natural compounds enzymatically synthetized by microorganisms such as 

bacteria and fungi. These peptides have shown a wide range of biological properties such as antibiotics, 

antitumor or immunosuppressant, being of great importance to the pharmacological and agricultural industries. 

Due to its high sensitivity and accuracy, Mass Spectrometry (MS) is crucial for the identification of these 

biomolecules. However, the unusual chemical structures of NRPs (cyclic, polycyclic, branched…) and the 

presence of highly modified non-proteogenic amino-acids complicate the interpretation of the MS/MS spectra. 

Tools for the identification of some simple NRPs already exist, but they do not cover all NRP specificities, lack 

flexibility, efficient scoring and statistical validation as well as user friendliness. Here we present a new 

bioinformatics tool to match predicted MS/MS spectra against their experimental counterparts, either exactly 

or in a modification tolerant way.  

Norine, a database entirely dedicated to non-ribosomal peptides [1], is used to retrieve the molecular structure 

of the NRPs.  Based on this information we have developed a fragmentation model to calculate the MS/MS 

fragments of each peptide and predict their theoretical spectrum. The model covers all the structures observed 

in NRPs (cyclic, multicyclic and branched) and includes the 500+ non-proteogenic monomers. All the known 

fragmentation characteristics of NRPs have been included and multiple ring breakages are taken into account 

in order to calculate the putative fragment masses. Additionally, a combinatorics algorithm has been developed 

in order to allow modification and adduct tolerant searches. Once a spectrum-peptide match (PSM) is 

confidently identified, it can be added to a spectral library with its corresponding annotations. 

Our software is presented as a web application developed in Javascript, CSS and HTML for the client side and 

Java for the server side. It provides a highly interactive interface and it is able to perform a configurable and 

complete computational fragmentation of NRPs, including those presenting complex structures containing 

multicycles and several branches. Preliminary tests with experimental MS/MS data show positive results: the 

tool is able to match all the high intensity peaks. Furthermore, this is the first NRP fragmentation tool that 

includes modification tolerant searches, which will be very useful for the identification of new peptides. 
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Most metazoans are involved in durable symbiotic relationships with microbes which can take 

several forms, from mutualism to parasitism. The advances of NGS technologies and bioinformatics

tools have opened new opportunities to shed light on this hidden but very influential diversity.

The pea aphid is a model insect system for symbiont studies. It harbors both an obligatory symbiont

supplying key nutrients and several facultative symbionts bringing some novel functions to the host,

such as protection against natural enemies and thermal stress. The pea aphid is organized in a 

complex of biotypes, each adapted to a specific host plant of the legume family and having its own 

symbiont composition. Yet, the metagenomic diversity of the biotype-associated symbiotic 

community is still largely unknown. In particular, little is known on how the symbiotic genomic 

diversity is structured at different scales: across host biotypes, amongst individuals of the same 

biotype, or within individual aphids.

We used high throughput whole genome metagenomic sequencing to characterize with a fine 

resolution the metagenomic diversity of both individual resequenced aphids and biotype specific 

pooled aphids. By a reference genome mapping approach, we first assessed the taxonomic diversity 

of the samples and built symbiont specific read sets. We then performed a genome-wide SNP-

calling, to examine the differences in bacterial strains between samples. Our results revealed 

different diversity patterns at the three considered scales for the pea aphid symbionts. At the inter-

biotype and intra-biotype scales, the primary symbiont Buchnera and some secondary symbionts 

such as Serratia showed a biotype specific diversity. We showed evidence for horizontal transfer of 

a Hamiltonella strain between biotypes, and found two distinct strains of Regiella symbionts within 

some biotypes. At the finest intra-host diversity scale, we also showed that these two strains of 

Regiella may coexist inside the same aphid host. This study highlights the huge potential of 

bioinformatics analyses of metagenomic dataset in exploring microbiote diversity in relation with 

host variation.
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With the explosion of data produced especially in the human metagenomic domain, numerous 

heterogeneous sources of data are available to the scientific community: metagenomic/metatranscriptomic 

reads, metagenome assemblies, reference gene catalogues, gene abundance profiles, sample metadata etc. In 

order to explore fully various facets of human microbiota, biologists need to access and browse integrated 

databases connecting these data. In this context, we developed an extension for iMOMi (integrative MultiOmic 

Mining relational database) in order to unify and centralize metagenomic reference gene catalogues with their 

accompanying data and provide a common datasource to biologists. 

The iMOMi design is a modular database related to annotations data (Genbank, EMBL, COG/eggNOG, 

KEGG…) and in silico analysis (such as orthologous classification or regulatory motifs delineation) [1]. Current 

version of iMOMi is a relational database centered on the integration and exploration of (meta)genomic data. 

The database contains more than 150 tables with specific rules: annotation, phylogeny, taxonomy, metabolism, 

gene expression regulation, protein structure. iMOMi is capable to integrate genome data but also 

metagenomic data in particular large reference gene catalogues used for building abundance gene profiles in 

quantitative metagenomic studies. Furthermore, we added a powerful extension to handle (i) the concept of 

MetaGenomic Species; (ii) the relation between reference genes and their metagenome source and (iii) the 

gateways between several reference gene catalogues. 

We developed user-friendly tools, for example iMOMi Studio which (i) facilitates the importation of new 

data (direct download of genomes from the NCBI, functional annotation of metagenome…) and (ii) allows a 

certain data browsing, in particular for metagenomic data: functional potential projection onto iPath2 [2] 

visualization for a genome/metagenome/MGS or taxonomic distribution with KRONA representation [3] for 

examples. 

Furthermore, to help querying multiple tables, we developed a dedicated API (Application Programming 

Interface) based on PL/SQL stored procedures that can be called into any programming language as long as 

they can import SQL interface (Delphi, Python, Ruby, R…). The API contains functions for data integration, 

MGS content extraction, taxonomic distribution, functional extraction…  

Finally, with the multiplication of reference gene catalogues increasingly reconstructed specifically for a 

quantitative metagenomic study, it becomes complicated for an investigator to cross the results of different 

studies. In this context, the implementation of iMOMi seeks to address this issue (i) by integrating numerous 

catalogues, (ii) by unifying their annotations (functional and taxonomic) and (iii) above all by bridging them. 

iMOMi have been optimized and is currently capable to handle dozen of catalogues representing hundreds 

millions of features. 

The client software iMOMi Studio is available at http://mgps.eu/index.php?id=ibs-tools 
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1 Introduction/Context 

High-Throughput Sequencing (HTS) has gained in throughput and cost-efficiency, strongly affecting public 

health and biomedical research and enable to conduct large scale genomic projects. In infectious metagenomics 

studies, it is critical to detect rapidly and sensibly potential life-threatening pathogens. Our objective is to 

characterize the bacterial and viral composition inherent to clinical samples. Optimized methodologies for fast 

and accurate recovery of the known microbial biodiversity, followed with phylogenetic approaches to study 

the remaining (“dark matter”, “BLAST-resistant”) species are required to drive thorough sample comparisons 

in order to pinpoint both common and sample-specific infectious agents. 

2 Discerning discriminative reads in complex metagenomics datasets 

Clinical samples often contain either a number of (meta-) genomes that are at best divergently related to 

known references, or a limited number of genomes with very low coverage. Meta-genomic samples represent 

a large number of reads, rendering assembly without pre-condition computationally inefficient, and often 

proves to result in under-assembly and chimeric contigs. Variable levels of similarity challenges identification 

in diagnostics settings, where the distinction between presence and absence of single species or relative 

abundance levels are of eminent importance [1]. Sequence alignment through mapping proves difficult in such 

cases, and “genome finishing” often turns out to be impossible. To overcome the limitations of alignment-

based comparisons, ultrafast alignment-free methods are exploited [2-4], providing a powerful comparison 

strategy to distinguish different organisms present in meta-genomics HTS read datasets. 

We emphasize on clustering of sequencing reads, based on k-mer counts, as a preliminary and valuable step 

prior to assembly, as reads belonging to possibly different species show different k-mer compositions. Results 

indicate that, as alignment-free methods relying on clustering of word enumerations are obviously less accurate 

than direct sequence alignments, they should only be used when direct alignment is either impossible (due the 

high level of meta-genomic divergence) or computationally too complex. In addition, to be able to more 

thoroughly distinguish pathogen from host, the size of k has to be optimized as a function of the length of the 

reads. The length of the reads is indeed steadily increasing, with the different sequencing technologies at hand, 

i.e. the Illumina HiSeq/MiSeq technology generates 100 to 250 bp reads, whereas Life Technology’s Ion 

Torrent PGM/Proton systems generate reads up to 300, 400 bp and above. 

3 Taxonomic profiling and comparison of infectious metagenomics samples 

As an extension, comparison of samples has the potential to recover the shared background diversity, and 

can shed light onto the microbiotic identity of samples, easing the pathogen identification task. K-mer 

frequencies are used either for taxonomic binning of individual reads or for computing the overall composition. 

K-mer distributions of a set of metagenomic samples give an indication of the presence, abundance and 

evolutionary relatedness of novel organisms present in the samples.  
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1 Présentation 

REGOVAR est un projet collaboratif, libre et ouvert de logiciel d’analyse de données de séquençage haut débit 

avec une interface graphique simple et conviviale pour les panels de gènes, l’exome et le génome (DPNI, 

recherche de SNV, CNV, SV…). Le projet est financé dans le cadre d’un PHRCI du Grand Ouest (Angers, 

Brest, Nantes, Poitiers, Rennes et Tours) pour structurer les généticiens cliniciens, biologistes et 

bioinformaticiens impliqués dans le diagnostic moléculaire des maladies génétiques rares. Si la 

bioinformatique médicale appliquée au NGS permet aujourd’hui d’analyser avec succès un grand nombre de 

données au sein d’un CHU ou d’une région, elle souffre d’un manque de coordination à l’échelle nationale. 

REGOVAR vise à impliquer et fédérer les différentes communautés concernées, sans limites institutionnelles 

ou géographiques. Il se base exclusivement sur des technologies et des logiciels libres et gratuits, éliminant 

toute contrainte contractuelle et budgétaire. 

2 Objectifs 

REGOVAR est un logiciel permettant le traitement de données génétiques, depuis la récupération des fichiers 

produits par les séquenceurs, quelle qu’en soit la technologie, jusqu’à la génération de rapports illustrés et de 

comptes-rendus d’analyse en passant par les contrôles de qualité, la détection, l’annotation, le filtrage, la 

priorisation et la visualisation de variants. Son architecture client-serveur permet une utilisation depuis des 

ordinateurs de bureau sous Windows, Linux et macOS, via une interface graphique claire et intuitive conçue 

pour permettre l’analyse des données par des généticiens n’ayant pas de compétence spécifique en 

bioinformatique (filtres de variants enregistrables, simplification de la bioanalyse…). Sa conception modulaire 

permet d’intégrer dynamiquement de nouveaux pipelines, quelles que soient leurs dépendances, qui peuvent 

être partagés au sein de la communauté. Ces échanges de pipelines permettront à terme l’harmonisation des 

bonnes pratiques avec des pipelines unifiés nationalement et validés par l’ANPGM. REGOVAR intègre une 

base de données principale dimensionnée pour supporter aussi bien l’analyse de panels, d’exomes, que de 

génomes complets. Cette base est enrichie de données publiques telles que celles provenant de gnomAD et 

dbNSFP, ainsi que de données locales. Des échanges anonymisés de certaines informations recueillies sont 

possibles. REGOVAR permet une utilisation aussi bien en recherche qu’en diagnostic. 

3 Appel à collaboration 

REGOVAR a déjà suscité l’intérêt d’autres acteurs comme les laboratoires de génétique des CHU de Nancy et 

de Montpellier. Le projet est ouvert à toute personne souhaitant apporter sa contribution : idées, intégration de 

pipeline, développement, test, documentation… Informations disponibles sur https://regovar.org/. 

Abréviations 

ANPGM : Association Nationale des Praticiens de Génétique Moléculaire 

DPNI : Dépistage Prénatal Non Invasif 

PHRCI : Projet Hospitalier de Recherche Clinique Interrégional 

Poster A75

180



 

 Alignement à grande échelle pour une approche métagénomique dans le cadre 

du projet Tara Oceans 

Artem KOURLAIEV
1
, Corinne DA SILVA

1
, Stefan ENGELEN

1
, Alexis BERTRAND

1
, Aimeric BRUNO

1
, Eric 

PELLETIER
2
 Patrick WINCKER

2
 and Jean-Marc AURY

1
 

1 Commissariat à l’Energie Atomique (CEA), Institut François Jacob, Genoscope, 91000 

Evry, France. 
2
 CEA / Genoscope, CNRS UMR 8030, Université d'Evry, France. 

 

Corresponding Author: artem.kourlaiev@cea.fr 

 

Le projet Tara Oceans (2009-2013) a pour objectif d’étudier globalement les écosystèmes 

planctoniques marins (des virus aux métazoaires) [1]. Des échantillons d’eau ont été prélevés puis filtrés sur 

88 stations couvrant l’ensemble des océans [2]. Le séquençage de l’ADN et de l’ARN présents dans ces 

échantillons a été effectué au Genoscope. Ce projet constitue le plus grand effort de séquençage jamais 

réalisé pour des organismes marins. 

La métagénomique est une méthode permettant d’étudier l’ensemble des génomes (et des 

transcriptomes pour la métatrancriptomique) des populations de micro-organismes d’un écosystème donné à 

partir d’un échantillon environnemental. C’est l’une des approches choisies pour l’étude de la biodiversité 

des océans dans le cadre du projet Tara Oceans. 

Pour l’étude des eucaryotes présents dans ces échantillons, un catalogue de gènes a été constitué à 

partir des données métatranscriptomiques. Plus de 116 millions de gènes ont été identifiés. Afin de 

déterminer les niveaux d’abondance et d’expression de chacun de ces gènes à chaque station de prélèvement, 

il s’est révélé nécessaire d’aligner l’ensemble des lectures métagénomiques et métatranscriptomiques sur 

cette référence. Ceci apporte un premier niveau de valorisation aux données et offre des nouvelles voies 

d’analyses. 

La volumétrie du catalogue de gènes et de lectures à aligner (plus de 460 milliards) a nécessité la mise 

en place d’une méthode d’alignement massive, en plusieurs étapes : dans un premier temps, la référence a été 

fragmentée et l’ensemble des échantillons ont été alignés sur chacun des fragments. Ensuite, des références 

de plus petite taille (contenants uniquement les gènes avec au moins un match obtenu lors du premier 

alignement) ont été constituées pour chaque échantillon. Enfin, un second alignement du même ensemble 

d’échantillons a été effectué sur ces références réduites. 

Grâce à une conception massivement parallèle et à l’utilisation des moyens de calculs du TGCC-

CCRT [3], des dizaines de milliers de cœurs ont pu être utilisés en parallèle pour diminuer le temps de 

restitution. Nous avons ainsi pu obtenir l’ensemble des résultats en une semaine. La méthode mise en place 

est extensible, et pourra être utilisée pour d’autres projets de métagénomique. 
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1 Abstract

Understanding the distribution of taxa and associated traits across different environments is one of the cen-
tral questions in microbial ecology. High-throughput sequencing (HTS) studies are presently generating huge
volumes of data to address this biogeographical topic. However, these studies are often focused on specific en-
vironment types or processes, leading to the production of individual unconnected datasets. The large amounts
of legacy sequence data with associated metadata that exist can be harnessed to better place the genetic in-
formation found in these surveys into a wider environmental context. Here we introduce a software program,
seqenv, to carry out precisely such a task. It automatically performs similarity searches of short sequences
against the “nt” nucleotide database provided by NCBI and, out of every hit, extracts – if it is available – the
¡isolation source¿ textual metadata field. After collecting all the isolation sources from all the search results, we
run a text mining algorithm to identify and parse words that are associated with the Environmental Ontology
(EnvO) controlled vocabulary. This, in turn, enables us to determine both in which environments individual
sequences or taxa have previously been observed and, by weighted summation of those results, to summarize
complete samples. We present two demonstrative applications of seqenv to a survey of ammonia oxidizing
archaea as well as to a plankton paleome dataset from the Black Sea. These demonstrate the ability of the tool
to reveal novel patterns in HTS and its utility in the fields of environmental source tracking, paleontology, and
studies of microbial biogeography. To install seqenv, go to: https://github.com/xapple/seqenv.

Poster A77

182



 

Predicting the ecological quality status of marine environments from eDNA 
metabarcoding data using supervised machine learning 

Tristan CORDIER1, Philippe ESLING2, Franck LEJZEROWICZ1, Joana VISCO3, Amine OUADAHI1, 
Catarina MARTINS4, Tomas CEDHAGEN5 and Jan PAWLOWSKI1,3 

1 Department of Genetics and Evolution, University of Geneva, Boulevard d’Yvoy 4, CH 1205 
Geneva, Switzerland 

2 IRCAM, UMR 9912, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France 
3 ID-Gene ecodiagnostics, Ltd, chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland 

4 Marine Harvest ASA, Sandviksboder 77AB, Bergen, 5035 Bergen, Norway 
5 Department of Bioscience, Section of Aquatic Biology, University of Aarhus, Nordre Ringgade 

1, 8000 Aarhus, Denmark 
 
 

Corresponding Author: tristan.cordier@unige.ch 
 
 

Abstract 
Monitoring biodiversity is essential to assess the impacts of increasing anthropogenic activities in marine 

environment. Traditionally, marine biomonitoring involves the sorting and morphological identification of 
benthic macro-invertebrates, which is time-consuming and taxonomic-expertise demanding. High-throughput 
amplicon sequencing of environmental DNA represents a promising alternative for benthic monitoring. 
However, an important fraction of eDNA sequences remains unassigned or belong to taxa of unknown ecology, 
which prevent their use for assessing the ecological quality status. Here, we show that supervised machine 
learning (SML) can be used to build robust predictive models for benthic monitoring, regardless the taxonomic 
assignment of eDNA sequences. We tested three SML approaches to assess the environmental impact of 
marine aquaculture using benthic foraminifera eDNA, a group of unicellular eukaryotes known to be good 
bioindicators. We found similar ecological status as obtained from morphology-based macrofaunal 
inventories. We argue that SML approaches could overcome and even bypass the cost and time-demanding 
morpho-taxonomic approaches in future biomonitoring. 
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Membranous Nephropathy (MN) is an Auto-immune and multifactorial disease caused by the production
of PLA2R1 antigens in podocytes [1] (specialized cells for filtration in kidney), resulting in the activation of
the immune response and podocyte destruction. Recently, using genomics studies, risk variants were found
on PLA2R1 gene [2] and HLA-II cluster, namely on genes coding for the antigen implicated in MN and for
proteins implicated in antigen presentation.

Data analysis was focused on the three HLA regions using Whole Exome Sequencing data from 123
patients.  The HLA-II risk haplotype in Caucasian European population [3] was first  confirmed as HLA-
DRB1*03:01,  HLA-DQA1*05:01,  HLA-DQB1*02:01  (known  as  DR3-DQ2  haplotype).  This  haplotype
minor allele frequency is 0.29 in the MN cohort versus 0.09 in the control Caucasian European population. 

  The aim was to fully explore the entire HLA cluster and to find new MN risk factors. To search for
epistatic variant interactions, we have used regression-based methods. This analysis demonstrated that the
haplotype can be extended with HLA-I allelotypes : HLA-A*01:01, HLA-B*08:01, HLA-C*07:01 (A1-B8-
DR3-DQ2). Between those two cluster, HLA-III groups numerous different types of genes that are important
in the Immune Response as C2, C4A and C4B (complement components), CFB (Complement Factor B) or
TNF.

In HLA-III region, the analysis was focused on paralogous C4A and C4B genes. Only five nucleotides on
exon 26 are different between the two genes. Each one can possess an endogenous retrovirus (HERV-K(C4))
[4], located in intron 9, resulting in a longer protein (C4L). In addition, Copy Number Variations (CNVs)
were found on each gene. CNVs were detected aligning C4A and C4B reads on C4A reference sequence.
Then, the mean depth of coverage on exon 26 was calculated to establish C4 copy number. C4A and C4B
were split using the proportion of variants that identify the two genes. An interaction was detected between
the loss of C4A and the extended haplotype A1-B8-DR3-DQ2. Variants located in HLA-I genes as DDR1,
VARS2, SFTA, TRIM26 or HCG17, interact with the loss of C4A and could be added to this extended
haplotype. 

The risk factor for MN is finally not only linked with DR3-DQ2 haplotype in HLA-II region, but with an
extended haplotype covering all of the three HLA regions. The next step will be to explore intronic and
intergenic regions, especially HERV-K(C4).
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Transcription Factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, 
from which non-redundant collections are derived by manual curation. The advent of high-throughput 
methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, 
built by merging these collections, contain redundant versions, because available tools are not suited to 
automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery 
from genome-scale data sets (e.g., ChIP-seq) also produces redundant motifs, hampering the interpretation of 
results. We present matrix-clustering [1], a versatile tool that clusters similar TFBMs into multiple trees, and 
automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic 
visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various 
sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results 
from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We 
also ran a large-scale application to cluster ~11,000 motifs from 24 entire databases, showing that 
matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif 
redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/) [2], accessible through a 
user-friendly web interface or command-line for its integration in pipelines. 

 

Availability: http://rsat.eu/ 
Manuscript in press in Nucleic Acids Research.  

Preprint accessible on bioRxiv: doi: https://doi.org/10.1101/065565 
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Durant une épidémie, les virus qui infectent des humains (ou d’autres espèces) doivent échapper au système
immunitaire de l’hôte. Pour cela, leur génome mute rapidement et cela engendre une diversité des virus dont
le comportement évolue – on parle alors de quasi-espèces virales. Grâce à ces mutations génomiques, certains
de ces virus pourront mieux combattre le système immunitaire ou mieux résister à un traitement. On ne sait
pas à l’avance quelles quasi-espèces s’adaptent le mieux à l’hôte, ni lesquelles deviennent majoritaires dans
la population de virus d’un individu ; la fréquence relative des quasi-espèces est une inconnue importante du
point de vue biologique et médical. Pour lutter contre les épidémies ou suivre les effets d’un traitement, on
doit savoir quelles quasi-espèces acquièrent des mutations avantageuses, et il est donc crucial d’obtenir les
séquences de leurs génomes et d’estimer leurs proportions dans la population virale d’un individu. On peut
séquencer les génomes viraux présents chez l’hôte, grâce aux techniques de séquençage à haut débit qui pro-
duisent des millions de lectures courtes (reads en anglais). Il faut ensuite assembler ces fragments pour obtenir
les séquences génomiques des quasi-espèces. Bien que de nombreux outils bioinformatiques d’assemblage
de génome existent, ils sont inadaptés au cas des quasi-espèces pour lequel le logiciel doit deviner combien de
quasi-espèces sont présentes, puis reconstruire partiellement ou entièrement le génome de chacune, afin d’iden-
tifier leurs différences. Les méthodes existantes reposent sur une séquence de référence du génome de l’espèce
virale. Malheureusement, on dispose rarement d’un génome de référence, en particulier lors d’épidémie ou lors
de l’apparition de nouveaux virus (par exemple dans le cas de zoonoses). Il faut donc considérer le cas dit
de novo où aucune séquence de référence n’est disponible. Une des difficultés est d’assembler des génomes
similaires tout en les distinguant (en séparant les quasi-espèces). Nous proposons une méthode nommée SA-
VAGE pour assembler les génomes de quasi-espèces virales lorsque l’on ne dispose pas déjà d’un génome de
référence (le cas le plus difficile d’assemblage). SAVAGE se base sur un graphe de chevauchement (ou overlap
graph en anglais) qu’il calcule grâce à un algorithme performant. Les tests sur des données de HIV, des virus de
l’hépatite C, des virus de Zika et d’Ebola démontrent la capacité de SAVAGE à reconstruire les quasi-espèces
et à estimer leur fréquence relative [1]. Ce travail offre des perspectives nouvelles pour le suivi des infections
chez les patients par des approches basées sur le séquençage à haut débit.

SAVAGE est accessible à https://bitbucket.org/jbaaijens/savage.
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L’analyse logique de données [1,2,3] constitue une alternative originale aux approches traditionnelles de
classification de données issues de l’apprentissage artificiel. L’objectif principal de cette méthodologie consiste
à se concentrer sur la justification explicite de la classification de données dans des groupes/classes. Con-
sidérons un ensemble Ω d’observations, dont chaque élément est représenté par des données appartenant à un
ensemble d’attributs Booléens A. Cet ensemble d’observations étant divisé en deux groupes (groupe positif
P et groupe négatif N ), l’analyse logique de données (LAD) consiste à trouver des “patterns” (motifs) car-
actérisant un groupe, i.e., des expressions booléennes sur un sous-ensemble de A vérifiées par au moins une
observation d’un groupe, et chez aucune observation de l’autre groupe.

Le problème de caractérisation multiple de données (MCP) [4,5] consiste également à caractériser les ob-
servations. Toutefois, il diffère de l’approche LAD sur différents points:

— Une solution du MCP sera non pas un pattern, mais un sous ensemble d’attributs.
— Une instance du MCP peut contenir plus de deux groupes. Une solution au MCP caractérisera tous les

groupes simultanément.
Il s’agit donc de déterminer un ensemble d’attributs, caractérisant chacun des groupes.
Nous pouvons ainsi représenter ces données par une matrice telle que :

— Chaque ligne i représente les observations.
— Chaque colonne j représente les attributs.
— La valeur xij vaut 1 si l’attribut j est présent chez l’observation i, 0 sinon.

Observations
Groupes

Attributs
a b c d e

1 1 0 1 1 1 1
2 1 1 0 1 1 1
3 1 0 1 1 1 1
4 2 0 0 1 1 0
5 2 1 1 1 0 1
6 3 1 1 0 1 1

Nous déterminons l’ensemble des solutions optimisant deux critères :
— Minimiser le nombre d’attributs dans les solutions afin de déterminer le groupe auquel appartiennent

les observations à moindre coût.
— Maximiser la similarité des observations de même groupe afin de mieux analyser les différents groupes.
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In 2003, Aloy et al. showed that homologs sharing at least 30% sequence identity almost invariably interact 
the same way [1]. In this study, we ask whether the whole interaction energy landscape of two interacting 
partners is conserved during evolution. Particularly, are the low-energy binding sites on a protein surface, as 
well as the less energetically favourable regions conserved among structural homologs? We tested this 
hypothesis through a large scale cross-docking experiment where structural homologs and arbitrary ligands 
were docked with a same receptor. We constituted a database of 72 protein structures divided into 12 
structural homolog families. We performed a complete cross-docking experiment with ATTRACT [2]. Each 
protein played alternately the role of the receptor and of the ligand. For each pair of proteins, we produced a 
two dimensional (2D) energy map reflecting its docking energy landscape. We compared the energy maps of 
a receptor docked with all the ligands and ask whether the energy maps produced by structurally related 
ligands are more similar than those produced by unrelated ones.  

This experiment highlights three major results: (i) for each receptor of the database, docking energy 
landscapes are more similar for ligands belonging to the same family. To quantify this effect, we measured 
our capacity to retrieve the corresponding families of the 72 ligands from the classification of their energy 
maps solely. The resulting Area Under the Curve (AUC) value is 0.83 and reflects clearly that structural 
homologs share similar interaction energy landscapes when interacting with a same receptor. (ii) the 
classification reveals that four structural families are subdivided into two sub-clusters that produce clearly 
distinct docking energy landscapes. This split cannot be explained by classical descriptors such as sequence 
identity or RMSD. Instead this is mainly explained by different distributions of charges at the surfaces of 
homologs. Interestingly, these subdivisions seem to reveal particular biophysical or functional properties of 
these proteins. (iii) to distinguish regions favourable to interactions from unfavourable ones, we discretized 
the 2D energy maps into distinct energy classes. This representation enables to pinpoint interaction hot-spots, 
warm and cold spots. Interestingly we show that the information provided by either the warm and cold spots 
is sufficient to correctly classify the ligands suggesting that not only the hot spots but also the rest of the 
surface have been constrained during evolution.  

These results show that (i) the whole docking energy landscape seems to be conserved among structural 
homologs, (ii) protein docking can highlight biophysical and functional properties of structural homologs 
that could not be revealed by classical descriptors and (iii) warm and cold spots contain important 
information on the properties of a protein family. These regions may play an important role in protein 
interaction by competing with the effective native binding site. 
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Abstract

In order to better understand cell proliferation, we propose to study several well-known intracellular oscil-
lators such as NAD(H), pH, ATP, NADP(H). To understand and explain some experimental data [1] that have
been obtained from fresh normal and cancer cells, extracted from human colon after a colectomy, we have
contructed a dynamical model which synergistically combines two layers: a metabolic model [2] and an elec-
trochemical model [3]. The metabolic part is focused on central carbon metabolism (CCM), since it represents
the metabolic fingerprint of the cell that intimately interconnects with all cellular functions and intrinsic regula-
tory mechanisms. The electrochemical part represents the set of ionic reactions impacting the pH of the cell. In
this work, the CCM was anchored to the electrochemical dynamics by means of the intracellular protons (H+)
and energy (ATP-ADP) management.
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Introduction 

Le microbiote intestinal est composé de l’ensemble des microorganismes présents dans le tractus digestif. Il est 
aujourd’hui identifiable grâce à une révolution biotechnologique : le séquençage à haut débit (NGS). Cette 
technique permet d’identifier jusqu’à 500 OTU (Operational Taxonomic Units) ou espèces bactériennes dans 
un microbiote intestinal. Elle nécessite différentes étapes que sont l’extraction, l’amplification, le séquençage 
d’ADN et le traitement des données. L’extraction d’ADN peut être faite sur colonne par des kits manuels 
comme Powerfecal Mobio® (Gold standard) (PWF), ou par des appareils automatiques sur billes magnétiques 
comme MagNapure 2.0 Roche® (MA) et Qiasymphony Qiagen®(QIA). L’amplification a lieu dans la zone 
V3-V4 de la région de l’ARN ribosomal 16S présente chez toutes les bactéries. 

Objectifs et méthodes 

Notre objectif principal est de créer et valider un workflow complet d’analyse des données de reads s’appuyant 
sur le package Quantitative Insights Into Microbial Ecology (QIIME) au sein d’une instance Galaxy. Notre 
objectif secondaire est d’analyser avec ce worflow et RStudio (RStudio Inc) l’impact de l’extraction 
d’ADN par PWF, MA et QIA sur les résultats NGS du microbiote 16S au CHU de Rennes.   

Résultats 

Le workflow QIIME sur Galaxy que nous proposons comporte 10 étapes principales de traitement de données 
allant de la préparation des séquences jusqu’au calcul de l’alpha et de la beta diversité de nos échantillons. Plus 
précisément, nous avons tout d’abord (1) décrit nos échantillons (Validate mapping file). Nous avons ensuite 
(2) sélectionné des amplicons d’intérêt (Split Fastq Libraries), puis nous avons (3) regrouper les séquences 
similaires en OTU (Pick OTU) avec un seuil de similarité de 0.97. (4) La séquence la plus abondante de chaque 
OTU obtenu a ensuite été choisi comme séquence représentative de l’OTU et les OTU ont été filtrés selon leur 
abondance (Pick rep set). (5) nous avons ensuite aligné les séquences représentatives (Align sequences ) selon 
les méthodes Pynast et Uclust pour ensuite (6) leur assigner une taxonomie issue de la base Greengenes 
(Assign taxonomy). A partir de ce moment-là, (7) nous avons pu calculer la répartition du nombre d’OTU par 
échantillon (Make OTU table) tout en prenant soin de retirer les OTU non pertinents (Filters OTU from OTU 
table). (8) Nous avons également présenté nos OTU selon la distance euclidienne (Make phylogeny) . (9) Nous 
avons ensuite estimé l’alpha diversité selon les indices de Chao1, Shannon et Simpson et (10) la beta diversité 
selon les distances Unifrac et Weighted Unifrac en utilisant respectivement les outils Calculate Alpha diversity 
et Calculate Beta diversity. L’ADN de 5 échantillons de selles a été extrait pour un même patient : 1 par PWF 
, 2 par MA , 2 par QIA.  La table d’occurrence des OTU était identique quelque soit la technique d’extraction 
d’ADN utilisée. Aucune différence significative n’était montrée en analyse en composante principale entre les 
3 méthodes d’extraction d’ADN (Indice KMO =0,72 et test de Bartlett <0,001). Les résultats d’alpha diversité 
et de bêta diversité étaient significativement comparables par tests ANOVA, par la méthode ADONIS.  

Conclusion 

Notre workflow est opérationnel sur la plateforme Galaxy ABIMS de la Station Biologique de Roscoff. Il nous 
a permis de montrer que notre méthode d’extraction automatique d’ADN MagNapure 2.0 Roche® peut être 
utilisée comme technique d’extraction d’ADN pour de l’analyse de microbiote 16S par NGS au CHU de 
Rennes. 
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BIOSPECIMENS, a web application fostering collaborations in the scope of infectious diseases 
and microbiology 

BIOSPECIMENS [1] is a free to use collaborative platform which brings together project leaders and 
biological sample holders in the fields of infectious diseases and microbiota. Important changes come with this 
new major release which included to take some significant choices. Several clinical research engineers, 
bioinformaticians and informaticians were gathered in the interest of this translational project. 

 

Major technological changes and open source priority 

Most of the innovation in the version 1.5 is focused on the technical part of the application which was 
subjected to a complete overhaul favoring the wide incorporation of open-source components: Symfony [2] as 
web PHP framework, Doctrine [3] for the ORM (Object Relational Mapping) and Twig [4]. Moreover, some 
notable improvements in the MariaDB [5] database architecture were made to obtain better performances. 

BIOSPECIMENS v1.5 is now more hardened to host repositories of data complying with heterogeneous 
sources and is ready to be proposed as a main portal to academic and industrial collection-holders or to be 
incorporated as a component of future BIOASTER collaborative projects. 

 

A robust development methodology 

Due to project complexity and to the large scale of technical fields covered in the team, we had to find an 
efficient way to interact between us. Self-hosted and open source DevOps solutions were studied and tested.  

Redmine [6] and GitLab [7] platforms appeared to be the good candidates regarding our needs. Concerning 
the first one, it was used as documentation, Gantt and ticketing tool. In addition, it is usable by each range of 
users with different level of affinity regarding computer skills; whereas the second one was used by the 
bioinformaticians and informaticians to develop, to version the source code and to proceed of its continuous 
integration. 
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The species  Salmonella enterica is one of the most prevalent human and animal pathogens, it includes
Non Typhoïdal  Salmonella (NTS) serovars like Typhimurium and Enteridis, that are generalist pathogens
with broad host specificity and Typhoïdal  Salmonella (TS) serovars, like Typhi and Paratyphi A, that are
specialized pathogens strictly adapted to the human host and the cause of an invasive, dangerous disease
known as enteric (typhoid) fever [1,2,3]. 

The  SalHostTrop  project  aims  at  identifying,  characterizing  and  understanding  the  human-restricted
tropism  of  Typhoidal  Salmonella (TS)  using  comparative  dual-RNAseq  sequencing  and  other
complementary approaches. 

We combine state of the art genome and transcriptome sequencing methods to decipher the molecular
basis of host-tropism in clinical strains. We contrast the comparative genomics and differential expression
analyses  to  explore  and assess  the  variability  and plasticity  of  pathogenesis  routes  among and between
typhoidal and non-typhoidal serovars. 

We present  our  on-going  work  including  the  Pacbio  long-read  genomic  sequencing,  assembly  and
annotation [4] of a new S. Typhi strain (120130191) and the dual RNAseq data analysis of a pilot experiment
of  S.  Typhimurium and  S. Paratyphi  A during human epithelial  cells  infection.  The new  S.  Typhi strain
includes one circularized complete chromosome and one plasmid of about 4.78 Mb with 4638 coding genes
and 106.7 kb with 128 coding genes, respectively. The dual RNAseq pilot first analyses demonstrate the
feasibility of the protocol to target both pathogen and host transcripts simultaneously during infection. We
also built a  S. enterica subsp. enterica reference phylogenetic tree from the super-alignment of Salmonella
core genes in 214 complete genomes of various serotypes that is in agreement with previous studies and will
be used to explore pseudogene content of serotypes according to their evolutionary history. 
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The aim of biological data ranking is to help users faced with huge amount ofdata and choose between
alternative pieces of information. This is particularly important when querying biological data integration sys-
tems, where even very simple queries can return thousands of answers.For instance, searching for the set
of human genes involved in breast cancer returns thousands of answers in the reference database EntrezGene
without any ranking in terms of importance. The need for ranking solutions,able to order answers, is crucial
for helping scientists to organize their time and prioritize the new experiments to bepossibly conducted. How-
ever, ranking biological data is a difficult task for various reasons: biological data are usually annotation files
which reflect expertise, they thus may be associated with various degreesof confidence; the need expressed by
scientists may also be taken into consideration whether the most well-known datashould be ranked first, or the
freshest, etc. As a consequence, although several ranking methods have been proposed in the last years within
the bioinformatics community, none of them has been deployed on systems currently in use.

1 Consensus Ranking for Biological data

The approach we propose to follow [1] is to rank biological data by considering two steps. First, several
ranking methods are applied to biological data (results are ordered using alternative ranking criteria). Second,
we use consensus ranking methods reflecting the input rankings’ common points while not putting too much
importance on elements classified as ”good” by only one or a few rankings.The problem, known as themedian
problemfor a set of rankings, isNP-hard. However, since providing a consensus ranking is a crucial need for
big biological data sets, designing scalable algorithms is highly challenging. Besides, the problem has been
mainly studied in the case ofpermutationswhere elements are strictly ordered while in real applications some
elements may be placed at the same position (considered as equally important). The challenge is then to design
an algorithm computing one consensus ranking from a set of rankings withties.

2 Towards a partitioning solution for ranking with ties

We introduce a new algorithm computing a consensus ranking from a set ofrankings with ties. The origi-
nality of our approach lies in providing an efficient solution (i) based on a graph decomposition of the datasets
to partition it efficiently and (ii) having several interesting and fundamental properties, which allow to evaluate
the relevance of a given solution and able to provide the exact consensus in many cases. A set of experiments
has been conducted on several hundreds of biological and synthetic data sets [2]. First results appear to be
very promising, making our algorithm able to compete with the best currently available algorithms while being
efficient enough to be used on real settings [3] in particular as the algorithm used on http://conqur-bio.lri.fr/.
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Résumé  

Le microbiote intestinal joue un rôle important dans la santé de son hôte et des changements de sa 

composition (dysbiose) sont associés avec des états pathologiques (obésité, diabète, cancers, etc)[1] 

[2] . 

L’amplification et le séquençage du gène de la sous unité ribosomale 16 (16S) reste la technologie la 

plus utilisée pour l’identification des microbiotes en métagénomique clinique[3]. Plusieurs pipelines 

bioinformatiques existent pour permettre l’identification de signatures métagénomiques (compositions 

différentielles de bactéries) et/ou de bactéries biomarqueurs dans le diagnostic[4]. 

Dans le contexte clinique du cancer colo-rectal (CCR) qui est l’un des trois cancers les plus fréquents, 

des études ont mis en évidence l’implication de quelques bactéries dans le développement de ce 

cancer[4]. Ces signatures métagénomiques ont été identifiées par des pipelines différents (Mothur, 

QIIME, MEGAN), mais aucune comparaison de ces pipelines n’a été effectuée, rendant difficile la 

confrontation des différentes signatures métagénomiques publiées. 

L'objectif de ce travail, qui bénéficie de deux cohortes monocentriques d’une même population, est de 

préciser les limites et la reproductibilité de ces pipelines dans l’identification de signatures 

métagénomiques. 

La signature métagénomique sera évaluée par le package  metagenomeSeq du logiciel R pour chacune 

des tables d'annotation produites par les pipelines sur chaque cohorte. La reproductibilité des pipelines 

sera présentée pour les différents niveaux taxonomiques et des règles pourront être proposées de choix 

d'un pipeline dans ce contexte clinique. 
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1 Introduction

Root-knot nematodes, genus Meloidogyne, are one of the most damaging plant-pest around the world and
sufficient control methods are missing. To develop new control methods, we need to better understand the
biological processes and evolutionary history of Meloidogyne. For all plant-parasitic nematodes characterized
at the omics level, several horizontal gene transfer (HGT) from bacteria or fungi have been highlighted. HGT
can originate from soil dwelling organisms and pathogens of nematodes or plants [1]. The role of viruses as
potential donors is unclear, and few nematode viruses are known.

2 Objectives

Recently, metagenomic sequencing has increased the availability of virus sequences in public databases[2].
These data open a new opportunity to determine whether there is a viral contribution to the Meloidogyne
genomes. Here, we aim at identifying Meloidogyne genes of viral origins and the families of potential viral
donors.

3 Material and Methods

We used two approaches to identify and characterize candidate HGT of viral origins. First, we detect HGT
based on sequence homology with two different tools: (i) Alienness, a taxonomy aware BLAST of Meloidogyne
proteins against nrNCBI-DB and calculation of difference in magnitude of e-value between metazoan and viral
hits[3]; (ii) Retrieval of viral HMM profiles from ImgVR-DB [2] and scan against Meloidogyne proteins. In
second step, we look at GC percent and codon usage bias of Meloidogyne protein coding genes by multivariate
analysis. This way, we compare the composition of genes acquired from viruses to the rest of the genome, to
determine the molecular signatures of viral HGT and discriminate old and recent HGT.

4 Results and discussion

We found 80 sequences with putative viral origin in coding sequences of the model root-knot nematode,
Meloidogyne incognita. Among those, there is a significant enrichment of Herpesviridae, Baculoviridae and
Adenoviridae, animal virus strains. All of these genes are supported by expression data, so we suppose a
domestication by host genome. Analysis of the codon usage bias brings to light a significant difference between
these viral sequences: on one side, domesticated sequences indicating old HGT, with Baculoviridae lineage
annotations, and on the other side recent HGT with Adenoviridae and Herpesviridae annotation. Comparative
studies with other Meloidogyne and C. elegans, converge toward that a part of HGT is ancient and the other
part is recent.
These results provide a field of investigation to further characterize the candidate viral donors at the species
level that could today infect Meloidogyne species. These findings could be useful for new bio-controls methods
or in biotechnology. Indeed, no virus based bio-control or transformation methods are known in Meloidogyne
so far.
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The most prevalent diseases manifested by Escherichia coli are acute and recurrent bladder infections and 

chronic inflammatory bowel diseases such as Crohn's disease [1,2]. E. coli clinical isolates express the FimH 

adhesin, which consists of a mannose-specific lectin domain connected via a pilin domain to the tip of type 1 

pili. Although the isolated FimH lectin domain has affinities in the nanomolar range for all high-mannosidic 

glycans, differentiation between these glycans is based on their capacity to form predominantly hydrophobic 

interactions within the tyrosine gate at the entrance to the binding pocket [3].  

Single-residue mutations in the tyrosine gate (Tyr48Ala and Tyr137Ala) have a moderate effect on the 

affinity of FimH for mannose, but a markedly lower affinity is observed for heptyl- and biphenyl-substituted 

mannosides that intercalate in the tyrosine gate. In the crystals of the Y137A mutant, a breakdown of the 

binding site with a severe loss of specificity is observed [4]. Using quantum-mechanical calculations, we could 

demonstrate that the wild-type Tyr137 introduces strain in the polypeptide backbone. This maintains a high 

energetic potential that is normally only released upon the binding of an oligomannosidic ligand. Using 

molecular-dynamics simulations, we could highlight that this energetic potential is coupled to the other 

tyrosine of the gate, Tyr48, via the inner mannose-binding residue Ile52. In conclusion, the mutation of Tyr137 

to alanine relaxes the binding site prematurely, whereby the stringent selectivity of the FimH lectin for mannose 

is disrupted and the binding affinity decreases.  
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1 Background

sRNAs are a class of non coding RNA molecules. Many of them play key roles in the cell life, such
as microRNAs, that target messenger RNA to inhibit translation. Besides their short size ∼15–200, they are
also characterized by their diversity of abundance as some of them are highly transcribed [1]. Sequencing
technologies are used to get the ordered list of nucleotides of many sRNAs in a sample. The output takes the
form of a FASTQ file. However, sequencing is error prone, there is no guarantee that the correct nucleotide
matches the one output by the machine. To estimate the reliability of a base calling, current technologies attach
to each nucleotide a quality value which is function of the probability that the correct base was called.

The amount of generated data is huge and highly redundant. Because of that, RNA sequencing data anal-
ysis is preceded by a preprocessing step that aims to remove this redundancy. Typically, users will eliminate
duplicated reads keeping only one sequence while maintaining the number of occurrences for this sequence,
discarding the associated read original qualities. This is known by “collapsing” [2].

2 A new approach for small RNA read collapsing

We propose an alternative way of collapsing, wherein a synthetic quality is calculated for all the duplicates
of the same sequence. Keeping qualities, as opposed to the naive usage, will give additional information at the
next step of the pipeline, the read mapping. It is especially useful for reads having few duplicates or unique
reads. The emphasis is put on efficiency of the implementation so that it can be used as part of larger pipelines.

The synthetic quality is calculated as follows. For each base b, the synthetic quality value is given by the
maximum over the qualities associated to b in the set of identical reads to collapse.

Two other functionalities are provided. For each sequence, its number of occurrences is computed by
sample. Finally results are given in a sorted manner as a FASTQ-like file.

3 Implementation

To make the approach efficient, reads are inserted in a Trie. Usage of a trie allows to aggregate similar
sequences to minimize spatial disparity which offers quick retrieval (or quick rejection) when inserting new
sequences. High speed is achieved by using low level optimizations such as bit-manipulations.

4 Performance Evaluation

We compared the runtime and space usage of our approach to a naive solution built-on the Unix tool sort
(with an additional script to collapse qualities), and a hashtable solution. Result show performance improve-
ment of srnaCollapser over the other approaches.

Method 1 file (1.7 GB) 3 files (4.8 GB) 6 files (9.3 GB) 9 files (14.1 GB)
srnaCollapser 36s 1m28s 3m42s 5m34s
GNU Sort 4m 11m50s ≥ 20m out of memory
Hashtables 22s 1m30s 4m20s out of memory
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With the recent advances in the field of next-generation sequencing (NGS), metagenomics allow to explore the 
biodiversity of microbial ecosystems or microbiota. Dedicated bioinformatic pipeline focusing on targeted 
metagenomics (16S rRNA) provides to biologists the bacterial composition in OTUs (Operational Taxonomic 
Units) of the samples. Nevertheless, NGS produces massive data which requires substantial computer 
processing to extract information. Faced with this large amount of data, their visualization and appropriate 
statistical analysis are essential for scientists to adequately explore and interpret their experiments. In this 
context, we have developed an R [1] and Shiny [2] web based platform called BioMAnTM (Biofortis 
Metagenomics Analysis) which mixes the statistical power of dedicated R packages (metagenomeSeq, 
mixOmics…) with a user friendly web design. This interface allows users to interactively look into their 
project by manipulating, filtering or gathering information for further interpretation or communications 
purposes. Focusing on a subgroup of samples is made very easy by the integration of metadata table 
(information on samples such as experimental conditions). The core of the tool is focused on data visualization, 
which offers the possibility to depict taxonomic composition throughout several graphical interactive 
representations such as barplots, boxplots, heatmaps, Krona [3] or hierarchical trees. BioMAnTM also provides 
information (tables and graphs) about diversity indices to help users in the interpretation of results. This 
turnkey product is an easy way for scientists to conduct ordination analysis such as PCoA with a lot of 
customizable graphical and analytical options. The platform can also be used to run specific statistical analysis 
like discriminant analysis (LDA and FDA). Other statistical approaches are currently being added to the 
application (PERMANOVA/ANOSIM, differential analysis…) in order to create the fullest possible 
metagenomic toolbox. During the process, user can easily retrieve objects by downloading them in high 
quality or by inserting them one by one into a custom PowerPoint template. BioMAnTM is deployed on a Shiny 
Server Pro, implemented by a secure health data hosting provider according to the French regulatory 
requirements, to protect the confidentiality, integrity and availability of patient and user data. 
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Les nouvelles technologies de séquençage (NGS) permettent d’accéder, à très haut débit, à des 

informations génomiques complexes et conséquentes. Cependant, la taille encore trop courte des 

lectures, les erreurs de séquençage, la quantité de données à analyser ou encore la mixité variable des 

matrices initiales nécessite le développement d’outils bioinformatiques adaptés et performants 

permettant d’extraire les informations microbiennes au sein des métagénomes. Les méthodes sans a 

priori de type Whole Metagenome Shotgun (WMS) s’affranchissant de la PCR et se basant sur un 

séquençage direct de l’ensemble des génomes présents au sein d’un échantillon, elles représentent des 

stratégies d’interrogations originales et puissantes des environnements. Ces dernières permettent 

d’avoir accès notamment à la fraction inconnue et non cultivable des communautés microbiennes, 

représentant un vivier de nouvelles fonctions. Cependant, l’importante diversité de ces communautés, 

la connaissance partielle que nous en avons à l’heure actuelle combinées à l’information fragmentaire 

obtenue et la courte taille des lectures rendent l’annotation des séquences complexe. Les approches 

métagénomiques à haut-débit WMS représentent donc un réel défi analytique. 

Afin de pouvoir proposer un outil automatisé d’analyse de données métagénomiques à haut-

débit de type WMS dans un contexte d’étude des communautés microbiennes, le pipeline WHORMSS 

pour WHOle Recovering from Metagenome Shotgun Sequencing a été développé. Ce dernier est dédié 

à l’analyse de données de séquençage de type Illumina « paired-end ». WHORMSS intègre un 

contrôle qualité des séquences, une étape d’assemblage et une stratégie d’annotation taxonomique et 

fonctionnelle, répondant aux contraintes des analyses métagénomiques WMS à haut-débit. De plus, un 

mode de recherche ciblée de fonctions microbiennes permet de mettre en lumière des capacités 

métaboliques connues et inconnues. Les performances de WHORMSS en termes de qualité des 

affiliations mais également de rapidité et de potentiel d’étude de la structure et fonctions des 

communautés, ont été éprouvées sur un échantillon de composition maîtrisée et sur des échantillons 

complexes environnementaux (eau de mer et microbiote intestinal).  

WHORMSS a démontré tout son potentiel pour décrire les communautés microbiennes dans 

un cadre d’étude d’échantillons environnementaux complexes par des approches sans à priori. 

WHORMSS est également capable de mettre en lumière et à façon des fonctions métaboliques 

d’intérêt. 

 

Mots clés : Métagénomique sans a priori, NGS, diversité microbienne, pipeline, annotation 

taxonomique et fonctionnelle 
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The introduction of targeted genomic sequences modifications by CRISPR technology into living cells is 

becoming a powerful tool for gene therapy or disease modelling [1]. CRISPR only requires a nuclease and 

customized nucleic sequences. Preliminary bioinformatics analysis for both gRNA design and donor template 

can improve the success of the experiment. This is where CRISPR LifePipe will make genome editing as 

simple as using a text editor. 

The gRNA (guide RNA) is a short RNA sequence which guides the Cas9 endonuclease to the targeted region 

to cut on the genome. gRNA is crucial for CRISPR gene editing, because it provides targeting efficiency and 

specificity on the region of interest on the genome, while limiting the non-specific off-targets. Our gRNA 

design tool is built to allow you to target different genomic regions: (i) targeting an exon present on most of 

the transcripts of a gene, (ii) targeting an exon or an intron of a transcript, (iii) targeting UTR region, (iv) 

targeting a particular amino acid or (v) targeting a particular DNA sequence. The efficiency of gRNAs is 

determined by various annotations like secondary structure, presence of SNP on the sequence, prediction 

score… The research of off-targets for all gRNAs assesses their specificity and help the user to choose the best 

gRNA. 

The donor template is a DNA sequence inserted into the cell along with the gRNA and the Cas9 endonuclease 

to replace DNA sequence of the cell. Different donor sequences can be designed with our tool according to the 

modification that is expected in the cell: (i) insertion of a mutation, (ii) gene tagging, (iii) gene knock-out 

and/or (iv) insertion of a DNA fragment, like a selection cassette. During the process, the donor sequence is 

inactivated to prevent the Cas9 to cut the donor sequence. Quality control and annotation are also performed 

to assess the quality of the donor. 

Our CRISPR LifePipe is based on a workflow built with the snakemake tool [2]. An intuitive, responsive and 

ergonomic web interface make a better user experience. One-page web application was developed with Django 

and Angular UI [3]. Finally, all source code and third-party applications were encapsulated in a docker image, 

which provides an easier deployment in any production informatics structure [4]. 

In summary, CRISPR LifePipe tools have been developed to meet all the needs of the CRISPR users. These 

user-friendly tools will facilitate and improve all steps required for a high quality and successful CRISPR 

experiment preparation. 
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Pourquoi ?  
"Bioinformatique ? C'est quoi ça ? De l'informatique respectueuse des terres ???". Qui n'a jamais eu ce genre
de remarque sur notre profession ? Qui n'a jamais peiné pour expliquer à son entourage son travail de tous
les  jours  ?  Depuis  quelques  années,  une  petite  communauté  de  bioinformaticien·ne·s  francophones  s'est
formée suite à un simple constat : il y avait bel et bien un trou dans l'Internet francophone par rapport à notre
science ! Nous ne pouvions pas laisser cela tel quel, c'était devenu notre mission. www.bioinfo-fr.net était
né ! 

Qui  ?  
Au commencement, nous n'étions qu'une petite dizaine avec tout plein d'idées par dessus la tête et une envie
commune de faire  avancer  les  choses.  Aujourd'hui  la  recette  a  séduit,  les  fondations  ont  été  posées,  le
mécanisme est bien huilé et nous sommes plus d'une soixantaine de collaborateurs bénévoles dispersés de
partout à travers le monde, toujours avec la même motivation. Pas de hiérarchie stricte clairement mise en
place, si ce n'est un petit groupe d'administrateurs dont les rôles principaux sont de maintenir le site à jour,
veiller à la bonne cohérence des articles, fournir un planning de publication, accueillir les nouveaux venus,
relancer les auteurs et les relecteurs de temps en temps, communiquer avec l'extérieur et essayer de mettre en
place les nouvelles idées venant de tout un chacun. 

Comment  ?  
D'abord via un canal  IRC (#bioinfo-fr,  réseau FREENODE).  Mais très vite nous avons constaté que de
nombreuses questions similaires ressortaient et qu'il serait plus efficient de garder les réponses sur un support
écrit et de façon pérenne. Le blog nous a semblé être le support le mieux adapté cela. Chaque semaine nous
nous efforçons de fournir un article qui a subit un processus de relecture scientifique robuste et qui doit avoir
un rapport de près ou de loin avec la bioinformatique. Un article doit entre-autre chose permettre au lecteur,
averti ou non, de comprendre une méthode, de reproduire une expérience, de plonger directement dans un
code solutionnant un problème biologique ou encore de l'informer sur une toute nouvelle découverte. Au fil
des années et des articles nous avons essayé de décomposer ces articles en catégories afin de faciliter la visite
et la recherche du lecteur. 

Bilan  
En quelques années nous avons réussi à tisser un large réseau de professionnels/étudiants/passionnés capable
de  produire  des  articles  d'intérêt  public  et  de  répondre  à  des  problématiques  axées  autour  de  la
bioinformatique. Cela nous a permis également de mieux connaitre nos spécialités, nos manières de vivre,
notre métier, et de représenter à notre niveau la force de la bioinformatique francophone. Nous ne comptons
pas en rester là et vous encourageons fortement à venir discuter avec nous les Geekus biologicus. Peut-être,
qui sait, franchirez-vous le cap et nous rejoindrez-vous dans l'aventure ! 
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