Iadine Chades
email: <iadine.chades@csiro.au>

Guillaume Chapron
email: <gchapron@carnivoreconservation.org>

Marie-Josee Cros

Regis Frederick Garcia

Sabbadin Maintainer

Marie-Josée Cros

Package 'MDPtoolbox'

Keywords:

The Markov Decision Processes (MDP) toolbox proposes functions related to the resolution of discrete-time Markov Decision Processes: finite horizon, value iteration, policy iteration, linear programming algorithms with some variants and also proposes some functions related to Reinforcement Learning.

MDPtoolbox-package Markov Decision Processes Toolbox

Description

The Markov Decision Processes (MDP) toolbox proposes functions related to the resolution of discrete-time Markov Decision Processes: finite horizon, value iteration, policy iteration, linear programming algorithms with some variants and also proposes some functions related to Reinforcement Learning.

Details

Package: MDPtoolbox Type: Package Version: 4.0.3 Date:

2017-03-02 License: BSD (4.4)

Examples

Generates a random MDP problem set.seed(0) mdp_example_rand (2,2) mdp_example_rand (2,2,FALSE) mdp_example_rand (2,2,TRUE) mdp_example_rand (2,2,FALSE,matrix(c (1,0,1,1),2,2)) # Generates a MDP for a simple forest management problem MDP <-mdp_example_forest() # Find an optimal policy results <-mdp_policy_iteration(MDPP, MDPR, 0.9)

#

Value

V new value fonction. V is a vector of length S. policy policy is a vector of length S. Each element is an integer corresponding to an action.

mdp_check

Examples

With a non-sparse matrix P <-array(0, c(2,2,2)) P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE) P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE) R <-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) mdp_bellman_operator(P, R, 0.9, c(0,0)) # With a sparse matrix P <-list() P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE) P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE) mdp_bellman_operator(P, R, 0.9, c(0,0))

Description

Checks whether a matrix is square and stochastic Usage mdp_check_square_stochastic(X)

Arguments

X a matrix

Details mdp_check_square_stochastic checks if the matrix (X) is square and stochastic (sums of rows equal to 1). If it is the case, the function returns an empty error message. In the opposite case, the function returns an error message describing the problem.

Value

Returns a character string which is empty if the matrix is square and stochastic. In the opposite case, the variable contains problem information.

policy

a policy. policy is a S length vector. Each element is an integer corresponding to an action.

V0

(optional) starting point. V0 is a S length vector representing an inital guess of the value function. By default, V0 is only composed of 0 elements. epsilon (optional) search for an epsilon-optimal policy. epsilon is a real greater than 0. By default, epsilon = 0.01. max_iter (optional) maximum number of iterations. max_iter is an integer greater than 0. If the value given in argument is greater than a computed bound, a warning informs that the computed bound will be used instead. By default, max_iter = 1000.

Details

mdp_eval_policy_iterative evaluates the value fonction associated to a policy applying iteratively the Bellman operator.

Value

Vpolicy value fonction. Vpolicy is a S length vector.

Examples

With a non-sparse matrix P <-array(0, c(2,2,2)) P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE) P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE) R <-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) policy <-c(2,1) mdp_eval_policy_iterative(P, R, 0.8, policy)

With a sparse matrix P <-list() P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE) P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE) mdp_eval_policy_iterative(P, R, 0.8, policy) mdp_eval_policy_matrix Evaluates a policy using matrix inversion and product

Description

Evaluates a policy using matrix operation

Vpolicy

value function of the optimal policy. Vpolicy is a S length vector.

Details

For some states, the evaluation of the value function may give close results for different actions. It is interesting to identify those states for which several actions have a value function very close the optimal one (i.e. less than 0.01 different). We called this the search for near optimal actions in each state.

Value

Details

mdp_example_forest generates a transition probability (SxSxA) array P and a reward (SxA) matrix R that model the following problem. A forest is managed by two actions: Wait and Cut. An action is decided each year with first the objective to maintain an old forest for wildlife and second to make money selling cut wood. Each year there is a probability p that a fire burns the forest.

Here is the modelisation of this problem. Let 1, ... S be the states of the forest. the Sth state being the oldest. Let Wait be action 1 and Cut action 2. After a fire, the forest is in the youngest state, that is state 1.

The transition matrix P of the problem can then be defined as follows: The reward matrix R is defined as follows:

P (, , 1) =            p 1 -p 0
R(, 1) =            0 0 r1            R(, 2) =           0 1 1 r2         

Details

mdp_finite_horizon applies backwards induction algorithm for finite-horizon MDP. The optimality equations allow to recursively evaluate function values starting from the terminal stage. This function uses verbose and silent modes. In verbose mode, the function displays the current stage and the corresponding optimal policy.

Value V value fonction. V is a [S,(N+1)] matrix. Each column n is the optimal value fonction at stage n, with n = 1, ... N. V[,N+1] is the terminal reward. policy optimal policy. policy is a [S,N] matrix. Each element is an integer corresponding to an action and each column n is the optimal policy at stage n.

cpu_time CPU time used to run the program

Examples

With a non-sparse matrix P <-array(0, c(2,2,2)) P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE) P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE) R <-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) mdp_finite_horizon(P, R, 0.9, 3) mdp_LP # With a sparse matrix P <-list() P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE) P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE) mdp_finite_horizon(P, R, 0.9, 3)

Value

V optimal value fonction. V is a S length vector policy optimal policy. policy is a S length vector. Each element is an integer corresponding to an action which maximizes the value function

policy0

(optional) starting policy. policy0 is a S length vector. By default, policy0 is the policy which maximizes the expected immediate reward. max_iter (optional) maximum number of iterations to be done. max_iter is an integer greater than 0. By default, max_iter is set to 1000. eval_type (optional) define function used to evaluate a policy. eval_type is 0 for mdp_eval_policy_matrix use, mdp_eval_policy_iterative is used in all other cases. By default, eval_type is set to 0.

Details mdp_policy_iteration applies the policy iteration algorithm to solve discounted MDP. The algorithm consists in improving the policy iteratively, using the evaluation of the current policy. Iterating is stopped when two successive policies are identical or when a specified number (max_iter) of iterations have been performed.

Value

V optimal value fonction. V is a S length vector policy optimal policy. policy is a S length vector. Each element is an integer corresponding to an action which maximizes the value function epsilon (optional) search for an epsilon-optimal policy. epsilon is a real in]0; 1]. By default, epsilon = 0.01. max_iter (optional) maximum number of iterations to be done. max_iter is an integer greater than 0. By default, max_iter = 1000.

Details

mdp_policy_iteration_modified applies the modified policy iteration algorithm to solve discounted MDP. The algorithm consists, like policy iteration one, in improving the policy iteratively but in policy evaluation few iterations (max_iter) of value function updates done. Iterating is stopped when an epsilon-optimal policy is found.

Value

V optimal value fonction. V is a S length vector policy optimal policy. policy is a S length vector. Each element is an integer corresponding to an action which maximizes the value function.

iter number of iterations cpu_time CPU time used to run the program

Examples

With a non-sparse matrix P <-array(0, c(2,2,2)) P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE) P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE) R<-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) mdp_policy_iteration_modified(P, R, 0.9) # With a sparse matrix P <-list() P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE) P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), (optional) : number of iterations to perform. N is an integer that must be greater than the default value. By default, N is set to 10000.

Details

mdp_Q_learning computes the Q matrix, the mean discrepancy and gives the optimal value function and the optimal policy when allocated enough iterations. It uses an iterative method.

Value Q an action-value function that gives the expected utility of taking a given action in a given state and following an optimal policy thereafter. Q is a [S,A] matrix. mean_discrepancy discrepancy means over 100 iterations. mean_discrepancy is a vector of V discrepancy mean over 100 iterations. Then the length of the vector for the default value of N is 100.

V value function. V is a S length vector.

policy policy. policy is a S length vector. Each element is an integer corresponding to an action which maximizes the value function

Examples

With a non-sparse matrix P <-array(0, c(2,2,2)) P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE) P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE) R <-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) # Not run # mdp_Q_learning(P, R, 0.9) # With a sparse matrix P <-list() P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE) P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE) # Not run # mdp_Q_learning(P, R, 0.9) Iterating is stopped when an epsilon-optimal policy is found or after a specified number (max_iter) of iterations is done.

Value policy optimal policy. policy is a S length vector. Each element is an integer corresponding to an action which maximizes the value function.

average_reward average reward of the optimal policy. average_reward is a real. The algorithm consists, like value iteration, in solving Bellman's equation iteratively Vn+1(s) calculation is modified. The algorithm uses Vn+1(s) instead of Vn(s) whenever this value has been calculated. In this way, convergence speed is improved. Iterating is stopped when an epsilonoptimal policy is found or after a specified number (max_iter) of iterations.

Value policy epsilon-optimal policy. policy is a S length vector. Each element is an integer corresponding to an action which maximizes the value function.

iter number of done iterations.

epsilon

(optional) : search for an epsilon-optimal policy epsilon is a real in]0; 1]. By default, epsilon is set to 0.01.

V0

(optional) : starting value function. V0 is a S length vector. By default, V0 is only composed of 0 elements.

Details

mdp_value_iteration_bound_iter computes a bound on the number of iterations for the value iteration algorithm to find an epsilon-optimal policy with use of span for the stopping criterion.

Value max_iter maximum number of iterations to be done. max_iter is an integer greater than 0.

Examples

With a non-sparse matrix P <-array(0, c(2,2,2)) P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE) P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE) R <-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) mdp_value_iteration_bound_iter(P, R, 0.9) # With a sparse matrix P <-list() P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.

R

 topics documented: MDPtoolbox-package . mdp_bellman_operator . mdp_check . mdp_check_square_stochastic . mdp_computePpolicyPRpolicy . mdp_computePR . mdp_eval_policy_iterative . mdp_eval_policy_matrix . mdp_eval_policy_optimality . mdp_eval_policy_TD_0 . mdp_example_forest . mdp_example_rand . mdp_finite_horizon . mdp_LP . 1 MDPtoolbox-package mdp_policy_iteration . 17 mdp_policy_iteration_modified . 18 mdp_Q_learning . 19 mdp_relative_value_iteration . 20 mdp_span . 22 mdp_value_iteration . 22 mdp_value_iterationGS . 23 mdp_value_iteration_bound_iter . 25 Index 27

 Visualise the policy results$policy mdp_bellman_operator Applies the Bellman operator Description Applies the Bellman operator to a value function Vprev and returns a new value function and a Vprev-improving policy. Usage mdp_bellman_operator(P, PR, discount, Vprev) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. PR reward array. PR can be a 2 dimension array [S,A] possibly sparse. discount discount factor. discount is a real number belonging to]0; 1]. Vprev value fonction. Vprev is a vector of length S. Details mdp_bellman_operator applies the Bellman operator: PR + discount*P*Vprev to the value function Vprev. Returns a new value function and a Vprev-improving policy.

 . P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real number which belongs to [0; 1[. policy a policy. policy is a S length vector. Each element is an integer corresponding to an action. matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) mdp_eval_policy_matrix(P, R, 0.9, c(1,2)) of 'near optimal' actions for each state Description Determines sets of 'near optimal' actions for all states Usage mdp_eval_policy_optimality(P, R, discount, Vpolicy) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real number which belongs to [0; 1[.

mdp_policy_iteration

 Solves discounted MDP using policy iteration algorithm Description Solves discounted MDP with policy iteration algorithm Usage mdp_policy_iteration(P, R, discount, policy0, max_iter, eval_type) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real which belongs to]0; 1[.

 using modified policy iteration algorithm Description Solves discounted MDP using modified policy iteration algorithm Usage mdp_policy_iteration_modified(P, R, discount, epsilon, max_iter) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real number which belongs to [0; 1[. For discount equals to 1, a warning recalls to check conditions of convergence.

 , R, 0.9) mdp_Q_learning Solves discounted MDP using the Q-learning algorithm (Reinforcement Learning) Description Solves discounted MDP with the Q-learning algorithm (Reinforcement learning) Usage mdp_Q_learning(P, R, discount, N) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real which belongs to]0; 1[N

 Detailsmdp_span computes the span of the W vector: max W(s) -min W(s)Value the value of the span of the W vector.

 for the number of iterations for the value iteration algorithm Description Computes a bound on the number of iterations for the value iteration algorithm Usage mdp_value_iteration_bound_iter(P, R, discount, epsilon, V0) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real which belongs to]0; 1[.

cpu_time

 CPU time used to run the program.

 Detailsmdp_check checks whether the MDP defined by the transition probability array (P) and the reward matrix (R) is valid. If P and R are correct, the function returns an empty error message. In the opposite case, the function returns an error message describing the problem.

	Examples
	# With a non-sparse matrix
	P <-array(0, c(2,2,2))
	P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE)
	P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE)
	R <-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE)
	mdp_check(P, R)
	# With a sparse matrix
	P <-list()
	P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE)
	P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE)
	mdp_check(P, R)
	Value
	Returns a character string which is empty if the MDP is valid. In the opposite case, the variable
	contains problem information

mdp_check Checks the validity of a MDP Description Checks the validity of a MDP Usage mdp_check(P, R) Arguments P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. mdp_check_square_stochastic Checks if a matrix is square and stochastic

 

	mdp_example_rand mdp_finite_horizon	Generates a random MDP problem Solves finite-horizon MDP using backwards induction algorithm
	Description	
	Description	
	Solves finite-horizon MDP with backwards induction algorithm
	Generates a random MDP problem
	Usage	
	Usage mdp_finite_horizon(P, R, discount, N, h)
	mdp_example_rand(S, A, is_sparse, mask)
	Arguments	
	P Arguments	transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S].
	S	number of states. S is an integer greater than 0
	A	number of actions. A is an integer greater than 0
	R	reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element
		containing a sparse matrix [S,S]. Elements of R are in]-1; 1[
	Value	
	P Examples	transition probability array. P is a [S,S,A] array.
	R mdp_example_rand(2, 2) reward matrix. R is a [S,A] matrix
	mdp_example_rand(2, 2, FALSE)
	mdp_example_rand(2, 2, TRUE)
	Examples mdp_example_rand(2, 2, FALSE, matrix(c(1,0,1,1),2,2))
	mdp_example_forest()

is_sparse

(optional) used to generate sparse matrices. is_sparse is a boolean. If it is set to true, sparse matrices are generated. By default, it is set to false. mask (optional) indicates the possible transitions between states. mask is a [S,S] matrix composed of 0 and 1 elements (0 indicates a transition probability always equal to zero). By default, mask is only composed of 1.

Details

mdp_example_rand generates a transition probability matrix (P) and a reward matrix (R). Optional arguments allow to define sparse matrices and pairs of states with impossible transitions.

Value

P transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. R reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. discount discount factor. discount is a real number which belongs to [0; 1[. N number of stages. N is an integer greater than 0. h (optional) terminal reward. h is a S length vector. By default, h = numeric(S).

 Detailsmdp_relative_value_iteration applies the relative value iteration algorithm to solve MDP with average reward. The algorithm consists in solving optimality equations iteratively.

	Arguments	
	P	transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]],
		each element containing a sparse matrix [S,S].
	R	reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element
		containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse.
	epsilon	(optional) : search for an epsilon-optimal policy. epsilon is a real in [0; 1]. By
		default, epsilon is set to 0.01
	max_iter	(optional) : maximum number of iterations. max_iter is an integer greater than
		0. By default, max_iter is set to 1000.
	mdp_relative_value_iteration
		Solves MDP with average reward using relative value iteration algo-
		rithm
	Description	
	Solves MDP with average reward using relative value iteration algorithm
	Usage	
	mdp_relative_value_iteration(P, R, epsilon, max_iter)

 (optional) : maximum number of iterations. max_iter is an integer greater than 0. If the value given in argument is greater than a computed bound, a warning informs that the computed bound will be considered. By default, if discount is not egal to 1, a bound for max_iter is computed, if not max_iter = 1000.Detailsmdp_value_iteration applies the value iteration algorithm to solve discounted MDP. The algorithm consists in solving Bellman's equation iteratively. Iterating is stopped when an epsilon-optimal policy is found or after a specified number (max_iter) of iterations.

	Arguments	
	P	transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]],
		each element containing a sparse matrix [S,S].
	V0 R	reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element (optional) : starting value function. V0 is a (Sx1) vector. By default, V0 is only composed of 0 elements. containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse.
	discount	discount factor. discount is a real which belongs to]0; 1]. For discount equals
		to 1, a warning recalls to check conditions of convergence.
	epsilon	(optional) : search of an epsilon-optimal policy. epsilon is a real in]0; 1]. By
		default, epsilon is set to 0.01.
	max_iter	(optional) : maximum number of iterations to be done. max_iter is an integer
		greater than 0. If the value given in argument is greater than a computed bound,
	Value	a warning informs that the computed bound will be considered. By default, if discount is not equal to 1, a bound for max_iter is computed, if not max_iter is
	policy	optimal policy. policy is a S length vector. Each element is an integer corre-set to 1000.
	V0	sponding to an action which maximizes the value function. (optional) : starting value function. V0 is a S length vector. By default, V0 is
	iter	number of done iterations. only composed of 0 elements.
	cpu_time	CPU time used to run the program.
	Examples	
	# With a non-sparse matrix
	P <-array(0, c(2,2,2))
	P[,,1] <-matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE)
	P[,,2] <-matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE)
	mdp_value_iteration R<-matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE) Solves discounted MDP using value iteration algorithm
	mdp_value_iteration(P, R, 0.9)
	# With a sparse matrix
	Description P <-list()	
	P[[1]] <-Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE) Solves discounted MDP with value iteration algorithm P[[2]] <-Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE)
	mdp_value_iteration(P, R, 0.9)
	Usage	
	mdp_value_iteration(P, R, discount, epsilon, max_iter, V0)
	Arguments mdp_value_iterationGS Solves discounted MDP using Gauss-Seidel's value iteration algo-
		rithm
	P	transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]],
		each element containing a sparse matrix [S,S].
	R Description	reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element
		containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse.
	discount Solves discounted MDP with Gauss-Seidel's value iteration algorithm. discount factor. discount is a real number which belongs to [0; 1[. For discount
	Usage	equals to 1, a warning recalls to check conditions of convergence.
	mdp_value_iterationGS(P, R, discount, epsilon, max_iter, V0)

epsilon

(optional) : search for an epsilon-optimal policy. epsilon is a real in]0; 1]. By default, epsilon = 0.01.

max_iter Details mdp_value_iterationGS applies Gauss-Seidel's value iteration algorithm to solve discounted MDP.

 2),2,2, byrow=TRUE, sparse=TRUE)

	Index
	mdp_bellman_operator, 3
	mdp_check, 4
	mdp_check_square_stochastic, 5
	mdp_computePpolicyPRpolicy, 6
	mdp_computePR, 7
	mdp_eval_policy_iterative, 8
	mdp_eval_policy_matrix, 9
	mdp_eval_policy_optimality, 10
	mdp_eval_policy_TD_0, 11
	mdp_example_forest, 12
	mdp_example_rand, 14
	mdp_finite_horizon, 15
	mdp_LP, 16
	mdp_policy_iteration, 17
	mdp_policy_iteration_modified, 18
	mdp_Q_learning, 19
	mdp_relative_value_iteration, 20
	mdp_span, 22
	mdp_value_iteration, 22
	mdp_value_iteration_bound_iter, 25
	mdp_value_iterationGS, 23
	MDPtoolbox (MDPtoolbox-package), 2
	MDPtoolbox-package, 2