New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Water Research Année : 2016

New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions

Résumé

Analyses on bacterial, archaeal communities at family level and methane-production metabolism were conducted in thirteen full-scale and pilot-scale anaerobic sludge digesters. These digesters were operated at different conditions regarding solids concentration, sludge retention time, organic loading rate and feedstock composition, seeking to optimize digester capacity. Correlations between process parameters and identified microbial phylotypes were evaluated based on relative abundance of these phylotypes determined by Quantitative PCR and 16S rDNA amplicon sequencing. Results showed that, Total Solids concentration (TS), among the evaluated operational parameters, demonstrated the most positive correlation with chemical parameters (including NH3 and VFAs) and significant impact on the abundance of key microbial phylotypes regardless of other factors. Digesters were grouped into 'Higher-TS' with higher stress (TS > 44 g/L, NH3 > 90 mg/L, VFAs > 300 mg/L) and 'Lower-TS' under easier status (TS <= 44 g/L, NH3 < 120 mg/L, VFAs < 525 mg/L) in this study. We identified the key microbial phylotypes, i.e. the most abundant and discriminating populations, in 'Higher-TS' digesters with high biogas production rate, which were the class Clostridia, the family Methanosarcinaceae and the order Methanobacteriales. Thermoanaerobacteraceae and Syntrophomonadaceae were identified as key families of Clostridia. Methane was produced both from acetoclastic and hydrogenotrophic methanogenesis. By contrast, in 'Higher-TS' digesters with low biogas production rate, the classes Alpha-, Beta- and Gamma-proteobacteria were detected in higher percentages, of which Rhodobacteraceae, Comamonadaceae and Xanthomonadaceae were the most abundant families respectively, and Methanomicrobiales was the prevailing methanogen order. Consistently, hydrogenotrophic pathway was predominant for methanogenesis, indicating existence of syntrophic acetate oxidation in such 'high-stress', low biogas production rate digesters. These microbial phylotypes were therefore considered to be associated to 'Higher-TS' operation. In 'Lower-TS' digesters, the abundance of the class Delta-proteobacteria, the families Anaerolineaceae, Rikenellaceae, Candidatus Cloacamonas and Methanosaetaceae was obviously higher compared with those in 'Higher-TS' digesters, which were thus considered to be marker phylotypes of easy status. The influence of TS and NH3 on the microbiome should be considered when a 'TS-increasing' strategy is applied to increase digester capacity.
Fichier non déposé

Dates et versions

hal-01602845 , version 1 (02-10-2017)

Identifiants

Citer

Liping Hao, Ariane Bize, Delphine Conteau, O. Chapleur, Sophie Courtois, et al.. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions. Water Research, 2016, 102 (octobre), pp.158-169. ⟨10.1016/j.watres.2016.06.014⟩. ⟨hal-01602845⟩

Collections

IRSTEA INRAE PROSE
43 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More