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Phenylpyrroles are chemical analogs of the natural antifungal compound pyrrolnitrin.
Fenpiclonil, but mainly fludioxonil are registered against multiple fungal crop diseases
since over 25 years for seed or foliar treatment. They have severe physiological
impacts on the pathogen, including membrane hyperpolarization, changes in carbon
metabolism and the accumulation of metabolites leading to hyphal swelling and burst.
The selection and characterization of mutants resistant to phenylpyrroles have revealed
that these fungicides activate the fungal osmotic signal transduction pathway through
their perception by a typical fungal hybrid histidine kinase (HHK). The HHK is prone to
point mutations that confer fungicide resistance and affect its sensor domain, composed
of tandem repeats of HAMP motifs. Fludioxonil resistant mutants have been selected in
many fungal species under laboratory conditions. Generally they present severe impacts
on fitness parameters. Since only few cases of field resistance specific to phenylpyrroles
have been reported one may suspect that the fitness penalty of phenylpyrrole resistance
is the reason for the lack of field resistance.

Keywords: fungicide, signal transduction, histidine kinase, resistance, fitness

THE ORIGIN OF PHENYLPYRROLES

Phenylpyrroles are chemical derivatives of pyrrolnitrin, a secondary metabolite produced by some
bacteria from tryptophan (Floss et al., 1971). It was isolated for the first time from Pseudomonas
pyrrocinia in the 1960s (Arima et al., 1965) and showed strong antifungal activity against various
animal and plant pathogenic fungi even under greenhouse conditions. Pyrrolnitrin or pyrrolnitrin
producing Pseudomonas (e.g., P. fluorescens) proved phytoprotecting efficiency against Rhizoctonia
solani, Alternaria sp., Fusarium sp., Verticillium dahliae, and Thielaviopsis basicola. Its activity
was found stable for 30 days in the soil (Howell and Stipanovic, 1979) but sensitive to light
decomposition. Consequently, two synthetic analogs have been successfully developed by Ciba-
Geigy AG (now Syngenta AG) in the 1980s and introduced in the market for seed treatment and
foliar use (reviewed in Leadbitter et al., 1994).

Fenpiclonil and fludioxonil are 3-cyano-4-phenylpyrrol analogs of pyrrolnitrin with largely
increased photo-stability and similar antifungal activity (reviewed in Corran et al., 2008). These
compounds differ by the substitutions at positions 2 and 3 of the phenyl ring (Figure 1). Fenpiclonil

Abbreviations: HAMP domain: domains conserved among histidine kinase, adenylate cyclase, methyl accepting proteins,
phosphatases; HHK: hybrid histidine kinase; HK: histidine kinase; MAPK: mitogen activated kinase; PK-III: protein kinase
III; ST: signal transduction.
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FIGURE 1 | Chemical structure of Pyrrolnitrin (Imanaka et al., 1965) and synthetic analogs (www.frac.org). The chemical characteristics of phenylpyrroles
are the phenyl ring with substitutions in positions 2 and/or 3 and the pyrrole ring with substitutions at position 3 (Corran et al., 2008).

(synthetized in 1984) was introduced in the market as seed-
treatment in 1988 but rapidly superseded (1990) by the more
stable and more active fludioxonil as foliar and seed-treatment
(Leadbitter et al., 1994; Corran et al., 2008). To date, fludioxonil
can be considered as major representative of the phenylpyrrole
family of fungicides.

As non-systemic, surface fungicide, fludioxonil is registered
for treatments at pre- and post-harvest stages on leaves, fruits
and seeds. It has a principally prophylactic action against multiple
fungal diseases provoked by ascomycetes or basidiomycetes. The
list of crops registered for the use of fludioxonil and the associated
pathogens (if known) is indicated in Table 1. Fludioxonil has no
detectable activity on non-target organisms, such as baker’s yeast,
men, plants, or animals (Gehmann et al., 1990).

Phenylpyrroles inhibit all stages of fungal development, spore
germination, germ-tube elongation, and mycelial growth (Leroux
et al., 1992). The observed consequences are swollen hyphae with
increased ramifications and apical lysis (Leroux, 1996) indicating
that phenylpyrroles might act on the intra-hyphal turgor and cell
wall biosynthesis (Lew, 2010).

EFFECT OF PHENYLPYRROLES ON
TARGET FUNGI – MODE OF ACTION

Jespers et al. (1994) observed extremely rapid intracellular
accumulation of fenpiclonil in Fusarium sulphureum reaching
its maximum in less than 1 min. Interestingly, the majority
of the accumulated fenpiclonil can be washed off by water,
suggesting that the phenylpyrrole penetrates the fungus through
passive diffusion. The same study also showed that during the
exposure to fenpiclonil the fungus accumulates the lipophilic
cation tetraphenylphosphonium bromide (TPP+), independent
of extracellular pH, indicating hyperpolarization of the plasma
membrane and modification of the mitochondrial membrane
potential (Jespers et al., 1994). Similar results have been observed
with fludioxonil in Neurospora crassa, i.e., the induction of
hyperpolarization of the plasma membrane through efflux of H+
and influx of K+ leading to increased membrane potential (Lew,
2010).

Various authors have observed modifications in the
intracellular accumulation of different metabolites (e.g., F.

sulphureum, N. crassa). Exposure to high doses of fenpiclonil
(over 10-fold EC50 concentrations) induces the accumulation
of amino acids and monosaccharides (Jespers et al., 1993).
Conversely the exposure to sub-lethal doses of phenylpyrroles
seems to inhibit the incorporation of mono-saccharides into
macromolecules (Jespers and De Waard, 1994) but also to
stimulate biosynthesis and intracellular accumulation of
glycerol and mannitol (Jespers and De Waard, 1995; Pillonel
and Meyer, 1997). In order to precise the enzymatic step
inhibited by phenylpyrroles, Jespers and De Waard (1995),
studied the fate of radioactively labeled 2-deoxyglucose.
2-deoxyglucose can be phosphorylated as is glucose, but
cannot be further metabolized. In the presence of fenpiclonil,
[14C]-2-deoxyglucose accumulated intracellularly, while the
intracellular concentration of [14C]-2-deoxyglucose-phosphate
diminished indicating the inhibition of hexokinase activity
during exposure of the mycelium to the phenylpyrrole. When
the authors performed the same assay on crude mycelial
extracts, they only observed a minor reduction of [14C]-2-
deoxyglucose phosphorylation under high concentrations
of fenpiclonil, withdrawing the cytoplasmic hexokinase as
sole or direct target of fenpiclonil (Jespers and De Waard,
1995).

Pillonel and Meyer tested the inhibition of protein kinase
activities in N. crassa by phenylpyrroles. They found that
purified PK-III was inhibited by fenpiclonil and fludioxonil
(Pillonel and Meyer, 1997). Although the concentration of
phenylpyrroles required for PK-III inhibition was found similar
to that of rat PKC-inhibition, N. crassa PK-III does not
seem to be neither a Ca2+/calmodulin nor a cAMP regulated
protein kinase (Judewicz et al., 1981; Ulloa et al., 1987).
To some extend the inhibition of PK-III correlated with
growth inhibition by fenpiclonil, but less by fludioxonil, raising
the question if phenylpyrroles, especially fenpiclonil, directly
inhibit PK-III activity. Given the data of Pillonel and Meyer,
this hypothesis has never been retained nor validated, since
the concentrations required to inhibit the purified enzyme
(I50) were much higher (up to 100 times in the case
of fludioxonil) than those needed to inhibit fungal growth
(EC50). Either phenylpyrroles do not inhibit PK-III by itself,
acting rather indirectly, or they may affect different cellular
targets.
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TABLE 1 | Crops and diseases registered for pre- or pos-tharvest
treatment with phenylpyrroles.

Crop Pathogens controlled Reference

Seed treatments and post-harvest uses

Almonds Coryneum beijerinckii,
Monilinia spp.

Gehmann et al., 1990

Avocado Dothiorella iberica Twizeyimana et al., 2013

Neofusicoccum australe

Neofusicoccum luteum

Neofusicoccum parvum

Phomopsis spp.

Barley Microdochium nivale Gehmann et al., 1990

Fusarium spp.

Ustilago hordei

Pyrenophora graminea

Cochliobolus sativus

Beans Rhizoctonia solani Olaya et al., 1994

Botrytis spp. Gehmann et al., 1990

Carrot n.i∗

Citrus fruit Penicillium digitatum Kanetis et al., 2007

Cotton Fusarium spp. Leroux et al., 1992;

Rhizoctonia solani Corran et al., 2008

Thielaviopsis basicola

Cucurbit vegetables n.i

Eggplant Botrytis spp. Corran et al., 2008

Flax seed n.i∗

Foliage of legume
vegetables

n.i∗

Ginseng n.i∗

Grapes Botrytis cinerea Gehmann et al., 1990

Glomerella cingulata

Grass (forage, fodder,
hay)

n.i∗

Jojoba n.i∗

Kiwifruit Botrytis cinerea Brigati et al., 2009

Lettuce Sclerotinia minor Gehmann et al., 1990

Maize Fusarium graminearum Gehmann et al., 1990

Tropical fruits n.i∗

Peanut Sclerotinia minor Gehmann et al., 1990;

Rhizoctonia solani Corran et al., 2008

Peas Ascochyta spp. Gehmann et al., 1990;

Fusarium spp. Corran et al., 2008

Peyronellaea pinodes

Pineapple n.i∗

Pistachio Alternaria spp. Ma et al., 2004

Pome fruit Penicillium spp., Botrytis
cinerea

Errampalli, 2004; Zhao
et al., 2010

Pomegranate Botrytis cinerea Palou et al., 2007;

Alternaria spp. D’Aquino et al., 2010

Penicillium spp.

Potato Fusarium spp. Gehmann et al., 1990;

Helminthosporium solani Gachango et al., 2012

Boeremia exigua

Rhizoctonia solani

Alternaria solani

Rapeseed Leptosphaeria maculans Gehmann et al., 1990;

(Continued)

TABLE 1 | Continued

Crop Pathogens controlled Reference

Alternaria brassicae Duan et al., 2013

Sclerotinia sclerotiorum

Rice Gibberella fujikuroi Gehmann et al., 1990

Rhizoctonia solani

Gaeumannomyces oryzinus

Cochliobolus miyabeanus

Rye Microdochium nivale Gehmann et al., 1990;

Urocystis occulta Corran et al., 2008

Monographella nivalis

Safflower n.i∗

Soybean Fusarium spp. Mueller et al., 1999;

Sclerotinia sclerotiorum Corran et al., 2008

Rhizoctonia solani

Stone fruits (apricots,
peaches, nectarines,
cherries, plums)

Monilinia spp., Botrytis
cinerea, Rhizopus spp.

Gehmann et al., 1990;
Förster et al., 2007

Strawberry Botrytis cinerea Gehmann et al., 1990;

Glomerella cingulata Taguchi et al., 2012

Sunflower n.i∗

Sweet potato Rhizopus stolonifer Edmunds and Holmes,
2009

Tomato Botrytis spp., Alternaria
solani

Gehmann et al., 1990

Tropical fruits n.i∗

Watercress n.i∗

Wheat Tilletia laevis Gehmann et al., 1990;

Microdochium nivale Corran et al., 2008

Fusarium spp.

Bipolaris sorokiniana

Phaeosphaeria nodorum

Monographella nivalis

Terrestrial non-food uses

Turf Rhizoctonia solani Gehmann et al., 1990

Sclerotinia homeocarpa

Drechslera poae

Microdochium nivale

Ornamentals Rhizoctonia solani Gehmann et al., 1990

∗n.i: not indicated (crops without associated pathogens were extracted from the
registration review of fludioxonil).

FROM PHENYLPYRROLES TO OSMOTIC
SIGNAL TRANSDUCTION

Glycerol accumulation is a consequence specific to the
exposure to phenylpyrrole, dicarboximide and aromatic
hydrocarbon fungicides. The selection of laboratory generated
mutants resistant to the three categories of fungicides in
B. cinerea correlated with osmosensitivity (Leroux et al., 1992;
Faretra and Pollastro, 1993). Also N. crassa osmosensitive
mutants os-1, os-2, os-4, and os-5 (Perkins et al., 1982)
are resistant to dicarboximides, aromatic hydrocarbons,
and phenylpyrroles (Fujimura et al., 2000; Zhang et al.,
2002).

Frontiers in Microbiology | www.frontiersin.org 3 December 2016 | Volume 7 | Article 2014

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-02014 December 14, 2016 Time: 15:22 # 4

Kilani and Fillinger Phenylpyrroles: A Review

The corresponding genes and mutations have been cloned
and identified in N. crassa and later in other fungi. The os-
1 gene encodes a class III HHK (Schumacher et al., 1997)
whose mutations lead to fungicide resistance and osmosensitivity
(Ochiai et al., 2001). The os-2 gene on its turn encodes the
osmosensing MAPK (Zhang et al., 2002), homologous to the
MAPK of Saccharomyces cerevisiae involved in adaptation to high
osmolarity named, high osmolarity glycerol, Hog1 (Hohmann,
2002). The fungicide resistant/osmosensitive phenotype of os-2
mutants is due to non-sense mutations. Finally, os-5 and os-
4 are the MAPKK and MAPKKK encoding genes, respectively
(Fujimura et al., 2003). The Os-5, Os-4, and Os-2 elements
are equivalent to the yeast osmotic ST cascade. Altogether
these items suggest that the phenylpyrroles (and dicarboximides)
target the osmotic ST cascade, in particular the class III
HHK Os-1.

An additional argument for this hypothesis is the fact that
the yeast S. cerevisiae, devoid of this class of HHK, is insensitive
to phenylpyrroles and dicarboximides. The introduction of a
class III HHK, orthologous to Os-1, leads to sensitivity to
phenylpyrroles, dicarboximides and aromatic hydrocarbons in
S. cerevisiae (Motoyama et al., 2005). These results are in favor
of the class III HHK as direct target of phenylpyrroles (and
dicarboximides).

The possible mode of action is that fludioxonil, by binding
to the class III HHK, mimics an osmotic stress through the
activation of the Os-2/Hog1 MAPK (Figure 2A). This activation
probably leads to multiple downstream reactions, such as
activation of H+-ATPase, K+-influx and glycerol biosynthesis
leading to increased intracellular turgor and membrane potential
(Lew, 2010). Additional enzyme activities may be affected, e.g.,
hexokinase or sugar transporters (Jespers et al., 1994; Jespers and
De Waard, 1995) that ultimately explain the phenotypes outlined
above.

RESISTANCE TO PHENYLPYRROLES

Until now only few cases of field resistance specific to
fludioxonil have been reported; this despite the fact that for
many fungal species (N. crassa, B. cinerea, S. sclerotiorum,
U. maydis, A. nidulans,. . .) resistant strains could easily
be obtained after mutagenesis and successive replication on
fludioxonil supplemented medium (e.g., Avenot et al., 2005).
These laboratory mutants display high resistance levels to
phenylpyrroles, which is often associated with sensitivity to
hyper-osmolarity and cross-resistance to dicarboximides and
aromatic hydrocarbons (Ochiai et al., 2001; Leroux et al.,
2002). In addition, most laboratory mutants, e.g., in B. cinerea
and A. brassicicola, display developmental defects and reduced
pathogenicity (Avenot et al., 2005; Ajouz et al., 2010; Ren et al.,
2016). Adversely, no fitness penalty was found associated with
dicarboximide resistance (and phenylpyrrole sensitivity) in field
strains (Oshima et al., 2002, 2006). Notably, in some fungal
species, no developmental defect besides osmosensitivity was
found associated with phenylpyrrole resistance (Motoyama et al.,
2005; Luo et al., 2012).

Field strains cross-resistant to phenylpyrroles and
dicarboximides have been isolated from A. brassicicola, A.
longipes, and A. alternata populations (Dry et al., 2004;
Iacomi-Vasilescu et al., 2004; Avenot et al., 2005; Luo
et al., 2012; Avenot and Michailides, 2015; Malandrakis
et al., 2015). No significant developmental defects could
be detected in the A. brassicicola resistant mutants and
only moderate osmosensitivity (Avenot et al., 2005; Iacomi-
Vasilescu et al., 2008). However, phenylpyrrole resistance
seems limited in Alternaria field populations (Avenot and
Michailides, 2015; Malandrakis et al., 2015) indicating a
potential fitness penalty not detected under controlled laboratory
conditions.

Recently, fludioxonil resistant strains have been isolated from
B. cinerea field populations in China, at low levels (<3%).
They present the typical osmosensitivity and developmental
defects of fludioxonil resistant laboratory mutants (Ren et al.,
2016) raising the question of their capacity to compete with
sensitive and fitter strains and the selective pressure of fungicide
treatments on these particular populations. Globally, specific
resistance to fludioxonil does not exist among gray mold
populations maintaining the high efficiency of this fungicide
(Walker et al., 2013; Fillinger and Walker, 2016). However, multi-
drug resistant (MDR) phenotypes due to increased fungicide
efflux affect sensitivity to fludioxonil (Kretschmer et al., 2009).
Although MDR does not reach resistance levels sufficient
to alter field efficacy of fungicides at their registered field
rates, the MDR1h phenotype of B. cinerea group S strains
leads to the highest resistance levels to fludioxonil reported
for field isolates (Leroch et al., 2013) – besides the specific
resistance reported from China (Ren et al., 2016) – and impacts
fludioxonil efficacy at least in in vitro assays (Rupp et al.,
2016).

FUNGAL HISTIDINE KINASES LINKED
TO PHENYLPYRROLE RESISTANCE

As mentioned above, mutations conferring resistance to
phenylpyrroles and dicarboximides map to class III HHKs,
although one cannot exclude the presence of mutations in
other components of the osmotic ST cascades that have
not been specifically searched for. HKs are ubiquitous,
but typical fungal HHKs are absent from mammals
and therefore constitute interesting targets for fungicide
treatments. They are involved in cellular ST systems referred
to as His-to-Asp phosphorelays. HHKs act as primary
sensors for various environmental signals and initiate the
adaptive response after autophosphorylation and subsequent
phosphotransfer (reviewed by Bahn, 2008). Interestingly,
the class III HHKs were shown to be cytoplasmic (Meena
et al., 2010; Foureau et al., 2014), meaning that they
sense fludioxonil intracellularly after its transmembrane
diffusion.

Fungal HHKs are composed of the variable N-terminal sensor
domain and the C-terminal domain, including the catalytic
HK and ATPase domains that autophosphorylate the conserved
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FIGURE 2 | Signal transduction of phenylpyrrole perception in ascomycetes. (A) The fungicide signal is perceived by the HHK of class III, which transmits the
signal to the osmotic MAPK cascade via the histidine-phosphate transfer protein (HPT) and the response regulator (RR). Phenylpyrrole treatment ultimately leads to
MAPK-phosphorylation and activation of an adaptive response either through transcriptional activation in the nucleus or through the regulation of cytoplasmic
proteins. The RR Skn7, under control of Ypd1, is also involved in the transcriptional regulation in response to phenylpyrrole treatment. The involvement of the HHK VI
in the adaptation is less well documented. Protein names are those of S. cerevisiae, if different those of N. crassa are indicated in brackets. Full arrows indicate
positive regulations, hashed arrows indicate either positive or negative regulations (different among fungal species), or direct interactions that remain to be
demonstrated (reviewed in Bahn, 2008; Tanaka and Izumitsu, 2010; Jung et al., 2012; Herivaux et al., 2016). (B) Protein structure of class III fungal HHKs. The
N-terminal domain, corresponding to the sensor domain is constituted of 5–7 tandem repeats of HAMP motifs. The C-terminal half is composed of the catalytic
domains HK, ATPase and the RR. The conserved histidine residue in the HK domain is phosphorylated after hydrolysis of ATP by the ATPase. The phosphoryl group
is then transferred to the conserved aspartate in the RR domain, which, ultimately, transfers the phosphoryl group to the HPT protein.

histidine residue, in addition to the receiver domain with the
cognate aspartate residue (reviewed in Jung et al., 2012; Herivaux
et al., 2016) (Figure 2). A classification according to the structural
components of the N-terminal domain and the peptide sequence
around the conserved histidine residue attributed 16 classes of
HHKs to fungi (Defosse et al., 2015). The number of HHK
genes varies among species of the fungal kingdom from 1 to
21 HHKs (Catlett et al., 2003; Lavin et al., 2010; Defosse et al.,
2015).

The HHKs involved in fludioxonil sensing are principally
those belonging to class III (Ochiai et al., 2001; Avenot
et al., 2005; Motoyama et al., 2005; Viaud et al., 2006;
Dongo et al., 2009; Alberoni et al., 2010; Furukawa et al.,
2012), but some data indicate a possible role in phenylpyrrole
sensing of other HHKs. In Candida lusitaniae Chk1, the
HHK of class VI, homologous to the osmosensing HHK
Sln1 of S. cerevisiae, interferes with phenylpyrrole sensitivity
(Chapeland-Leclerc et al., 2007). In the Cryptococcus neoformans,
Tco2, a basidiomycete specific dual HK is also involved in
fludioxonil sensitivity (Bahn et al., 2006). If the action of these

HHKs is direct or indirect through the HOG pathway remains to
be established.

The N-terminal domain of class III HHKs is characterized
by 5–7 tandem repeats of an approximately 50-amino acid
alpha-helical region, conserved among several signaling proteins
and named HAMP domain (IPR003660). HAMPs have been
extensively studied in bacterial sensor proteins where they
play an active role in the intramolecular ST from the
transmembrane sensor domain to the cytoplasmic kinase
domain. It has been suggested that the HAMP domain
regulates the phosphorylation of homodimeric sensor proteins
by transmitting the conformational changes in the ligand-
binding domains to the C-terminal signaling kinase domains
(Aravind and Ponting, 1999; Klose et al., 2014; Schultz
et al., 2015). This model is supported by genetic and
biochemical studies (Zhou et al., 2009; Matamouros et al.,
2015).

Histidine kinase, adenylate cyclase, methyl accepting proteins,
phosphatases modules do not have strict sequence conservation,
but a canonical coiled coil structure. HAMP subunits have
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two 16-residue amphiphilic helices (AS1, AS2) joined by a
14- to 15-residue connector segment. AS1 and AS2 have
a seven-residue repeat pattern with hydropic residues at
the first and forth position, respectively (Parkinson, 2010).
Rotation after signal perception is proposed to constitute
the basic mechanism of HAMP mediated transmembrane
signaling in bacteria (Airola et al., 2010, 2013; Klose et al.,
2014).

The 5–7 repeats of HAMP modules and the cytoplasmic
localization do not allow a simple transposition of the bacterial
structure-function model to explain the mechanism of ST
in fungal HKs. The number of repeat units varies across
fungal species. Using S. cerevisiae as heterologous host the
role of HAMP domains in ST has been investigated. In
the case of Debaryomyces hansenii class III HHK, HAMP
deletion and yeast two hybrid studies led to the proposal
of a functional model to explain the transduction of the
hyperosmolarity or fludioxonil signal involving the five
HAMP domains of the DhNik1 protein (Meena et al., 2010;
Furukawa et al., 2012): The correct order of the HAMP
domains is essential; HAMP1-3, 5 are essential for kinase
activity, but HAMP4 is essential for the regulation of the
HHK in response to a signal through its interaction with
HAMP5. Using this approach, the authors showed that
DhNik1 in the heterologous host S. cerevisiae has a functional
kinase activity under standard conditions inhibiting the
phosphorylation of the MAPK Hog1. Hyperosmolarity or
fludioxonil inhibit DhNik1 activity leading to Hog1 activation.
The interaction between two HAMP domains (HAMP4 and
HAMP5) is essential for HHK inhibition. The authors also
showed in the yeast model, that a constitutive active form
of DhNIK1 confers resistance to fludioxonil. Among point
mutations of N. crassa mutants displaying low resistance
to fludioxonil (Ochiai et al., 2001), at least one of these
mutations leads to a constitutive active form of the class III HK,
conferring fludioxonil resistance to S. cerevisiae (Furukawa et al.,
2012).

Mutations in fungal class III HHKs conferring resistance
to phenylpyrroles and cross-resistance to dicarboximides
generally induce phenotypes similar to deletion mutants
(Viaud et al., 2006; Fillinger et al., 2012). They localize within
or between the HAMP domains of the HHKs (Oshima
et al., 2002; Alberoni et al., 2010; Fillinger et al., 2012;
Firoz et al., 2015), while others are frameshift or non-sense
mutations (Ochiai et al., 2001; Iacomi-Vasilescu et al., 2004;
Duan et al., 2014; Ren et al., 2016). Altogether these results
are in agreement with the hypothesis that in most cases
loss-of-function mutations are responsible for fludioxonil
resistance in plant pathogenic fungi (mainly laboratory
mutants; reviewed in Defosse et al., 2015), but mutations
leading to modified function or even constitutively active
HHK may exist as well, probably at very low frequencies.
Due to its essential role in many biological processes
including pathogenicity (Viaud et al., 2006; Herivaux et al.,
2016), loosing a class III HHK might explain the absence
of fludioxonil field resistance in most plant pathogenic
fungi.

CONCLUSION

Thirty years after their introduction in the fungicide market,
the large spectrum phenylpyrroles still hide some mysteries.
Although all characterized resistance mutations have been
mapped to class III HHK genes, the corresponding protein
has never been demonstrated as phenylpyrrole target. It has
been shown that fludioxonil, the nearly unique representative
of this class of fungicides, activates the osmosensing MAPK in
divers fungi (Kojima et al., 2004; Yoshimi et al., 2005; Bahn
et al., 2006; Hagiwara et al., 2007; Segmuller et al., 2007) which
may be its real mode of action. One may hypothesize that
this permanent stimulation of the hyper-osmolarity response via
MAPK activation induces the observed pleiotropic phenotypes
and, consequently, fungal death.

Another mystery is the absence (or low abundance) of
fludioxonil field resistance. To our knowledge field isolates
displaying specific resistant to fludioxonil have been detected
only in Alternaria sp. (Iacomi-Vasilescu et al., 2004) and, very
recently in B. cinerea (Ren et al., 2016). In most cases fludioxonil
resistance due to mutations in the HHK gene seems to induce
a strong fitness penalty; e.g., extremely reduced sporulation,
osmosensitivity, loss of pathogenicity, etc. (Ziogas et al., 2005;
Viaud et al., 2006; Ajouz et al., 2011; Malandrakis et al., 2015),
definitely counter-selecting fludioxonil resistance. In the case of
A. brassicicola, the absence of evident developmental defects in
some fludioxonil resistant field isolates (Iacomi-Vasilescu et al.,
2004), might be due to compensatory mutations in a given genetic
background. Nevertheless spreading of these strains might be
limited under field conditions due to some yet undetected defect.
Therefore it might be suspected that evolution of fludioxonil
resistance in fungal populations is strongly limited, unless
additional mutations compensating the fitness penalty may arise
and be selected. After 30 years of phenylpyrroles the chances
to select such multiple mutations seem limited; otherwise they
would have already appeared.

Another question raised while writing this review is the
absence of alternative structural analogs of pyrrolnitrin that could
have been produced by the chemical companies; an astonishing
fact since fenpiclonil and fludioxonil have a large spectrum
of activity, high efficiency and are not really facing resistance
problems. Were similar components synthesized, but did not
show comparable efficiency or stability? Are there problems
with other phenylpyrroles that fenpiclonil or fludioxonil do not
face? Is synthesis too complicated or expensive? At Ciba Geigy,
among the multiple analogs tested, fenpiclonil and fludioxonil
were the only molecules with the required properties for efficient
fungicides (Leadbitter et al., 1994; Pillonel and Meyer, 1997)
and their registration, suggesting potential problems in synthesis,
activity, stability, and/or toxicity issues of other analogs.

With increasing resistance problems against medical
antifungal compounds, class III HHKs have been considered
as potential drug targets also against human fungal pathogens
(Bahn et al., 2005; Nemecek et al., 2006; Chapeland-Leclerc
et al., 2007; Randhawa et al., 2016), especially since the target is
specific of the pathogen. Phenylpyrroles could constitute the next
generation of clinical antifungals, but for this sector, we are not
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aware of any compound in clinical testing, although pyrrolnitrin
served as lead structure for pharmaceutical research (e.g., Umio
et al., 1969). The absence of clearly characterized molecular
interaction between phenylpyrroles and class III HHKs may
explain the absence of clinical analogs of phenylpyrroles or
other inhibitors of these proteins. Inhibition studies of known
protein kinases may help the identification of new antifungal
molecules [e.g., in the model fungus N. crassa (Pillonel, 2005),
the plant pathogenic fungus Ustilago maydis (Tueckmantel
et al., 2011; Grutter et al., 2012), the human pathogenic fungi
C. neoformans and C. albicans (Tsuda et al., 2011; Lee et al.,
2015)], but phenylpyrrole-analogs do not figure among the tested
molecules.

From a fundamental point of view, the activation of the
osmotic ST pathway by phenylpyrroles also raises questions. Do

phenylpyrroles share the same ST elements as an hyperosmolarity
treatment? If they bind to the class III HHK, what are the
interacting domains? Do they differ from those recognizing
hyperosmolarity (or dicarboximides)? Is resistance to fludioxonil
conferred to by HHK loss-of-function mutations only, or are
some of the mutations dominant active forms? These last
questions require a thorough analysis of the ST processes
after perception of phenylpyrroles, which may ultimately help
understanding their mode of action.
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