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 Acacia Senegal gums are made of three molecular fractions and minor components
 Molecular fractions structures are extensively reviewed
 Hydration, rheological and interfacial properties of Acacia gum are discussed
 Interfacial properties of Acacia gums are related to high Mw components content
 Future research areas are identified including major challenges and bottlenecks 
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Abstract

On behalf of the 90th birthday of Professor Glyn O. Phillips, it is a great honor for authors of 

this publication to make a review on Acacia gum, one of the favorite polysaccharides 

extensively studied by Glyn and his collaborators all around the world during these last five 

decades. After remembering a synthetic historical perspective, the present critical review 

summarizes the main updated data of this complex polysaccharide from the chemical 

composition to the functional properties with a particular attention toward structure and 

bulk and interfacial properties. Biological properties of Acacia gums were not considered. 

Some of the main challenges in a near future for a better understanding of the functional 

properties of this polysaccharide concerns the detailed study of the gum maturation 

mechanism upon exudation, the structure and conformation of different molecular 

fractions, the role of minor components (minerals, polyphenols, lipids) on the structure and 

functionality of gums, the physicochemical properties of purified molecular fractions and the 

ways to modified them upon enzymatic modifications. In our opinion, the main challenges 

for a better understanding of the interfacial function of this polysaccharide (adhesion and 

stabilization at liquid and solid interfaces) will be to probe the interfacial induced 

conformational changes. This area of research seems to have been quite neglected during 

these last past years and fundamental questions arising from the adhesive and stabilizing 

properties of Acacia gum are still without answer today.

In addition, the amino-acid sequence contained in this complex polysaccharide are totally 

unknown today and future developments based on enzyme/chemical modifications and 

liquid chromatography coupled to on line mass spectrometry could unravel the sequence 

and decipher between the existence of one or more amino-acid sequences in Acacia senegal 

gum.   

We sincerely hope Glyn, one of the “father of Arabic gum”, will find some positive echo in 

this review.

Keywords: Acacia gum; hydration; rheology; aggregation; coacervation; 

interfaces and emulsions



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Sanchez, C., Nigen, M., Mejia Tamayo, V., Doco, T., Williams, P., Amine, C., Renard, D. (2018).

Acacia gum: History of the future. Food Hydrocolloids, 78, 140-160. , DOI :
10.1016/j.foodhyd.2017.04.008

ACCEPTED MANUSCRIPT

3

Content list

1. General Overview: What is Acacia gum?

1.1. Definition and production

1.2. Historical aspects

1.3. Uses of Acacia gum

2. Chemical composition and structure of Acacia senegal gum

2.1. Chemical composition

2.2. Structure of Acacia senegal gum

2.2.1. Structure of the arabinogalactan-peptide fraction (AGp, fraction 1 or F1)

2.2.2. Structure of the arabinogalactan-protein fraction (AGP, fraction 2 or F2)

2.2.3. Structure of the glycoprotein fraction (GP, fraction 3 or F3)

3. Physico-chemical properties of Acacia senegal gum

3.1. Solubility in polar and non polar solvents

3.2. Solubility of Acacia gum in alcohol solutions

3.3. Hydration properties of Acacia gum macromolecules

3.4. Rheological properties of Acacia gum

3.5. Flow and viscoelastic properties of Acacia gum dispersions

3.6. Assembly properties of Acacia gum

3.6.1. Self-association and aggregation properties of Acacia gum

3.6.2. Coacervation of Acacia gum

3.6.2.1. Simple coacervation

3.6.2.2. Complex coacervation

3.7. Surface properties: adsorption at solid-liquid and liquid-liquid interfaces

3.7.1. Surface properties: adsorption at solid-liquid interfaces

3.7.2. Surface properties: adsorption at liquid-liquid interfaces

4. Enzymatic modifications of Acacia gum

5. Conclusions and future prospects

6. Literature



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Sanchez, C., Nigen, M., Mejia Tamayo, V., Doco, T., Williams, P., Amine, C., Renard, D. (2018).

Acacia gum: History of the future. Food Hydrocolloids, 78, 140-160. , DOI :
10.1016/j.foodhyd.2017.04.008

ACCEPTED MANUSCRIPT

4

1. General Overview: What is Acacia gum?

A significant number of studies have been done on the composition, polydispersity, 

structure, physico-chemical and functional properties of Acacia senegal gum. Unfortunately, 

Acacia seyal gum has attracted much less attention over years. Then most of the information 

reported in the following concerns Acacia senegal gum. When available, comparison 

between both gums is provided.

1.1. Definition and production

Acacia gum (AG, E414), also called gum arabic, is an edible dried gummy exudate obtained 

from the trunk and branches of Acacia senegal and Acacia seyal trees, which is rich in 

soluble fibers of low viscosity (Williams & Phillips, 2000). The gum production is a protection 

mechanism of tree against insects and molds invasion and of healing of wounds. Gum is 

found in arid regions (areas) of the sub-saharian belt, from Senegal to East Africa, and 

beyond to Pakistan and India  (Cecil, 2005). According to the JEFCA ("Joint Expert Committee 

for Food Additives") of FAO/WHO, it is defined like "a dried exudation obtained from the 

branches of A. Senegal (L) Willdenow or close species from Acacia (leguminosae family)” 

(FAO, 1999). It includes therefore both Acacia Senegal and Acacia Seyal species.

Although harvested in Arabia, Egypt and Asia since Antiquity, sub-saharian AG has a long 

export history. Gum is harvested from Acacia Senegal or Acacia Seyal found in Sahel region 

all along a belt covering arid and semi-arid areas of Mauritania, Senegal, Mali, Burkina Faso, 

Niger, Nigeria, Chad, Cameroon, Sudan, Eritrea, Somalia, Ethiopia, Kenya and Tanzania. Total 

world exports of AG were of about 60 000 tons in 2009 ("Commodity Trade Statistics 

Database (COMTRADE/DBS)," 2011) but can reach 100 000 tons. Sudan is the biggest 

producer followed by Chad and Nigeria. In 2007 they produced together 90 to 95% of world 

exports. Gum is mainly exported to Europe from which it is re-exported worldwide.  

1.2. Historical aspects

AG is the oldest and, apparently, best known of all natural gums (Verbeken, Dierckx, & 

Dewettinck, 2003). AG was already used in the Stone Age as food in Sahara (Chevalier, 1924) 

and as ingredient in adhesive and bone technologies in South (at least 70 000 years ago)  
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(d'Errico & Henshilwood, 2007; Lombard, 2008; Wadley, Hodgskiss, & Grant, 2009) and 

North East Africa  (Olszewski, et al., 2010; Rots, Van Peer, & Vermeersch, 2011). It is very 

likely than in these arid lands where Acacia grows, human used AG for food and non-food 

applications since the more ancient times. Well before 4000 B.C. Chinese and Japanese used 

AG for painting. Its use can be also traced back to the third or fifth millennium B.C., the time 

of ancient Egyptians. Early Egyptian fleets shipped AG as a trade good. It was collected in 

Nubia and exported north to Egypt for use in the preparation of inks, watercolors and dyes. 

It was used as a pigment binder and adhesive in paints for making hieroglyphs, and ancient 

inscription refers to it as kami. Furthermore, it was used as a binder in cosmetics and inks 

and as an adhering agent to make flaxen wrappings for embalming mummies. Herodotus, 

writing in the fifth century B.C., mentions its use in embalming in Egypt. Cardboard (?), a 

specific type of Egyptian material for cases enclosing or elements placed on, mummified 

bodies, were painted with gum-containing pigments (Scott, et al., 2004; Scott, Warmlander, 

Mazurek, & Quirke, 2009). Ancient Greeks also mentioned the use of gum (Diderot & 

d'Alembert, 1777). Since the first century of the Christian era, the soluble gum provided by 

Sudan has been an article of commerce shipped to Arabian ports and hence to Europe (Caius 

& Radha, 1942; Parry, 1918). It was called gum arabic after its place of origin (Pomet, 1735). 

From Sudanese sources, AG was an article of commerce as early as the 12th century B.C 

(Cecil, 2005).

The therapeutic use of AG was already mentioned in Pliny, Discoridis and Theophrastus 

writings (Amy, 1934; Merat & de Lens, 1831). However, the Ebers manuscript (a medicinal 

papyrus written in 1550 B.C.) already suggested to use AG as a contraceptive in association 

with dates. The famous queen Cleopatra requested the preparation of curative recipes 

based on AG (Gramatica & Zanardelli, 2003). In the ninth century of our era, the Arab 

physician Abu Zayd Hunayn ibn Ishaq al-Ibadi, writing in his Ten Treatises on the Eye, 

described AG as an ingredient in poultices or eye compresses. It was also used to relieve 

topical irritation and to protect in cases of superficial excoriation, ulcers, burns, sore nipples, 

etc. (Caius, et al., 1942). The powdered gum is used in checking hemorrhage from leech 

bites. When blown up the nostrils, it stops severe nosebleed. The gum is also employed in 

catarrhal affections and irritation of the faces, by being held in the mouth and allowed to 

dissolve slowly. In Transvaal, a plaster made from capsicum fruit, Cape gum and strong 
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vinegar, is applied in acute inflammation of the bone marrow, and a mucilage of Cape gum 

to the mouth in thrush and sprue (Caius, et al., 1942). 

By the Middle Age, AG was valued in Europe among scribes and illustrators. Following the 

gilding of letters in illuminated manuscripts, the application of color was the final stage. For 

this, illustrators mixed pigment in a binding medium. Between the 12th and the 19th 

centuries, AG was used in the composition of the metallo-gallic ink, the most used ink in 

Europe, for instance by painters like Rembrandt. The ink manufacturing was known at least 

two centuries before our era (Flieder & Duchein, 1983). During the same period, AG trade 

was controlled by the Turkish Empire, giving rise to the name turkey gum. An export trade 

was also developed for a time around Bombay, hence the names "East Indian" or "Indian 

Gum". 

In 1445, Prince Henry the Navigator set up a trading post on Arguin island (off the coast of 

modern Mauritania), which acquired AG and slaves for Portugal. Between the 14th and the 

19th centuries, AG was an important trade associated to slave economy (Cultru, 1910). From 

1580, Portugal became the dominant influence along the coast. In 1638, however, they were 

replaced by the Dutch of the Occidental India Dutch Company, who were the first to begin 

exploiting the AG trade. Produced by the Acacia trees of Trarza and Brakna and used in 

textile pattern printing, this gum was considered superior to those previously obtained in 

Arabia. By 1678 the French had driven out the Dutch and established a permanent 

settlement at Saint Louis at the mouth of the Senegal River, where the French Company of 

the Senegal River (Compagnie Française du Sénégal) had been trading for more than fifty 

years (Raffenel, 1846). In 1685, Frederick William of Brandeburg replaced the French and 

created a colonial domain. Successors left the trading post to the Dutch in 1717. Since the 

trading of gum was important for the European industry, France occupied Arguin after the 

1721, 1723 and 1724 campaigns. Arguin was definitely left for good in 1728 because 

maintain a garrison was too expansive and the trade of the gum moved to the south.

During most of the 19th century, AG was the major export product from the French and 

British trading colonies in modern Senegal and Mauritania. France in particular first started a 

conflict with inland African states over the supply of gum, providing an early spur for the 

conquest of French West Africa. As the Atlantic slave trade weakened in the early 19th 
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century, the Emirate of Trarza and its neighbors in what is today southern Mauritania 

collected taxes on trade, especially AG that the French were purchasing in ever-increasing 

quantities for its use in industrial fabric production. West Africa had become the sole 

supplier of world AG by the 18th century, and its export from the French colony of Saint-Louis 

doubled in the decade of 1830 alone. Taxes, and a threat to bypass Saint-Louis by sending 

gum to the British traders at Portendick, eventually resulted in a direct conflict between the 

Emirate of Trarza and the French. In the 1820s, the French launched the Franco-Trarzan War 

of 1825 in order to avoid Arabs controlling the gum trade. The war incited the French to 

expand to the north of the Senegal River for the first time, heralding French direct 

involvement in the interior of West Africa. AG continued to be exported in large quantities 

from the Sahel areas of French West Africa (modern Senegal, Mauritania, Mali, Burkina Faso, 

and Niger) and French Equatorial Africa (modern Chad) until these nations gained their 

independence in 1959-61. In the beginning of the 20th century, Europe consumed about 20 

000 tons per year of AG (Chevalier, 1924). 

1.3. Uses of Acacia gum

Acacia senegal/seyal trees are important for the ecology of arid and semi-arid areas where 

they naturally grow. They prevent soil degradation, fix atmospheric nitrogen and maintain 

soil moisture. Trees are resistant in period of drought. They act as wind barrier and are 

important for dune fixation. In addition, trees participate to soil fertilization and 

decomposition of dead leaves reinforces anti-erosive roots of trees (Wickens, Seif El Din, 

Sita, & Nahal, 1995). 

The tree has wide usage: the foliage and seed pods make excellent fodder for livestock, 

ropes can be made from the bark fibers of the roots, and the thorny branches are often used 

to make hedges to enclose cattle or protect agricultural farms. The tree can also be used for 

small-scale carpentry or for making agricultural tools. When it passes its gum-productive 

age,  between 15 and 25 years old, its wood is used for both fuel and charcoal production 

(Touré, 2008; Wickens, et al., 1995) .

AG is unique among the natural gums because of its properties, including high solubility and 

it is widely used as a stabilizer, emulsifier, flavoring agent, thickener, or surface-finishing 

agent. It also activates turbidity or retards sugar crystallization. These properties make it a 
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very interesting additive in the food industry, including for the production of beverages 

(including Coca-Cola®), confectionery, emulsions, flavor encapsulations, bakery products and 

brewing (Touré, 2008; Verbeken, et al., 2003; Wickens, et al., 1995). In wine production, AG 

prevents color pigment and protein precipitations, confers body and stabilizes the color. As 

mentioned above, AG has been also used for ages in non-food industries including 

pharmaceutical, printing, textile, and cosmetic industries (Verbeken, et al., 2003). 

The modern industrial era has produced an explosion of manufacturing uses for AG. 

According to Cecil (2005), gum was important in the 19th century in early photography as an 

ingredient in gum bi-chromate prints. It is now used in lithography, where its ability to 

emulsify highly uniform thin liquid films makes it desirable as an antioxidant coating for 

photosensitive plates. The same quality also makes gum useful in sprayed glazes and high-

tech ceramics and as a flocculating agent. It is used as a binder for color pigments in crayons, 

a coating for papers and a key ingredient in the micro-encapsulating process for the 

production of carbonless copy paper, laundry detergents etc. It is used in textile sizing and 

finishing and for metal corrosion inhibition. Moisture-sensitive postage-stamp adhesives and 

matchsticks are also made with gum. Touré (2008) adds that AG is used in the cosmetic 

industry as an adhesive when making face powders and masks and to render also creams 

and lotions smoother. New uses begin to emerge such as for instance the stabilization of 

carbon nanotubes (Bandyopadhyaya, Nativ-Roth, Regev, & Yerushalmi-Rozen, 2002).

2. Chemical composition and structure of Acacia senegal gum

2.1. Chemical composition

AG is a complex polysaccharide, either neutral or slightly acidic, found as a mixed calcium 

salt of a polysaccharide acid (Arabic acid). The backbone is composed of 1,3-linked β-D-

galactopyranosyl units. The side chains are composed of two or five 1,3-linked β-D-

galactopyranosyl units, joined to the main chain by 1,6-linkages. Both the main and the side 

chains contain units of -L-arabinofuranosyl, -L-rhamnopyranosyl, -D-glucuronopyranosyl 

and 4-O-methyl--D-glucuropyranosyl, the last two mostly as end units (D. M. W. Anderson 

& Stoddart, 1996; Islam, Phillips, Sljivo, Snowden, & Williams, 1997; Verbeken, et al., 2003). 

Idris et al. (1998) reported AG to be comprised of 39-42% galactose, 24-27% arabinose, 12-

16% rhamnose, 15-16% glucuronic acid, 1.5-2.6% protein, 0.22-0.39% nitrogen, and 12.5-
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16.0% moisture. The chemical composition and physical chemical properties of AG can vary 

with its origin (Acacia senegal or Acacia seyal), the age of the trees from which it was 

obtained, climatic conditions and soil environment, and the process submitted after its 

harvest (D. M. Anderson, Dea, Karamall.Ka, & Smith, 1968; D. M. W. Anderson, Douglas, 

Morrison, & Wang, 1990; Idris, Williams, & Phillips, 1998; K. A. Karamalla, Siddig, & Osman, 

1998; Verbeken, et al., 2003) (Al-Assaf, Phillips, & Williams, 2005; Islam, et al., 1997).

AG is a highly heterogeneous material that can be separated into three main fractions by 

hydrophobic interaction chromatography (HIC) (Randall, Phillips, & Williams, 1989). As an 

example, we showed on one sample that most of the gum (88.3% of total), an 

arabinogalactan-peptide (AGp, Fraction 1 or F1), had a very low protein content (1.1%) and a 

molecular weight of 2.9105 g.mol-1 (Renard, Lavenant-Gourgeon, Ralet, & Sanchez, 2006). 

The second fraction (10.4% of total), an arabinogalactan-protein complex (AGP, Fraction 2 or 

F2), contained 9% protein and had a molecular weight of 1.9106 g.mol-1. The third minor 

fraction (1.3% of total gum), referred as glycoproteins (GP, fraction 3 or F3), will consist of at 

least three glycoprotein populations with molecular weight ranging from 2.5105 to 2.6106 

g.mol-1. One of the GP had a molecular weight of 2.95 x 105 g.mol-1 and the highest protein 

content 24.6%, (Renard, et al., 2006). These different values may change depending on gum 

origin, age, storage conditions, etc… (Al-Assaf, Andres-Brull, Cirre, & Phillips, 2012).

Ray et al. (1995) fractionated AG by both HIC and gel permeation chromatography (GPC); 

their results were in broad agreement with those of Randall et al. (1989) and Renard et al. 

(2006). The main amino acids present in the proteinaceous component of AG and AGP were 

hydroxyproline, serine and proline, whereas in GP, aspartic acid was the most abundant 

(Islam, et al., 1997). Osman et al. (1993) fractionated AG by HIC to yield four fractions, all of 

which had a similar carbohydrate composition, but differed in their content of protein, 

amino acid composition and molecular weight distribution. All four fractions reacted with an 

array of anti-arabinogalactan-protein monoclonal antibodies via anti-carbohydrate epitopes 

and were precipitated by Yariv’s reagent, which indicated that all four fractions belonged to 

AGP’s family. 

AGP-type macromolecules represent about 94-96% of total compounds found in Acacia 

senegal or seyal gums. Minor components are mainly minerals (~3-5%) including Na, K, Ca, 
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Mg, and trace metals such as Zn, Fe, Pb and Cu ions (D. M. W. Anderson, Bridgeman, 

Earquhar, & Mcnab, 1983; Debon & Tester, 2001; Kunkel, Seo, & Minten, 1997; Mhinzi, 

2003). Small concentrations of tannins, around 0.4% (Mhinzi, 2003), can be found giving 

more or less colored gums, which is especially remarkable with Acacia seyal. Variability in 

tannins content was reported both for A. senegal (0.3-0.6%) or A. seyal (0.6-1.2%) gums but 

only on five samples (Minzhi, 2003). Other emphasized that tannins can be found in AGs but 

not on Acacia senegal var. senegal gums (K.A. Karamalla, 2000) which is clearly in 

contradiction with data from Minzhi (2002, 2003). Renard et al. (2006) identified traces of 

trans ferulic acid, ferulic acid and 8-5’ non cyclic diferulic acid in AG and AGP and GP 

fractions. AGs also contain traces of lipids (M. P. Yadav, Igartuburu, Yan, & Nothnagel, 2007; 

M.P. Yadav, Moreau, Johnston, & Hicks, 2012) and enzymes such as oxidases and 

peroxidases, diastases and pectinases (Billaud, Lecornu, & Nicolas, 1996; Fowler & 

Malandkar, 1925; Glicksman & Sand, 1973; Leo, Taylor, & Lindsey, 1945; Reinitzer, 1909). 

2.2. Structure of Acacia senegal gum

AG is a highly branched polyanionic polysaccharide (Fincher, Stone, & Clarke, 1983; Keentok, 

1984; Swenson, Kaustinen, Kaustinen, & Thompson, 1968; Yomota, Okada, Mochida, & 

Nakagaki, 1984) with a low charge density (Vandevelde & Fenyo, 1987). Recently, titration of 

AG and its fractions gave 223, 1259 and 1605 charges for AGp, AGP and GP, respectively 

(Renard, et al., 2006). A maximum persistence length of about 3 nm was estimated for the 

AGp main fraction of AG (Sanchez, et al., 2008).

Regarding the structure in solution, globular and close-packed shape of Acacia senegal gum 

molecules was suggested previously based on the low viscosity of gum solutions (D. M. W. 

Anderson & Dea, 1971; Swenson, et al., 1968). The globular or not-extended shape of AG 

molecules was also deduced from the relationships between the intrinsic viscosity [] or the 

radius of gyration Rg or the ratio value between Rg and Rh and the molecular weight Mw, 

(Idris, et al., 1998). For instance, the Mark-Houwink-Sakurada exponent , i.e. the slope of 

the log-log plot of [] vs Mw, produced a slope of 0.54 (D. M. W. Anderson & Rahman, 1967) 

or 0.47 (Idris, et al., 1998). These values are mainly due to the AGp fraction as we found for 

this fraction a slope of 0.49 (Sanchez, et al., 2008). Based on a large number of structural 

data from literature, it appears that the [] vs Mw relationship is not linear over the entire 
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Mw range, indicating that the conformation is molecular weight dependent (Al-Assaf, Phillips, 

Aoki, & Sasaki, 2007; Al-Assaf, et al., 2005; Al-Assaf, Sakata, McKenna, Aoki, & Phillips, 2009; 

D. M. W. Anderson, et al., 1983; D. M. W. Anderson, Douglas, et al., 1990; D. M. W. 

Anderson & Stoddart, 1966; D. M. W. Anderson & Weiping, 1990; Chikamai & Banks, 1993; 

Chikamai, Osman, Menzies, & Banks, 1995; Deeble, et al., 1990; Duvallet, Fenyo, & 

Vandevelde, 1993; Y. Fang, et al., 2007; Y. P. Fang, Al-Assaf, Phillips, Nishinari, & Williams, 

2010; Idris, et al., 1998; Jurasek, Kosik, & Phillips, 1993; K. A. Karamalla, et al., 1998; 

Kateyama, et al., 2006; Kuan, Bhat, Senan, Williams, & Karim, 2009; Li, et al., 2009; Li, et al., 

2011; Mahendran, Williams, Phillips, Al-Assaf, & Baldwin, 2008; Mukherjee & Deb, 1962; 

Osman, Menzies, Williams, Phillips, & Baldwin, 1993; Picton, Bataille, & Muller, 2000; 

Randall, et al., 1989; Renard, et al., 2006; Swenson, et al., 1968; Veis & Eggenberger, 1954; 

Q. Wang, Burchard, Cui, Huang, & Phillips, 2008). AG macromolecules with Mw below 1106 

g.mol-1 are thus more spheroidal than macromolecules with Mw above 1106 g.mol-1 that 

appear more extended. These differences could be due only to differences in structures 

and/or alternatively to differences in the affinity for the aqueous solvent. Little information 

is available regarding the structure of Acacia seyal molecules. However, the few studies 

discussing about Acacia seyal gum structure evidenced that these molecules are more 

compact than those of Acacia senegal gum (Al-Assaf, et al., 2005; Lopez-Torrez, Nigen, 

Williams, Doco, & Sanchez, 2015). For both A. gums, the anisotropy increases with the 

increase of molecular weight, with however more anisotropic conformations for A. senegal 

molecules. The conformation varies from spheres to oblate ellipsoids for A. seyal molecules, 

while it varies from oblate ellipsoids to more anisotropic conformations, such as oblate and 

prolate ellipsoids, for A. senegal molecules (Lopez-Torrez, et al., 2015). The ellipsoidal 

conformation of A. senegal molecules is also confirmed using hydrodynamic technics as 

sedimentation velocity analytical ultracentrifugation and size exclusion chromatography 

coupled to multi-angle light scattering (SEC MALS) and differential viscometry (Gillis, Adams, 

Alzahrani, & Harding, 2016).

Few studies focused on the structural properties of Acacia gums according to the origin of 

gums (i.e. the country). This missing information could raise some questions about the 

influence of the geographical area of harvest and the post-harvested treatment, especially 

from raw to spray-dried gums, on the conformations of molecules. Our group analysed the 
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Rh conformation plots (log-log plot of Rh vs. Mw) after SEC MALS experiments of raw and 

spray-dried Acacia senegal and seyal gums harvested in several countries as Sudan, Chad, 

Senegal, Eritrea, Mali, Mauritania and Burkina Faso (Figure 1, unpublished data). These 

analyses concerned 202 spray-dried and 100 raw A. senegal gums, 28 spray-dried and 6 raw 

A. seyal gums. The hydrodynamic coefficient, h, is constant for each specie with values 

ranging from 0.53 to 0.55 for spray-dried and raw A. senegal gum and 0.43 to 0.44 for spary-

dried and raw A. seyal gum. Hence, the conformations of Acacia gum molecules depend on 

the Acacia gum specie, but not on the geographical area of harvest or the post harvested 

treatment (from raw to spray-dried gums). These h values confirm again the more compact 

structure of Acacia seyal molecules. 

To summarize AG is composed of a continuum of molecular species differing by their protein 

to sugar ratio, molecular weight and charges (Renard, et al., 2006), but also by different 

mesoscopic structures in solutions. The precise conformations of different molecular 

fractions remain uncertain from studies on total AG. The following section reports on the 

actual knowledge on the structures of the three molecular fractions of A. senegal gum 

isolated from HIC, i.e. the arabinogalactan-peptide (AGp), the arabinogalactan-protein (AGP) 

and glycoproteins (GP) fractions. 

2.2.1. Structure of the arabinogalactan-peptide fraction (AGp, fraction 1 or F1)

The first structural model for AGp was recently proposed (Sanchez, et al., 2008). From small 

angle neutron scattering (SANS) experiments in charge screening conditions and dynamic 

light scattering, AGp appeared to be a dispersion of two-dimensional structures with a Rg of 

6.5 nm, a Rh of 9.1 nm and an inner dense branched structure (Renard, et al., 2006; Sanchez, 

et al., 2008). Data analysis and modeling of SANS experiments revealed a disk-like 

morphology with a diameter of 20 nm, a thickness of less than 2 nm and a central intricated 

‘‘network’’. The structure of AGp could explain the low viscosity of AG solutions, and its 

ability to self-assemble and to interact with proteins. At the molecular level, no specific 

secondary structures could be detected using circular dichroism, which could be explained 

by the low amino-acid composition of the AGp fraction (Renard, et al., 2006). However, 

Fourier transform infrared spectroscopy suggested the presence of extended -sheet and -



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Sanchez, C., Nigen, M., Mejia Tamayo, V., Doco, T., Williams, P., Amine, C., Renard, D. (2018).

Acacia gum: History of the future. Food Hydrocolloids, 78, 140-160. , DOI :
10.1016/j.foodhyd.2017.04.008

ACCEPTED MANUSCRIPT

13

turn structures but not -helix (Renard, et al., 2006). The absence of -helix could explain 

partly the absence of secondary structures as revealed by circular dichroism. 

2.2.2. Structure of the arabinogalactan-protein fraction (AGP, fraction 2 or F2)

The arabinogalactan-protein fraction from AG represents about 10-15% of total molecules 

and about 9% of the total protein concentration. Its Mw is variable but generally comprised 

between 1 and 4106 g.mol-1 (Al-Assaf, et al., 2007; Al-Assaf, et al., 2005; Al-Assaf, et al., 

2009; Castellani, Guibert, et al., 2010; Elmanan, Al-Assaf, Phillips, & Williams, 2008; Idris, et 

al., 1998; Picton, et al., 2000; Randall, et al., 1989; Ray, Bird, Iacobucci, & Clark, 1995; 

Renard, et al., 2006; Vandevelde, et al., 1987)  . 

At the molecular level, AGP contains various secondary structures, including about 27% of 

polyproline II structures, -sheets, -turns and unordered structures, but not -helices 

(Renard, et al., 2006). A wattle-blossom model was proposed to describe the structure of the 

AGP complex. It was postulated that the high molecular weight fraction of the gum is 

composed of large carbohydrate blocks with a molecular weight of approximately 2105 

g.mol-1, these blocks being covalently linked to a polypeptide backbone (Connolly, Fenyo, & 

Vandevelde, 1987, 1988; Fincher, et al., 1983). An alternative model was suggested by Qi et 

al. (1991) in the form of a hairy twisted rope. This model would be comprised of a core rod-

like protein (150 nm long) with a highly repetitive amino-acid sequence and the 

carbohydrate blocks (30 sugar residues) attached to hydroxyproline residues. However, as 

indicated previously, most studies strongly suggested that the molecules of the AGP complex 

have a spheroidal structure, which better supports the wattle-blossom model (Connolly, et 

al., 1988; Idris, et al., 1998; Picton, et al., 2000; Vandevelde, et al., 1987). 

From a study on total Acacia gum, a more detailed picture of the wattle-blossom structure of 

AGP was proposed recently (Mahendran, et al., 2008). Mild alkaline hydrolysis of the gum 

followed by GPC analysis indicated that AG consists of carbohydrate blocks of ~4.5104 

g.mol-1, blocks much lower in mass than those previously reported, covalently linked to 

serine and hydroxyproline residues. Two folded polypeptide chains would be present in AG, 

one with a Mw around 3104 g.mol-1 corresponding to about 250 amino acids and the second 

one with a Mw of about 5103 g.mol-1, corresponding to about 45 amino acids. A number of 

around 400 amino acids was calculated previously for the AGP fraction (Qi, Fong, & Lamport, 
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1991). These values are much lower than the 2250 amino acid residues determined by 

Renard et al. (2006) for the AGP fraction. Such a large discrepancy is difficult to explain solely 

based on different experimental approaches. Rather we think that it is probably 

symptomatic of different assembly states of the AGP fraction, due to different origins and 

maturation history. The 45 amino acids peptide is probably associated with sugars in the 

AGp fraction, as already demonstrated by Renard et al. (2006). It was then assumed that 

carbohydrate blocks may have a thin oblate ellipsoid structure (Mahendran, et al., 2008; 

Sanchez, et al., 2008). The model is interesting since it gives a clearer view of the possible 

spatial configuration of AGP. The steric arrangement of carbohydrate blocks in such a 

configuration is questionable and merits much more investigation, as well as the fine 

structure of macromolecules. One can imagine that AGP is a two-dimensional object with a 

folded protein network and interacting massive sugar blocks or an assembly of sugar blocks 

linked (covalently or not) between them by several polypeptide backbones.

Regarding the possible morphology of AGP in solution, HPSEC-MALLS provided some 

informative insights. AGP in solution has a weight average molecular weight of 1.86106 

g.mol-1 and a radius of gyration of 30 nm (Renard, et al., 2006). In addition, two exponent 

values are identified in the Rg, [], Rh vs Mw relationships highlighting two types of 

conformations depending on the molecular weight range considered (Renard, Garnier, Lapp, 

Schmitt, & Sanchez, 2012). AGP would behave in solution as a branched or hyper-branched 

polymer with conformations ranging from globular to elongated shape depending on the 

size of the carbohydrate branches. SANS form factor revealed an elongated average 

conformation corresponding to a triaxial ellipsoid while inverse Fourier transform of the 

scattering form factor gave a maximum dimension for AGP of 64 nm (Renard, et al., 2012). 

TEM highlighted the existence of isolated spheroidal particles (diameters ranging from about 

10 to 40 nm) or more anisotropic morphologies (lengths from 20 up to about 60 nm) 

(Renard, Garnier, Lapp, Schmitt, & Sanchez, 2013). Remarkably, all the particles were porous 

supramolecular assemblies of smaller structural subunits with dimensions of about 2-10 nm. 

These building structural subunits were mainly branched chains and ring-like structures with 

diameters of about 1-5 nm. 

It was recently suggested that AGP would be in fact a molecular association resulting from 

an aggregated fraction of AGp units stabilized by low molecular weight proteinaceous 
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components found in the GP fraction of AG (Al-Assaf, et al., 2009). More accurately, 

maturation process would promote interactions between AGP, AGp and GP, inducing a 

molecular reorganization of the gum and the appearance of composite AGP architectures. In 

addition, spray-drying was found to increase the molecular weight of AGP due to self-

aggregation (Al-Assaf, et al., 2009).  In summary, the so called AGP is in fact a heterogeneous 

population varying in anisotropy, chain density and porosity, and of all possible molecular 

combinations between AGP, AGp and GP. This structural heterogeneity likely depends on 

chemical composition of gum sample and its maturation process, natural or induced by 

processing.

Very recently, AGP and AGp molecular fractions were degraded enzymatically using acidic 

and alkaline proteases in order to probe the conformation and structure of the two main 

fractions of Acacia senegal gum. While AGp fraction kept intact whatever the enzymes and 

conditions used, AGP was found to be degraded only in alkaline conditions. The absence of 

degradation in acidic conditions questioned about the potential modification of the 

structure of AGP molecular fraction at low pHs. The decrease in molecular weight of AGP 

after enzymatic treatment confirmed the accessibility of enzymes toward polypeptide 

cleavages and papain was found to be the most efficient protease with a decrease of Mw 

from 1.79 × 106 to 1.68 × 105 g mol−1. The molecular structure of control and enzyme-treated 

AGPs surprisingly predicted similar secondary structures content. The similar conformations 

adopted by control and enzyme-cleaved AGPs probed at the molecular and mesoscopic scale 

(by SANS) would be in favor of a high flexibility of the polypeptide backbone before and after 

enzymatic treatment in accordance with the repetitive and palindromic nature of peptide 

sequence and the overall symmetry of the carbohydrate moieties along the protein 

backbone (Goodrum, Patel, Leykam, & Kieliszewski, 2000; Kieliszewski, 2001; Kieliszewski & 

Lamport, 1994). It was finally suggested that a self-similarity driven-process would be at the 

origin of the assembly of AGP from a consensus glycopeptide building block with a 

symmetrical distribution of arabinosides and polysaccharide substituents (Figure 2) (Renard, 

Lavenant-Gourgeon, Lapp, Nigen, & Sanchez, 2014).

2.2.3. Structure of the glycoprotein fraction (GP, fraction 3 or F3)
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The glycoprotein fraction is a minor component of AG (< 2%) but is rich in proteins (25-50%). 

Regarding the amino acid composition, GP fraction is less rich in hydroxyproline and serine 

but richer in asparagine and aspartic acid, but also in tyrosine and phenylalanine residues 

(Renard, et al., 2006). Using HIC, at least three different fractions were identified in GP with 

MW ranging from 3105 to 3106 g.mol-1 (Renard, et al., 2006). Following HIC and SEC, the 

three fractions were purified and displayed each three molecular populations, with a clear 

continuum of species. It appears obvious that a deeper study of GP is needed to better 

understand the complexity of this minor fraction. Like AGP, the different glycoproteins are 

characterized by the presence of polyproline II conformation (9%), -helix (9%), -sheet 

(38%), -turns (23%) and unordered structures (18%) (Renard, Lepvrier, et al., 2014). 

However, no mesoscopic models have been proposed to date for these glycoproteins. As 

well, physical chemical properties of GP fraction are almost unknown, except its very active 

surface properties (Castellani, Gaillard, et al., 2010).

Very recently, Renard et al. (2014) studied the structure of one glycoprotein (GP) fraction of 

AG isolated from HIC and SEC, which revealed a mixture of spheroidal monomers and more 

anisotropic oligomers in GP solution as suggested by the two exponent values found in the 

Rg vs. Mw relationship and TEM observations (Renard, Lepvrier, et al., 2014). The GP 

conformation probed by SAXS was ascribed to a thin object with a triaxial ellipsoid 

morphology, certainly attributed to GP oligomers. A 9 nm diameter particle was also 

identified by SAXS in agreement with the dimensions (diameters of 8 to 11 nm) identified by 

TEM on single isolated ring-like structures. All the identified isolated particles had a 

spheroidal shape while slight anisotropy appeared when ring-like structures self-associated. 

Contrary to what was previously observed on AGp and AGP, no outer structure combined to 

an inner porous network of interspersed chains was observed in the spheroidal particles 

morphology. These spheroidal particles were structurally made of an inhomogeneous outer 

thick shell and a central hole giving rise to the particles a typical ring-like morphology with a 

8 to 11 nm diameters (Renard, Lepvrier, et al., 2014). 

In summary, the GP fraction from AG would be an assembly of ring-like glycoproteins 

modules. These ring-like structures were certainly due to hydroxyproline (Hyp) – 

arabinogalactan (AG) subunits, as suggested by the secondary structures content of GP 

(Renard, et al., 2013). GP monomer, with a rather globular shape and homogeneous long-
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chain branches, would be able to self-associate giving rise to small oligomers with a rather 

compact conformation and bigger oligomers with a more extended conformation closely 

related to the self-association mode.

3. Physico-chemical properties of Acacia senegal gum

3.1. Solubility in polar and non polar solvents

The ability of AG to easily dissolve in water is not new (Diderot, et al., 1777; Pomet, 1735), 

and it is said that AG is soluble in cold and hot water up to concentrations of about 50-55% 

and insoluble in alcohol (Erni, et al., 2007; Ewart & Chapman, 1952; Izydorczyk, Cui, & Wang, 

2005; Turner, 1832; Verbeken, et al., 2003; Waters & Tuttle, 1916). However it is not so easy 

to prepare a dispersion of gum at 50% concentration and for instance a gum solubility of 

37% was experimentally determined at 25°C (Taft & Malm, 1929). Despite its high solubility 

in water, the mineral composition of the bulk can induce the precipitation of AG. The 

aqueous solution of AG forms a white jelly with basic acetate while it is soluble with neutral 

lead acetate. The AG solution also precipitates using potassium or sodium silicate, borax, 

ammonium oxalate, mercuric chloride and ferric salts (Parry, 1918). In addition, it was 

actually demonstrated using a great number of solvents that AG is poorly soluble in solvents 

other than water (Taft, et al., 1929; Taft & Malm, 1931). 

3.2. Solubility of Acacia gum in alcohol solutions

AG is soluble in dilute alcohol solution and precipitates when the alcohol concentration in 

water is of about 50%, with a complete precipitation of AG macromolecules with 60% 

alcohol (Norman, 1929; Parry, 1918). With 30% alcohol, no precipitate occurs, and with 40% 

alcohol an opalescent/turbid ("faint”) precipitate is obtained (Waters & Tuttle, 1916). These 

results clearly depend on gum concentration. Alcohol precipitation has been long used to 

purify AG (Mukherjee, et al., 1962; Mukherjee & Ghosh, 1949; Nelson & Ander, 1972; 

Oakley, 1935; Taft, et al., 1931; Thomas & Murray, 1928; Veis, et al., 1954). However, it has 

been reported that prolonged contact with alcohol decreases the solubility of AG (van Beek, 

1958).

The nature of interactions and mechanism of demixing in AG-ethanol- water ternary system 

have not been studied in great details. However the ability of alcohols (and some salts) to 

induce phase separation/precipitation in polysaccharides, and more generally biopolymers 
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dispersions is not new and is called simple coacervation (Bamford & Tompa, 1950; H.B. 

Bohidar, 2008; Bungenberg de Jong, 1949a; Gupta, Reena, & Bohidar, 2006; Jamieson, 

Simicglavaski, Tansey, & Walton, 1976; Koets, 1944; Mohanty & Bohidar, 2003; Nixon, Khalil, 

& Carless, 1966; van Oss, 1988; Veis, 2011). Simple coacervation is basically a liquid-liquid 

phase separation of biopolymers experiencing a change in the solvent quality. This demixing 

mechanism will be discussed in the section « Assembly properties of AG ».

It would be useful to determine phase diagrams of AG-alcohol-water systems and to 

characterize in each phase the macromolecular composition, i.e. the relative compositions of 

AGp, AGP and GP. As these three fractions display or are supposed to display different 

physical chemical properties, it is likely that simple ways to obtain AG enriched in one or 

another of the three fractions could be identified.

3.3. Hydration properties of Acacia gum macromolecules

The observed hydrophilic nature of AG has probably not motivated many studies on the 

hydration properties. Few papers can be found in literature. In one example, it was shown 

that AG is not hydrated to a great extent as has been claimed by many authors (Grollman, 

1931). Using vapor pressure measurements, no hydration of the gum was measured with 

NaCl (0.05M) or KCl (0.07M), which would indicate that ions were preferentially hydrated. 

With 0.18M sucrose, 0.7g water/g of gum was measured. In a subsequent study, a hydration 

of 0.9g water/g for Ca gum and 1.1g water/g for Na gum was measured using a membrane 

equilibrium method (Oakley, 1937). A minimal value of 0.6-0.7 g water/g of gum was found 

by a cryoscopic method and no hydration of the gum in presence of KCl or KBr was found, 

which seems to confirm previous results (Gortner & Gortner, 1934). An interesting point was 

that when AG concentration in studied dispersions increased from 3% to 10%, the amount of 

bound water decreased from 1.2g to 0.6g/g of gum (Newton & Gortner, 1922). It is possible 

that some self-association (i.e. aggregation) of AG macromolecules occurred with increasing 

concentration, leading to the decrease of water accessibility towards AG macromolecules 

and to the release of bound water from AG macromolecules during self-association process.

When analyzing interactions of biopolymers with water, one can thus distinguish free and 

bound water (Chandler, 1941; Gortner, et al., 1934). Free or freezing water is the water 

where melting/crystallization temperature and enthalpy of melting/crystallization are not 

significantly different from those of bulk water (Hatakeyama & Hatakeyama, 1998). Bound 
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water gathers non-freezing water that is very closely associated with the macromolecules 

and freezing bound water that is less closely associated but displays different physical 

properties than free water (Hatakeyama & Hatakeyama, 1998). Non-freezing water is made 

of a monolayer, possibly multilayers, of water molecules in very close interaction with the 

biopolymer. The monolayer is generally calculated from sorption isotherms (gravimetric 

method) following the use of an appropriate model, the most often used being the BET 

(Brunauer-Emmet-Teller) or the GAB (Guggenheim-Anderson-de Boer) model (Blahovec, 

2004). This type of hydration water has to be considered as an integrating part of the native 

biopolymer structures (Luschermattli & Ruegg, 1982). The total amount of water (Wc) 

interacting with a biopolymer is then the sum of free and bound water. Another parameter 

dealing with the interaction of biopolymers and especially fibers with water is the water-

holding capacity (WHC). The WHC is a measure of the ability of a fiber source to immobilize 

water within its matrix (Robertson & Eastwood, 1981). WHC encompasses both adsorbed 

water and possibly water trapped within macromolecules.

Generally, water (Wc or WHC) in AG amounts to about 3-6 g water/g gum, which is a range 

previously mentioned (Takigami, Takigami, & Phillips, 1995). The saturation Wc value is in 

the range of values found for other polysaccharides such as xanthan and hyaluronan 

(Phillips, Takigami, & Takigami, 1996). The bound water (Wb) is around 1 g water/g gum and 

the non-freezing water (Wnf) is within 0.4-0.7 g water/g gum. In addition, the second virial 

coefficient A2 (mL.mol.g-2, also called B2 or B22), an indirect way to define the affinity for 

solvent, can be calculated from light scattering measurements. Negative A2 values indicate a 

bad affinity for the solvent and attractive interactions between biopolymers while positive 

A2 values indicate preferential interactions with the solvent and repulsions between 

macromolecules. Values of 5.10-5 (Picton, et al., 2000) or 4.2.10-5 mlmolg-2 (Veis, et al., 

1954) were found for AG. The values were low but positive, under the experimental 

conditions used, indicating a preferential interaction with water. An interesting result 

concerns the effect of temperature on the water monolayer (Xm). It was found that 

increasing the temperature from 25 to 45°C resulted to an increase of Xm from 0.08 to 0.11 g 

water/g gum. As an increase in temperature lowers the energy of hydrogen bonding, and as 

hydrogen bonding is at the basis of polysaccharide hydration (Q. Wang & Cui, 2005), one 

could expect a concomitant decrease of the structural water, as determined for instance for 

starch (Al-Muhtaseb, McMinn, & Magee, 2004) or chitosan (Rosa, Moraes, & Pinto, 2010), 
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but also for soy proteins (Cassini, Marczak, & Norena, 2006). It is also well known that by 

increasing temperatures there is an increase of energy of adsorbed water molecules, which 

allow the leaving of some adsorbed water molecules from the active centers of the 

adsorbent. As a result, the amount of adsorbed moisture decreases. The results reported 

here for AG are somewhat counterintuitive. However, these results are not unique as similar 

trends were demonstrated for microcrystalline cellulose (Cadden, 1988) cited by Vernon-

Carter et al., 2006) or myosin (Das & Das, 2002) cited by Vernon-Carter et al., 2006).

All these results converge on the same conclusion. The affinity of AG for water provides an 

extremely favorable environment for binding water, which is probably mainly due to the 

carbohydrate component of AG and its highly branched characteristic (Phillips, et al., 1996). 

The polypeptide component also interacts with water since it contains a significant number 

of hydrophilic aminoacids (Renard, et al., 2006). The sugars units would first bind water at 

the hydroxyl (OH) groups associated with the uronic acids, forming the non-freezing water 

(Phillips, et al., 1996). Freezing-bound water is also tightly associated with carbohydrate 

chains, which could form intra-molecular hydrogen bonds within the highly cross-linked gum 

structure (Phillips, et al., 1996). Thereafter, there would be large intra-molecular and inter-

molecular voids which could be occupied by water in a variety of metastable states, 

preventing the formation of the ideal ice structure. 

It is interesting to note that when AG in solution is dried, either with alcohol or by heating 

(vacuum distillation), it becomes practically insoluble (Thomas, et al., 1928). When it is thus 

dried, the gum swells in water to a jelly-like mass which does not dissolve except on long 

standing. AG in powder form heated above 100°C, and especially at 170 °C, when immersed 

in water, also swells up to a great extent but does not dissolve and the gel thus formed is 

non-sticky (Moorjani & Narwani, 1948). This insolubility is explained by the complete 

dehydration of the gum. However, it is likely that aggregation of AG macromolecules occurs 

as heating from 100 to 170 °C results in an increase of the viscosity of solutions. Protein 

degradation also occurs at temperatures above 100 °C that may affect the gum solubility 

(Cozic, 2007). The insolubilization of the gum by heating at high temperature (150 °C) is 

known for a long time (Fremy, 1860). Boiling the gum or adding alkali at cold temperature 

dissolves the gum again (Fremy, 1860). The ability of AG to re-bind water which has been 
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released by increasing the temperature is of great value in confectionary and jellies 

applications (Phillips, et al., 1996). 

3.4. Rheological properties of Acacia gum

Viscosity (at zero shear rate) of Acacia gum dispersions

The molecular interactions of AG with the solvent determine in part the viscosity of 

dispersions. Viscosity is also governed by the shape, molecular size and concentration of 

molecules and is affected by temperature and pressure. Since AG macromolecules are weak 

polyelectrolytes, it is expected that pH, ionic strength and type of ions (according to the 

Hofmeister serie) must have a significant effect on the viscosity (Stephen & Churms, 1995). 

This can be clearly observed with arabic acid where a maximum of viscosity was reached at a 

pH in the range 5.5-6.3 (Thomas, et al., 1928). The lower viscosity at acidic pH can be 

explained by the fact that, due to neutralization of carboxyl groups at low pH, electrostatic 

repulsions decrease. This leads to a decrease in the hydrodynamic volume of the carboxyl-

bearing polysaccharides, and hence, in the viscosity of the polysaccharide solution 

(Vanderreijden, Veerman, & Amerongen, 1994). Acid-induced hydrolysis of polysaccharide 

can also contribute to the lower measured viscosity. The decrease in viscosity observed at 

pH larger than 8-10 could be explained by a strong weakening of hydrogen bonds, resulting 

in less efficient interactions with water or, alternatively, to conformational changes resulting 

in a reduction of charged groups-induced electrostatic repulsions. It can also be noticed that 

the viscosity was almost steady between pH 5 and 9. A steady viscosity of AG dispersions 

was also measured between pH 6.2 and 8.5 by Riddell & Davies (1931). 

The increase in NaCl concentration induced a decrease in viscosity. For a salt-free solution, 

electrostatic repulsions due to the charges on the macromolecule favor a stretched chain 

conformation as a result of long-range electrostatic effects. This behavior results in higher 

viscosity. Addition of a simple electrolyte screens these intermolecular electrostatic 

repulsions and allows the molecules to compact towards the volume of an uncharged 

polymer with the same number of residues linked in the same way (Giannouli, Richardson, & 

Morris, 2004), resulting in a lower viscosity (Smidsrod & Haug, 1971; Tinland & Rinaudo, 

1989). Similar results were obtained by other authors (Amy, 1934; Williams, Phillips, & 

Randall, 1990).
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Like for other common biopolymers, viscosity increased with AG concentration (Williams et 

al., 1990) and decreased with the increase in temperature (Stephen, et al., 1995). Regarding 

the effect of AG concentration, we collected a great number of data from literature and the 

relationship between the relative viscosity /0 and the AG concentration was exponential 

over a 0.13-56 wt% concentration range. However, what is important to notice, irrespective 

of the geographical origin of AG, various chemical compositions and physical chemical 

conditions of sample preparation for viscosity measurements, practically all data are 

described by a single exponential (Figure 3). Such an exponential delimitates two regions, 

one region where the viscosity gently increases with concentration and the other region 

where viscosity sharply increases with concentration. 

3.5. Flow and viscoelastic properties of Acacia gum dispersions

Unlike most polysaccharides, used for their thickening or gelling properties (Wand & Cui, 

2005), AG dispersions display low viscosity even at quite high concentration and do not gel 

(except when AG powder is thermally treated at high T then rehydrated, as noted above). 

The observed low viscosity of AG dispersions probably can explain the belief that their flow 

behavior is newtonian, i.e. the relationship between the shear stress (s, N.m-2) and the shear 

rate ( , s-1) is linear (D. M. W. Anderson, et al., 1967; BeMiller, 2001; Izydorczyk, et al., 

2005). Some experimental results seem to confirm this behavior (Salazar-Montoya, Jimenez-

Avalos, & Ramos-Ramirez, 2012). This depends on gum concentration. Shear-thinning flow of 

AG dispersions is observed at high AG concentrations, typically 15-30% and above (Araujo, 

1966; Dunstan, Chai, Lee, & Boger, 1995; Gomez-Diaz, Navaza, & Quintans-Riveiro, 2008; 

Nussinovitch, 1997; Williams, et al., 1990).

More recently, it has been shown that AG dispersions also display shear-thinning flow 

behavior, even at AG concentrations as low as 1-4% (Li, et al., 2009; Mothe & Rao, 1999; 

Sanchez, Renard, Robert, Schmitt, & Lefebvre, 2002; Weinbreck & Wientjes, 2004). It was 

hypothesized that the presence of AG aggregates could explain such an unusual flow 

behavior (Li, et al., 2009; Mothe, et al., 1999). Hydrogen bonding could partly explain the 

formation of these hypothetical aggregates (Li, et al., 2009). In addition, time-dependent or 

thixotropic flow behavior was also observed (Li, et al., 2009; Sanchez, Renard, et al., 2002). It 

was suggested that the aggregation of AGP component was at the origin of this behavior (Li, 
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et al., 2011). Time-dependent thickening flow behavior at low shear rates and low 

biopolymer concentrations have been previously reported for colloidal globular protein 

dispersions (Giordano, Grasso, Teixeira, Wanderlingh, & Wanderlingh, 1992; Lefebvre & Riot, 

1997; Matsumoto & Chiba, 1990; Renard, Axelos, Boué, & Lefebvre, 1996; Renard, Robert, 

Faucheron, & Sanchez, 1999). It is generally supposed that bulk aggregation between 

globular proteins or protein aggregates is responsible for the observed rheological 

properties (Lefebvre, et al., 1997; Renard, et al., 1999). However, time-dependent 

rheological properties of diluted biopolymer dispersions can also be caused by surface 

properties of macromolecules during rheological measurements. In this case, an equilibrium 

between surface and bulk rheological properties may occur. These features were clearly 

demonstrated with AG dispersions (Sanchez, Renard, et al., 2002). 

Viscoelastic properties of AG dispersions were also characterized and revealed, as expected, 

a predominant liquid-like behavior (Goycoolea, Morris, Richardson, & Bell, 1995; 

Matsumura, Satake, Egami, & Mori, 2000; Sanchez, Renard, et al., 2002). Indeed, mechanical 

spectra obtained at 6wt% AG concentration by oscillatory testing revealed that the viscous 

or loss modulus (G", N.m-2) was higher than the elastic or storage modulus (G', N.m-2) 

throughout a wide frequency range but G' became larger than G" at the highest frequencies 

(Sanchez, Renard, et al., 2002). Similar behavior was recorded at 18wt% (Matsumura, et al., 

2000) or 50wt% (Goycoolea, et al., 1995) AG concentration. Interestingly, the evolution of G' 

and G" as a function of frequency followed a power law behavior with exponents of 1.4 and 

0.8, respectively, smaller than the exponents 2 and 1 classically found for viscoelastic liquids 

(Sanchez, Renard, et al., 2002). It was then concluded that AG dispersions were structured 

liquids. Surface effects also have an impact on measured viscoelastic properties. Dynamic 

mechanical spectra after 120 min rest of AG samples at 6wt% gum concentration in the 

rheometer therefore showed a typical gel-like behavior with G' larger than G" over the 

entire range of selected frequencies (Sanchez, Renard, et al., 2002). The building-up with 

time of a predominantly elastic interfacial structure was demonstrated.

In summary, AG dispersions display newtonian flow behavior at gum concentrations below 

about 20wt% and shear-thinning above. However, in practical industrial situations where 

applied shear rates are usually above 100 s-1, flow behavior of AG can be considered as 

newtonian. Sometimes, the measured flow behavior is non-newtonian and even thixotropic 
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at low AG concentrations. This unusual behavior seems to be mainly due to surface effects 

and reversible shear-induced aggregation of AG macromolecules. In this case, further studies 

are needed to clarify the situation, by using for instance rheology coupled to small angle x-

ray or neutron scattering.

3.6. Assembly properties of Acacia gum 

Molecular associations and assembly of biopolymers depend strongly on the extent of 

macromolecule-solvent and macromolecule-macromolecule interactions. Several factors 

such as solvent chemical properties, physical chemical treatments and macromolecules 

physical chemical properties can influence the assembly pathway and of course the 

functional properties of the assemblies. It is well known that AG can associate with itself or 

other biopolymers, such as proteins. Its association and assembly properties are often used 

in several areas (food, pharmaceutical, medicine, etc.) to elaborate AG-based assemblies 

with specific functional properties. According to physical chemical conditions and the 

presence or not of other macromolecules as partner of the assembly, AG can assemble 

following different mechanisms such as aggregation or coacervation (simple or complex).

3.6.1. Self-association and aggregation properties of Acacia gum

Aggregation of AG is apparently a natural mechanism depending on the physiology of trees, 

and particularly the ageing (Idris, et al., 1998). The characterization of AG harvested on trees 

of different ages, from 5 to 15 years old, showed both the increase in the mean radius of 

gyration of AG and the proportion of aggregates in solution. This aggregation mechanism 

occurs when the trees grow older up to about 15 years. 

Aggregation of AG in aqueous solution was also evidenced in several studies using size 

exclusion chromatography (SEC) that showed an elution peak in the void volume of the 

column, in addition to the peaks corresponding to the three main fractions of AG (Idris, et 

al., 1998; Mukherjee, et al., 1949; Ray, et al., 1995; Sanchez, Renard, et al., 2002). This peak, 

which was removed from SEC chromatograms after filtration of AG solution on 0.45 µm 

filters, was attributed to the elution of aggregates (Al-Assaf, et al., 2009). Association and 

aggregation properties were also highlighted over a large concentration range in AG using 

scattering and microscopy experiments. Using static light scattering measurements, Wang et 

al. showed the increase of Rg from 20 to 50 nm on filtered AG samples as the concentration 
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of AG increased from 0.0413 to 5.21 g·L-1, respectively (Q. Wang, et al., 2008). Aggregates 

were also evidenced in more concentrated AG solution, ranging from 5 to 300 g·L-1, by SAXS 

and SANS measurements, and observed using cryo-TEM (Dror, Cohen, & Yerushalmi-Rozen, 

2006). All these experiments confirm the self-association behavior of AG in aqueous solution 

over a large range of concentration.

The apparent contradiction between the high solubility of AG in water and its propensity to 

self-associate could origin from the chemical composition of the molecular fractions isolated 

from AG. Indeed, as described above, AG is composed of arabinogalactan-protein type 

macromolecules (Akiyama, Eda, & Kato, 1984). In plant kingdom, the association property of 

AGPs is well established: these macromolecules have specific functions in interaction and 

recognition cellular mechanism (Showalter, 2001). It is also well known that AGPs can self-

assemble and aggregate both in vitro and in vivo (Baldwin, McCann, & Roberts, 1993; 

Capataz-Tafur, Trejo-Tapia, Rodriguez-Monroy, & Sepulveda-Jimenez, 2011). Hence, the self-

association property of AG in solution is consistent with the adhesive nature of AGPs. Very 

recently, it was proved that the capacity of adventitious roots of English ivy (Hedera helix) to 

climb vertical surfaces was due to AGP assembled in nanospheres that were the key 

component of the high-strength adhesive secreted by this plant (Y. J. Huang, et al., 2016).

Recently, studies devoted to the characterization of the three dimensional structure of 

isolated AG, AGP and GP fractions, also evidenced the self-assembly behavior of these 

isolated macromolecules (Renard, et al., 2012, 2013; Renard, Lavenant-Gourgeon, et al., 

2014; Sanchez, et al., 2008). These studies highlighted some differences between the three 

main fractions towards their affinity for aqueous solvent and of course their ability to self-

assemble and aggregate in aqueous solution. The study focusing on GP fraction showed first 

of all that it was not easy to rehydrate GP powder. A significant proportion of GP 

macromolecules aggregated with the formation of a substantial undissolved material after 

centrifugation (Ray, et al., 1995; Renard, et al., 2013). On the contrary, the rehydration of 

AGp and AGP powders were complete in aqueous solution without the formation of 

undissolved material (Renard, et al., 2012; Sanchez, et al., 2008). Hence, GP fraction contains 

some macromolecules with a lowest affinity towards aqueous solvent compared to those 

included in AGp and AGP fractions, in agreement with the delayed elution of this fraction by 

HIC. The self-aggregation behavior of GP fraction during its rehydration was attributed to the 
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more pronounced hydrophobic nature of the GP macromolecules (Renard, et al., 2013; 

Renard, et al., 2006). Transmission Electron Microscopy (TEM) experiments performed on 

each fraction also revealed that the self-aggregation behavior and the morphology of 

formed aggregates depend clearly on the fraction studied. It is likely that drying of samples 

for TEM experiments could impact the observed morphologies. Self-assembled or 

aggregated macromolecules were observed with AGP and GP fractions (Renard, et al., 2012, 

2013), but not with AGp fraction (Sanchez, et al., 2008). The aggregates evidenced with AGP 

and GP macromolecules in aqueous solution could be promoted by several intermolecular 

attractive weak forces such as hydrogen bond between saccharidic residues as suggested by 

Mahendran et al. (2008) and/or hydrophobic interaction between polypeptide backbones as 

suggested by Renard et al. (2012). 

Differences between AGp, AGP and GP fractions towards aggregation in aqueous solution 

could be explained by their differences in chemical composition and particularly their 

protein content and amino-acids composition. The protein content in AGp, AGP and GP 

fractions is therefore around 1.1%, 9% and 24.6%, respectively (Renard, et al., 2006) and GP 

fraction contains more hydrophobic amino-acids such as glycine, valine, isoleucine, leucine, 

phenylalanine than AGp and AGP fractions (Renard, et al., 2006). Hence, both the high 

protein content and the presence of hydrophobic amino-acids in higher proportion in GP 

fractions could explain the highest sensitivity of GP macromolecules towards self-assembly 

and aggregation in aqueous solution. 

After harvesting, AG can be submitted to several physical treatments such as heating, spray-

drying or irradiation before to be used. These treatments can also influence the extent of the 

natural aggregation process of AG. Aggregation behavior is enhanced when AG is heated or 

irradiated. Al Assaf et al. showed that Rg increased from 33 to 73 nm when dried AG was 

stored at 110°C during two days under control humidity (Al-Assaf, et al., 2007). Aggregation 

was also revealed in spray-dried AG samples, displaying a large proportion of aggregates in 

solution compare to raw material. Aggregation in spray-dried AG has been attributed to the 

pasteurization step included in the process (Al-Assaf, et al., 2009). During heat treatment, 

aggregates are formed between AGp and GP fractions involving hydrophobic association of 

the proteinaceous components. Irradiation of AG in the presence of acetylene also enhances 

aggregation with an increase of Rg from 25 to 67 nm for AG irradiated at 6 kGy (Al-Assaf, et 
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al., 2009). In this case, aggregates were formed through C-C covalent bonds between the 

carbohydrate moieties.

Interestingly, aggregating AG through controlled Maillard reaction can improve its functional 

properties (Al-Assaf, et al., 2007). Consequently, the natural functional properties of AG 

could be improved by its self-assembly properties. 

3.6.2. Coacervation of Acacia gum 

Coacervation has generally been defined as a liquid-liquid phase separation occurring in 

(bio)-polymers solutions under suitable conditions (Bungenberg de Jong, 1949b). It is well 

accepted that coacervation corresponds to a dehydration process of (bio)-polymers. The 

phase separation gives rise to two incompatible and immiscible liquid phases: a (bio)polymer 

dense phase, called the “coacervate” phase, coexisting with a very dilute colloidal phase, the 

supernatant (Bamford, et al., 1950; Bungenberg de Jong, 1949a; Menger & Sykes, 1998). The 

dilute liquid phase remains in equilibrium with the coacervate phase. Depending on the 

number of (bio)-polymers involved in the phase separation, coacervation can be classified as 

simple or complex (Bungenberg de Jong, 1949a). In the following sections, we will discuss 

about the assembly of AG according to simple and complex coacervation mechanism. 

3.6.2.1. Simple coacervation

Simple coacervation is a liquid-liquid phase separation where only one (bio)-polymer is 

involved (H.B. Bohidar, 2008; Bungenberg de Jong, 1949a). It occurs as a result of a decrease 

in the solubility of (bio)-polymers through water competition caused by modifying the 

physical chemical properties of the solvent. In aqueous solutions, simple coacervation can be 

promoted by the action of salts (sodium sulphate, sodium chloride), the addition of a water-

miscible non-solvent (ethanol, methanol, acetone, etc…), by modifying pH or 

increasing/decreasing temperature, thus turning the aqueous solvent medium, good for the 

(bio)-polymer, into a marginal one (H.B. Bohidar, 2008; Bungenberg de Jong, 1949a; 

Ezpeleta, et al., 1996; Mauguet, et al., 2002; Mohanty, et al., 2003). 

The addition of ethanol to AG/water dispersion led to the formation of a new dense phase 

containing liquid droplets, called coacervates, dispersed in a continuous phase. AG 

macromolecules will tend to spontaneously self-associate according to a coacervation 

mechanism once a critical ethanol percentage has been reached. Whatever the AG 
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concentration, the coacervation mechanism occurs for ethanol concentration below the 

precipitation point (unpublished data). Simple coacervation induces the formation of 

coacervated and diluted phases that both contain concentrated and diluted AG molecules, 

respectively. The binodal curve, delimiting the one-phase and two-phases regions, was 

determined by our group for A. senegal gum in water/ethanol solution (Figure 4, 

unpublished data). Upon the increase in ethanol percentage and AG concentration, the 

solubility/affinity of AG molecules for water/ethanol solution decreases. 

In this ternary water/ethanol/AG system, ethanol acts as a suitable dehydrating agent which 

shifts the energetic balance in favor of the attraction between AG macromolecules (Koets, 

1944). When ethanol is added, the quality of the solvent decreases, becoming a poor solvent 

for the solubility of AG macromolecules, by both modifying the hydrogen bond network and 

the polarity of the medium (H. B. Bohidar & Mohanty, 2004; Mohanty, et al., 2003). In 

addition to the role of ethanol in the disturbance of hydrogen bonds network, ethanol also 

decreases the dielectric constant and consequently the polarity of the solvent that could 

favor the self–association of macromolecules (Mohanty, et al., 2003). Consequently, induced 

coacervation of AG macromolecules by the addition of a non-solvent such as ethanol 

corresponds to a dehydration process due to the modifications of solvent physical chemical 

properties. 

3.6.2.2. Complex coacervation 

Complex coacervation is based on the ability of two oppositely charged (bio)-polymers to 

interact and associate involving a liquid-liquid phase separation with the formation of liquid 

droplets called coacervates (Bungenberg de Jong, 1949b; Doublier, Garnier, Renard, & 

Sanchez, 2000; Schmitt, Sanchez, Desobry-Banon, & Hardy, 1998). Complex coacervation 

was first evidenced in 1911 by Tiebackx by mixing Arabic gum with gelatin (Tiebackx, 1911). 

AG is a weak polyelectrolyte negatively charged extensively used for the elaboration of 

complex coacervates by mixing it with positively charged proteins extracted from both 

animal (gelatin, bovine serum albumin, β-lactoglobulin, sodium caseinate, etc) and plant 

(wheat, pea, soybean and lentil proteins) kingdoms (Aryee & Nickerson, 2012; Bungenberg 

de Jong, 1949a, 1949b; Burgess & Singh, 1993; Dong, et al., 2013; Ducel, Richard, Saulnier, 

Popineau, & Boury, 2004; Liu, Low, & Nickerson, 2009; Niu, et al., 2015; Schmitt, et al., 1998; 

Schmitt, Sanchez, Thomas, & Hardy, 1999; Weinbreck, de Vries, Schrooyen, & de Kruif, 2003; 
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Ye, Flanagan, & Singh, 2006). Several review papers well summarized the AG-protein 

complex coacervation mechanism describing the physico-chemical, structural and functional 

features of AG-protein complexes and coacervates (de Kruif, Weinbreck, & de Vries, 2004; 

Kizilay, Kayitmazer, & Dubin, 2011; Sanchez, Mekhloufi, et al., 2002; Schmitt, et al., 1998; 

Schmitt & Turgeon, 2011; Turgeon, Beaulieu, Schmitt, & Sanchez, 2003) . 

Complex coacervation between AG and proteins occurs by charge neutralization with the 

involvement of non-specific electrostatic interactions between de-protonated carboxyl 

groups of AG macromolecules and the protonated amino groups of proteins. As complex 

coacervation mechanism mainly occurs by the involvement of weak electrostatic 

interactions, this assembly mechanism is substantially influenced by the physical chemical 

properties of the solvent (pH, ionic strength, nature of salts and temperature) and the 

structural and physical chemical properties (global charge, charge distribution, flexibility and 

concentration) of biopolymers (polysaccharides and proteins) (Schmitt, et al., 1998; Ye, 

2008). The identification of the specific conditions resulting in a two phase system, named 

phase diagram and where binodal curve is determined, is a tedious work that requires time 

and large quantities of raw material. Trying to overcome these major drawbacks, phase 

diagram of a β-lactoglobulin - AG mixture has been recently determined through an 

innovative miniaturized approach based on millifluidic (Amine et al., submitted). In this work 

authors proved that by using turbidity measurements based on image analysis within only 2 

µl biopolymers droplets, binodal curve was able to be determined with a good agreement 

with those obtained in bulk. This method should find applications for the screening of 

numerous protein-polysaccharide mixtures for industrial issues. 

Indeed, the formation of complex coacervates between AG and proteins is of industrial 

interest to value them, by enhancing their functional properties and developing novel 

biopolymer assemblies. One of the first and the most important industrial applications of 

complex coacervation is microencapsulation. Polysaccharide/protein microcapsules are used 

in many industries (food, pharmaceutical, cosmetics, agricultural, etc…) to entrap and 

protect sensitive molecules (aroma compounds, bioactives, drugs, enzymes) against 

processing (heat, shear, redox potential, etc…) and storage conditions (oxygen, temperature 

and moisture). The use of microcapsules is also a mean to deliver the encapsulated interest 
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molecules to the specific target with the optimal kinetic by changing the physical chemical 

conditions (pH), mechanical process (chewing) or enzymatic action (Schmitt, et al., 2011). 

Several AG/protein (gelatin, whey proteins, gliadins, pea globulin) microcapsules were 

developed and elaborated to encapsulate different molecules such as lemon and orange 

flavors, oil, pesticides and flavonoid compounds (Aberkane, et al., 2012; Bosnea, Moschakis, 

& Biliaderis, 2014; Ducel, et al., 2004; Eratte, Wang, Dowling, Barrow, & Adhikari, 2014; Gao, 

et al., 1984; Hedayati, Jahanshahi, & Attar, 2012; Jain, Thakur, Ghoshal, Katare, & Shivhare, 

2015; Leclercq, Harlander, & Reineccius, 2009; Lv, Yang, Li, Zhang, & Abbas, 2014; Omi, 

Umeki, Mohri, & Iso, 1991; Palmieri, Martell, Lauri, & Wehrle, 1996; Weinbreck, et al., 2004) 

). The preparation of microparticles by complex coacervation was similarly performed on 

AG/polysaccharide mixtures such as  AG and chitosan (Butstraen & Salaün, 2014).

The rheological properties of solutions could also be modified by the formation of complex 

coacervates between AG and proteins. The rheological properties of protein and 

polysaccharide in associative conditions result in different behaviors compare to each 

individual biopolymer. It is expected that the bulk viscosity of the system is improved with 

the formation of microstructures as complex coacervates (Schmitt, et al., 2011). The 

characterization of the rheological properties of AG/whey protein coacervates evidenced 

that these assemblies displayed a viscous character (Weinbreck, et al., 2004). As electrostatic 

interactions mainly stabilize complex coacervates, protein/polysaccharide molar ratio, pH 

and ionic strength are key parameters for the rheological properties of complex coacervates. 

The maximum of viscosity is obtained for mixing conditions leading to the complete charge 

neutralization of the two biopolymers. This viscous behavior was similarly evidenced on 

AG/Chitosan complex coacervates (Espinosa-Andrews, et al., 2013). In their work, they 

highlighted an interrelationship between the biopolymers mass ratio, the charge density and 

the viscoelastic properties of the coacervated phase.

The complex coacervates formed between AG and proteins gather the surface properties of 

each biopolymer. Hence, complex coacervates can also be used to stabilize air/water or 

oil/water interfaces in a variety of foamed and emulsified products (Dickinson, 2008). 

Schmitt et al. reported that the surface activity of AG/-lactoglobulin complexes formed at 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Sanchez, C., Nigen, M., Mejia Tamayo, V., Doco, T., Williams, P., Amine, C., Renard, D. (2018).

Acacia gum: History of the future. Food Hydrocolloids, 78, 140-160. , DOI :
10.1016/j.foodhyd.2017.04.008

ACCEPTED MANUSCRIPT

31

charge neutralization ratio (pH 4.2) was as high as the pure adsorbed protein in the same 

condition (Schmitt, et al., 2005). However, the viscoelastic properties of the film formed by 

AG/-lactoglobulin complexes were stronger than those of the pure protein and the gas 

permeability of the film was significantly reduced compare to pure -lactoglobulin. Similar 

results were obtained in chilled dairy foams using whey protein isolate/AG complexes 

(Schmitt & Kolodziejczyk, 2010). Consequently, the stability of the foam can be improved by 

the adsorption of AG/protein complexes at the air bubble interfaces. Emulsions can also be 

stabilized by AG/protein complexes or coacervates. Ducel et al. evidenced that AG/pea 

globulin and AG/α-gliadin complexes or coacervates tend to decrease more strongly the 

oil/water interfacial tension than the pure protein (Ducel, Saulnier, Richard, & Boury, 2005). 

The coacervates films were characterized by a long relaxation time and a high surface 

elasticity. In addition, the authors reported that charged complex coacervates were more 

efficient to stabilize oil droplets.  

3.7. Surface properties: adsorption at solid-liquid and liquid-liquid interfaces

Surface properties of AG, and of a number of plant gum exudates, are unique in the 

polysaccharide world. By surface properties, we mean both the ability of AG to decrease 

interfacial tension between gas-water, liquid-liquid or solid-liquid interfaces, and to stabilize 

these interfaces through steric and electrostatic interactions and hydration forces (Adamson 

& Gast, 1997). These properties can be used to form and stabilize foams (Redgwell, Schmitt, 

Beaulieu, & Curti, 2005), emulsions and to stabilize solid nanoparticles. It can be noticed that 

studies on foaming properties of AG are rare as compared to studies on stabilization of liquid 

or solid particles, especially nanoparticles.

3.7.1. Surface properties: adsorption at solid-liquid interfaces

Surface properties of Acacia senegal gum can be used to stabilize solid nanoparticles such as 

carbon nanotubes (Amiri, Shanbedi, Eshghi, Heris, & Baniadam, 2012; Bandyopadhyaya, et 

al., 2002; Dror, Pyckhout-Hintzen, & Cohen, 2005; Edri & Regev, 2010; M. T. Kim, Park, Hui, & 

Rhee, 2011; Kumar, Reddy, & Ramaprabhu, 2008; Najeeb, Lee, Chang, & Kim, 2010)   , gold, 

silver, magnetic or bioceramic nanoparticles (Batalha, Hussain, & Roque, 2010; Gils, Ray, & 

Sahoo, 2010; Kannan, et al., 2012; Kattumuri, et al., 2007; Ma, et al., 2012; Roque & Wilson, 

2008; J. E. Song, et al., 2011)  ; and flavonoids nanoparticles(Aberkane, et al., 2012)). 
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Obviously, the ability of AG to stabilize solid interfaces was at the basis of ink and paint 

manufacturing (Balantrapu & Goia, 2009; J. K. Song, Choi, & Chin, 2007; D. W. Wang & Zhao, 

2009) .

AG was also used to stabilize latex nanoparticles as a model system of interface with a 

surface coverage of about 0.5 – 5 mg/m2 depending on solvent conditions and initial AG 

concentration (Gashua, Williams, & Baldwin, 2016; M. L. Snowden, Phillips, & Williams, 

1987). The surface coverage was found to be similar at liquid-liquid interfaces in O/W 

emulsions (Randall, Phillips, & Williams, 1988) . The high Mw fraction of AG, AGP, was found 

to be the most effective to be adsorbed at the interface after only 15 min while AGp fraction 

was ineffective in the stabilization of the latex dispersions (M. L. Snowden, et al., 1987). 

Electronic spin resonance data indicated that AG adsorbed at the solid-liquid interface with 

approximately half of its segments close to the surface in trains and the other half in loops 

and tails extending away from the surface into solution (M. L. Snowden, et al., 1987). An 

alternative model of end-on or multilayer adsorption was recently proposed to explain the 

high layer thickness after adsorption of AG on latex particles (Gashua, et al., 2016). As noted 

above, AG has also been explored as coating agent of nanomaterials for biomedical 

applications, namely magnetic nanoparticles (Ali, Ziada, & Blunden, 2009; Banerjee & Chen, 

2008, 2010; Palma, et al., 2015) . AG coupled magnetic nanosystem could therefore find 

applications as a MRI contrast agent for cell-labeling applications. Other applications 

concerned the use of AG as a nontoxic material in the production of readily administrable 

biocompatible gold nanoparticles for diagnostic and therapeutic applications in 

nanomedicine (Kattumuri, et al., 2007)(Kattumuri, Katti, Bhaskaran, Boote, Casteel, Fent, 

Roberton, Chandrasekhar, Kannan & Katti, 2007) or to improve antioxydant properties of 

nanoparticles (Kong, et al., 2014). Surprisingly, studies of the adsorption of AG on 2D solid 

surfaces and their related interfacial properties have never been performed to the best of 

our knowledge while novel and efficient techniques such as ellipsometry coupled or not to 

quartz crystal microbalance exist today. In addition, there are no information in the 

literature on the testing of AG adhesion or any appropriate standard adhesion method used 

for a similar material. Future prospects in this important area of adhesion properties on solid 

surfaces could be very interesting and useful to unravel the role and function of AG at solid-

liquid and liquid-interfaces.     
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3.7.2. Surface properties: adsorption at liquid-liquid interfaces

A great number of studies dealt with emulsification properties of AG (Bai, Huan, Gu, & 

McClements, 2016; Briggs & Schmidt, 1915; R.A. Buffo & Reineccius, 2000; R. A. Buffo, 

Reineccius, & Oehlert, 2001; Castel, Rubiolo, & Carrara, 2017; Castellani, Guibert, et al., 

2010; Charoen, et al., 2012; Charoen, et al., 2011; Chivero, Gohtani, Yoshii, & Nakamura, 

2016; Desplanques, Renou, Grisel, & Malhiac, 2012; Dickinson, 1988, 2003; Dickinson, 

Elverson, & Murray, 1989; Dickinson, Galazka, & Anderson, 1991a, 1991b; Dickinson, 

Murray, Stainsby, & Anderson, 1988; Djordjevic, Cercaci, Alamed, McClements, & Decker, 

2008; Dluzewska & Leszczyñski, 2005; Gashua, et al., 2016; Gharibzahedi, Mousavi, 

Khodaiyan, & Hamedi, 2012; X. Huang, Kakuda, & Cui, 2001; Jayme, Dunstan, & Gee, 1999; 

Jin, Cai, Li, Yadav, & Zhang, 2017; Y. D. Kim, Morr, & Schenz, 1996; Klein, Aserin, Svitov, & 

Garti, 2010; Ma, et al., 2012; Mahfoudhi, et al., 2014; Matsumura, et al., 2000; McNamee, 

O'Riordan, & O'Sullivan, 1998; Mirhosseini & Tan, 2010; Nakamura, 1986; Nakauma, et al., 

2008; Ozturk, Argin, Ozilgen, & McClements, 2015; Padala, Williams, & Phillips, 2009; 

Piorkowski & McClements, 2014; Prakash, Joseph, & Mangino, 1990; Ray, et al., 1995; 

Reiner, Reineccius, & Peppard, 2010; Seifriz, 1925; Shi, et al., 2017; Shotton & Davis, 1968; 

Shotton & Wibberley, 1960; M. J. Snowden, Phillips, & Williams, 1988; M. L. Snowden, et al., 

1987; Vasile, Martinez, Pizones Ruiz-Henestrosa, Judis, & Mazzobre, 2016; Vernon-Carter, et 

al., 1996; Vernon-Carter, Pedroza-Islas, & Beristain, 1998; Xiang, et al., 2015; M. P. Yadav, et 

al., 2007; X. Yao, et al., 2016; X. L. Yao, et al., 2013; Zhang & Liu, 2011). The listing is far from 

being exhaustive but shows clearly the abundant literature on the subject. We know that 

physical chemical parameters (pH, ionic strength, type of ions, temperature, homogenization 

pressure, etc.) all influence the structure of biopolymer-stabilized emulsions and their 

stability. Here we wish to focus on the composition and structural aspects at the expected 

origin of surface properties of the gum.

It is today widely accepted that it is the protein-rich high-molecular weight fraction of AG, 

the AGP complex, which mainly provides the surface properties of gum. A fair non-linear 

relationship between AGP concentration and emulsion stability was recently shown with a 

seemingly AGP critical concentration of about 10% (Nishino, Katayama, Sakata, Al-Assaf, & 

Phillips, 2012). Here emulsion stability was checked following heating at 60°C for 3 weeks 

and we may wonder whether surface properties of AGP were highlighted or heat-induced 
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aggregation of AGP at the interfaces, in line with the process of “Super Gum” formation 

described below (Al-Assaf, et al., 2007; Aoki, Al-Assaf, Katayama, & Phillips, 2007; Aoki, 

Katayama, et al., 2007). We remember here that “AGP” molecular fraction both 

encompasses the so-called AGP and the high Mw GP fractions as well as minor 

concentrations of the AGp fraction. One direct consequence is that companies using gum in 

their products, for instance to make stable oil-in-water (o/w) emulsions, want to obtain gum 

samples with high proportions of AGP, e.g. above 12%. This explains also why modified gum 

with higher content in high-molecular weight fractions was developed recently through 

controlled Maillard reaction (Al-Assaf, et al., 2007). The modified gum contains about 20% of 

AGP and displays better o/w emulsion stabilizing properties than unmodified gum, 

reinforcing the current opinion on the role of AGP on gum surface properties. However, the 

reality seems a bit more complex since AG samples containing small amounts of AGP, e.g. 

8%, can produce sometimes o/w emulsions with better stability than gums with higher levels 

of AGP. A detailed analysis of experimental facts reported in literature can then be useful to 

clarify the effect of gum molecular composition on its surface properties. The discussion will 

benefit from what we know on the surface properties of individual molecular fractions (AGp, 

AGP and GP).

Despite its good surface properties, AG is far from being as efficient as proteins to form and 

stabilize oil-in-water emulsions. An oil to emulsifier ratio of about 1:1 is therefore needed for 

AG while a lower ratio of 1:10 is common for proteins. It is then not surprising that protein-

rich macromolecules play an important role in the emulsifying/stabilizing properties of AGs 

(Randall, et al., 1988; Ray, et al., 1995). It was then reported with samples of various AG 

species, having nitrogen contents in the range from 0.1% to 7.5%, a good correlation 

between the nitrogen content of the gum and its limiting long-time interfacial tension and 

between the emulsifying capacity and the initial rate of change of tension with time 

(Dickinson, et al., 1988). It was also shown by SEC on supernatants after removing oil 

droplets that protein-rich fractions adsorb strongly at the oil-water interface (Randall, et al., 

1988). Similar results using the same methodological approach were obtained by others 

(Alftren, Penarrieta, Bergenstahl, & Nilsson, 2012; Flindt, Al-Assaf, Phillips, & Williams, 2005; 

Padala, et al., 2009) . However, a careful examination of results reveal that while a 

preferential adsorption onto oil-water interfaces of protein-rich fractions occurred, all 
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molecular fractions seems to be present at the interfaces with however different adsorption 

kinetics. In the frame of the wattle-blossom model, it is supposed that, in analogy with block 

co-polymers, the more hydrophobic protein chain anchors at the interface while the 

protruding hydrophilic carbohydrate blocks attached to this chain provide a strong steric 

barrier towards flocculation and coalescence (Islam, et al., 1997; Randall, et al., 1989). 

However, numerous hydrophilic hydroxyamino acid residues are present in the polypeptide 

chain, and no structural data today exist about the spatial position (buried or in periphery) of 

the polypeptide chain, casting some doubt on the model proposed by Islam et al. and 

Randall et al. 

In fact, the efficiency of AG is better related to the way it adsorbs onto interfaces and the 

mechanical properties provided by interfacial films rather than to a low interfacial tension 

(Shotton & Wibberley, 1961). Surface charged groups provide the basis for some 

electrostatic contribution to the colloidal stabilization, however the relative low value of the 

(negative) zeta potential, 10-20 mV under beverage emulsion conditions (Jayme, et al., 1999; 

Ray, et al., 1995) , and the pH-independent destabilization mechanism (coalescence), 

indicates that the primary mechanism is steric stabilization (Dickinson, 2003; Trindade, et al., 

2008). It is better to say electro-steric stabilization mechanism as suggested by Jayme et al. 

(1999) as both minerals (R. A. Buffo, et al., 2001) and low pH (R. A. Buffo, et al., 2001; 

Djordjevic, et al., 2008; Vernon-Carter, et al., 1998) are unfavorable to emulsion stability. 

Another very important parameter defining emulsion stability is interfacial rheology. The 

ability of AG to form highly cohesive viscoelastic interfacial multilayer (gel-like) films is not 

new (Briggs, et al., 1915; Serrallach, Jones, & Owen, 1933; Shotton, 1955; Shotton & 

Wibberley, 1959; Shotton, et al., 1961; Wibberley, 1962). AG interfaces are jammed, very 

strongly shear-elastic and exhibit non-linear interfacial shear rheology indicative of 2D soft 

solid behavior (Erni, Jerri, Wong, & Parker, 2012; Erni & Parker, 2012; Erni, et al., 2007). 

Electro-steric forces, probably including hydration forces, and elastic interfaces are at the 

origin of emulsion stabilization by AG, especially against coalescence (Dickinson, et al., 

1988). 

Since the presence of proteins and steric effects are important in the formation and 

stabilization of emulsions, structural modifications of Acacia senegal gum was proposed as a 

mean to convert it into a good emulsifier (Al-Assaf, et al., 2007). Structural modifications 
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were induced through controlled Maillard reaction incubating kibbled gum many weeks at 

60°C under controlled moisture mimicking natural maturation process according to the 

authors (Al-Assaf, Phillips, Sasaki, & Katayama, 2003). This process resulted in an increase of 

Mw of AG from about 4.2x105 g.mol-1 up to about 20x105 g.mol-1 (Al-Assaf, et al., 2007). 

Modified gums allow the production of oil-in-water emulsions with smaller droplets, 

improved interfacial viscoelasticity and emulsion stability as compared to the unmodified 

control gum. The effect of AG molecular weight (Mw) on emulsion stability (Dickinson, et al., 

1991a) or surface rheological properties (Nakamura, 1986) was previously demonstrated. In 

this case, the initial size of emulsion droplets was not impacted by Mw but emulsion stability 

was improved with high Mw. Similar results using matured gums were obtained in other 

studies (Aoki, Katayama, et al., 2007; Castellani, Al-Assaf, Axelos, Phillips, & Anton, 2010; 

Castellani, Gaillard, et al., 2010; X. L. Yao, et al., 2013). In addition, it was shown that 

modified gums have the ability to decrease interfacial tension faster than unmodified gums, 

which is an important parameter in determining emulsifying capacity as noted above (Aoki, 

Katayama, et al., 2007; Castellani, Al-Assaf, et al., 2010; Castellani, Guibert, et al., 2010; X. L. 

Yao, et al., 2013). The improved stability of produced emulsions could be due partly to the 

higher viscoelasticity of interfaces formed from matured gums (Castellani, Al-Assaf, et al., 

2010; Castellani, Guibert, et al., 2010). It is interesting to note that surface properties of 

matured gums are very close to that of the AGP fraction as obtained by HIC chromatography 

(Castellani, Gaillard, et al., 2010).

Although these results using matured AGs seem conclusive on the interfacial properties of 

high Mw protein-rich macromolecules, some comments may be of interest. The first remark 

is that few studies have been done to definitely conclude on the benefit of matured gums 

regarding initial emulsion droplet size and emulsion stability. In addition, emulsions have 

never been prepared under the same experimental conditions (homogenizing conditions, 

gum concentration, oil to emulsifier ratio, dispersion pH, etc…), rendering the comparison of 

results difficult. For instance, it was shown that initial emulsion droplet size was significantly 

lower for oil to emulsifier ratios above 1 but was not different for ratios below 1 (Kateyama, 

et al., 2006). Another concern deals with the nature of supramolecular structures produced 

by Maillard reaction. Not only the AGP Mw (and their concentration) increases but the 

composition of supramolecular structures change too with the incorporation of AGp and low 
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Mw GP fractions (Aoki, Al-Assaf, et al., 2007).  Obviously it can be anticipated that the global 

architecture of supramolecular structures is also modified. In these conditions, how to 

compare matured high Mw macromolecules with a smaller AGP fraction of control gum? 

Another approach to demonstrate the role of protein-rich high Mw macromolecules in AG 

surface properties was to hydrolyze it with protease-type enzymes. In this case, loss of 

emulsification properties was observed (Chikamai, Banks, Anderson, & Weiping, 1996). 

Acacia senegal gum, hydrolyzed by pronase (a mixture of proteases) for 24h at 37 °C, did 

therefore form interfacial films less viscoelastic than with native AG (Elmanan, et al., 2008), 

in relation with the significant decrease of protein-rich high Mw AGP concentration (Aoki, Al-

Assaf, et al., 2007; Connolly, et al., 1987, 1988; Elmanan, et al., 2008; Randall, et al., 1988). 

However, by hydrolyzing AG while measuring interfacial viscoelasticity showed that, after 

510 min hydrolysis, interfacial viscoelasticity decreased but remained high. It is possible that 

hydrolyzing the gum in the bulk or at an interface did not produce the same results. One can 

note that high Mw macromolecules present in Acacia seyal gum are also hydrolyzed by 

pronase but to a lesser extent, which can be partly due to its more compact conformation 

(Elmanan, et al., 2008; Flindt, et al., 2005). As AGP architecture is modified after hydrolysis, 

one may wonder whether the loss in surface properties is due to a decrease in Mw or to a 

change in macromolecular conformation. In fact, both chemical structure of the 

polysaccharide component (Connolly, et al., 1987; Mahendran, et al., 2008; Randall, et al., 

1988) and AGP conformation remain largely unaffected by proteases, suggesting a self-

similar structure for the AGP component (Renard, Lavenant-Gourgeon, et al., 2014). 

Owing to the expected surface properties of protein-rich molecular fractions of AG, some 

scarce studies tried to unravel the specific properties of individual macromolecular 

components. Unlike one study where four fractions were obtained by SEC (Ray, et al., 1995), 

the remaining studies were classically concerned by HIC fractions, i.e. AGp, AGP and GP 

(Castellani, Al-Assaf, et al., 2010; Castellani, Gaillard, et al., 2010; Fauconnier, et al., 2000; 

Lopez-Franco, et al., 2004; Ray, et al., 1995). Among these studies, one of them studied the 

effect of fractions on oil-in-water emulsions characteristics (Ray, et al., 1995) and three 

studies focused on interfacial properties of fractions as determined by interfacial tension 

measurements and Langmuir-Blodgett films (Castellani, Al-Assaf, et al., 2010; Castellani, 

Gaillard, et al., 2010; Fauconnier, et al., 2000; Lopez-Franco, et al., 2004). It was clear from 
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these studies that GP fraction was the more efficient to decrease interfacial tension with 

values at equilibrium of about 23 mN.m-1 as compared to values of 30 mN.m-1 for AGP and 

about 45 mN.m-1 for AGp (Castellani, Al-Assaf, et al., 2010). It is important to note that 

experiments were done at 0.05wt% gum concentration and that similar experiments at 

higher gum concentration should be instructive. In terms of surface pressure and limiting 

area, GP fraction was again the more efficient and AGp fraction the less efficient (Castellani, 

Gaillard, et al., 2010; Fauconnier, et al., 2000; Lopez-Franco, et al., 2004). Results were 

unclear in terms of surface elasticity as determined from Langmuir-Blodgett film 

experiments. One study showed that the whole gum produced more elastic films than 

fractions which formed films with similar elasticity (Lopez-Franco, et al., 2004). Another 

study showed that films from AGp fractions were more elastic than films made from AGP or 

GP fractions, the latter being the less elastic (Fauconnier, et al., 2000). These results were 

obtained using the same Acacia senegal gum concentration (10wt%) but different subphase 

composition, which may explain in part the observed differences. 

Although there is no doubt about the important surface activity of AG protein-rich molecular 

fractions, and of the important role of high Mw fractions in the stabilization of emulsions, 

nitrogen content alone cannot be used to predict performance of AGs for emulsification. 

Gums with similar protein content may exhibit significant differences in emulsifying capacity 

and emulsion stability (Dickinson, et al., 1991b), confirming the view that it is the nature and 

distribution of the proteinaceous component of the gum which is important, not just its 

overall amount. Gums with higher protein content do not also necessarily produce more 

stable emulsions and some Acacia seyal gum samples with a much lower protein content 

(0.8%) have been found to give better emulsion stability than Acacia senegal gum (R. A. 

Buffo, et al., 2001). More surprisingly, it was shown recently that high Mw arabinogalactan 

macromolecules extracted from Peach exudate and not containing protein displayed better 

emulsifying and emulsion stabilizing properties than Acacia senegal gum (Qian, Cui, Wang, 

Wang, & Zhou, 2011). It has been suggested that AGP surface properties depend 

considerably on the polysaccharide component (Goodrum, et al., 2000). Anderson (1978) 

suggested that the superior emulsifying power of gum Arabic may be related to the 

significant proportions (< 10 mol%) of terminal Rhap groups, which possess hydrophobic 

centers (D. M. W. Anderson, 1978). In addition, the -1,3 galactan backbone should form an 
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amphipathic helix, and recently confirmed by Kitazawa et al. (Kitazawa, et al., 2013), the 

inside of the helix comprising a hydrophobic surface with the bulk of the galactan hydroxyl 

groups oriented toward the outer surface of the helix (Goodrum, et al., 2000). The 

“hydrophilic” carbohydrate blocks attached to the polypeptide chain could therefore have a 

substantial impact on the adsorption of AG onto hydrophobic surfaces.

The presence of surface active components in AG implies that the nature of dispersed phase 

is important to determine emulsion formation and stability. Based on the varying degree of 

stability against washing of emulsions made with different oils, it was suggested that the 

efficiency with which AG is adsorbed depends at least in part on the nature and polarity of 

oil (Dickinson, et al., 1991b; Shotton, et al., 1960). A non polar dispersed phase will therefore 

display a higher interfacial tension with water and will favor adsorption of the more 

tensioactive components. This is the basis of the extensive use of AG to stabilize orange oil 

emulsions, limonene, the main orange oil component, being a non polar molecule. This also 

may explain why the hydrophobic GP fraction adsorbs faster at interfaces than the AGP 

fraction when the non polar n-hexadecane is used (Castellani, Gaillard, et al., 2010). For 

instance, hexadecane-in-water emulsions made with AG are more stable than decanol-in-

water emulsions (Chanamai & McClements, 2002). In addition, both polarity and water 

solubility of the dispersed phase influence the destabilization mechanism. With a high 

polarity and high water-soluble oil (e.g. decanol), oil-in-water emulsions are unstable to both 

Ostwald ripening and coalescence when stabilized by a weakly adsorbing biopolymer such as 

AG (Chanamai, et al., 2002). When a low polarity and high water-soluble oil is used (e.g. 

decane), emulsions are stable to coalescence, but unstable to Ostwald ripening. Finally, with 

low polarity and low water-soluble oil (e.g. hexadecane), emulsions are stable to both 

Ostwald ripening and coalescence (Chanamai, et al., 2002). 

Finally, it is important to mention that trace levels of lipids, probably attached to the “AGP” 

macromolecules, would improve the surface properties of AG (M. P. Yadav, et al., 2007; M.P. 

Yadav, et al., 2012). This points out the potential role of minor components present in AGs 

on their surface properties, e.g. free proteins, peptides, oleoresin, feruclic acids. These low 

Mw components could explain that some gums with low AGP concentrations, for instance 

lower than 10%, still display excellent ability to stabilize oil-in-water emulsions or that gums 
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with similar protein content and AGP concentration produce emulsions with significant 

differences in stability. This subject should deserve much more attention in the future. 

4. Enzymatic modifications of Acacia gum

Modifications of AGs with enzymes first occurred during its maturation process. The gum 

from the earliest exudation, called “green gum”, is not entirely soluble yielding a glairy 

mucus-like fluid from which a perfect solution separates after a certain time. After storage 

during several months, a change is observed probably due to enzymes, so that gum becomes 

fluid and entirely soluble (Reinitzer, 1909). Neither the nature of these enzymes nor their 

origin is known. A recent Ph.D. student has studied these changes during gum maturation 

and it appeared that green gum displayed a peculiar rheological behaviour and was highly 

heterogeneous with part of kibbles containing very high Mw AGP (Cozic, 2007). Upon 

storage, the gum recovered a classical distribution of molecular fractions.

Enzymatic modifications of AG, especially protein hydrolysis, were used primarily to 

demonstrate that most of proteins were associated with the higher molecular weight 

component of the gum and contribute to the elaboration of the wattle-blossom model 

(Connolly, et al., 1987, 1988; Randall, et al., 1988). It was then demonstrated that protease 

treatment of Acacia senegal gum mostly degraded the protein-rich high Mw component of 

the gum, i.e. both AGP and high Mw GP fractions, but did not degrade or marginally AGp and 

low Mw GP components (Aoki, Al-Assaf, et al., 2007; Connolly, et al., 1987, 1988; Flindt, et 

al., 2005; Mahendran, et al., 2008; Osman, et al., 1993; Randall, et al., 1988, 1989; Renard, 

Lavenant-Gourgeon, et al., 2014). The lower Mw obtained after hydrolysis was in the range 

1.7-2x105 g.mol-1, depending on the enzymes and conditions used with the lower values 

obtained with papain (Renard et al., 2014). This can be considered as the nominal building 

block of the gum as obtained by protein enzymatic hydrolysis. The limiting intrinsic viscosity 

values obtained were in the range 12-15 mL.g-1 (Chikamai, et al., 1996; Connolly, et al., 1987, 

1988; Renard, Lavenant-Gourgeon, et al., 2014). The decrease of gum viscosity after enzyme 

hydrolysis has been suggested as a way to improve their processing (Chikamai, et al., 1996).

When using specific enzymes of polysaccharide such a -galactosidase, a limited 8% 

decrease in galactose content was observed in parallel to a 27% increase in protein content 

(Chikamai, et al., 1996). Analysis by SEC showed a broadening of the AGP fraction and a 
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narrowing of the AGp fraction, GP fraction being unchanged. Interestingly, a recent patent 

reported the use of -galactosidase to produce modified AGs with improved emulsifying 

properties (Heidebach, Sass, & de With, 2013). Very recently, a glucuronosyltransferase was 

isolated from Arabidopsis thaliana and used with AG. It was found that glucuronic acids were 

incorporated up to 1/3 of AG total weight. Oil-in-water emulsions made by the enzyme-

modified gum arabic were slightly smaller in droplets size and remarkably more stable 

compare to emulsions made with native AG (Dilokpimol & Geshi, 2014).

5. Conclusions and future prospects

Acacia gum is a plant exudate mainly produced in sub-sahalian regions of Africa. It is a 

natural ingredient of geo-political and economic importance. Two gums are authorized for 

uses, Acacia senegal gum and Acacia seyal gum. The first one was in the past the most used 

and studied whereas a growing demand of low cost natural gum can explain the growing 

part of Acacia seyal sales in recent years. Acacia gums are used by humans since prehistoric 

times and continue to be widely used today, the World demand having risen by 25% since 

the last ten years. Gums are mainly used in Food industry (confectionary, drinking industry) 

but also in non-food applications (pharmacy, cosmetics, materials). 

Acacia senegal gums are composed of arabinogalactan-proteins (AGP) type biopolymers. It 

contains a continuum of hyperbranched amphiphilic charged polysaccharide-protein 

complexes differing by the amount of protein, type of sugars, sugar to amino-acid ratios, 

degree of branching, conformation and physicochemical properties. It also contains minor 

components such as minerals, polyphenols and traces of lipids. Arabinogalactan-proteins in 

Acacia senegal gums have generally anisotropic shapes and can be described as highly 

porous ellipsoidal objects. In fact, these macromolecules are kinds of sponges, which can 

explain their ability to interact with different kinds of entities (e.g. proteins, minerals, 

polyphenols, etc...). Besides their known biological properties, Acacia gum biopolymers 

display interesting functional properties such as high affinity for water, low newtonian 

viscosity even at quite high gum concentrations and the ability to adsorb and stabilize gaz-

liquid, liquid-liquid and solid-liquid interfaces. Surface properties of gums are strongly 

related to the presence of protein-rich high molecular weight species. 
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Based on the literature survey, socio-economic challenges and our own work, some 

important issues and bottlenecks can be identified both on scientific and technological point 

of views. Some of the most relevant points, in our opinion, are described in the following.

Maturation mechanisms of Acacia gums: once exuded, gums evolve with time through sun 

drying, oxidation, (enzymatic) hydrolysis and interactions between AGP and between AGP 

and minor components upon storage and processing. The consequences are a change in 

biopolymer composition and distribution, structure and functional properties. Probably one 

of the most challenging questions is the mechanism leading to the known gum from the 

“green gum”. Initial glairy gum is composed by very high Mw AGP that imparts specific 

rheological behaviour. With time, even in the dry state, the Mw of AGP decreases, which is 

may be caused by the action of some glycosidases and/or proteases. The presence of these 

enzymes has never been reported. Apart from hydrolysis, gum can also be oxidized which 

can have significant functional consequences, especially when it is rich in polyphenols. 

Composition, structure and functional properties of Acacia seyal gum: for economic reasons, 

Acacia seyal gum represents actually 50-75% of sales. However, it has been much less 

studied than Acacia senegal gum. The differences between both gums in terms of sugars and 

amino-acid compositions are mostly known, as well as the major differences in Mw 

distribution. However, Acacia seyal gum is richer in minerals and polyphenols, less rich in 

proteins, more compact, more unstable in solution, less charged, less surface active, less 

hydrolysable by enzymes. The structure and conformation of AGP from Acacia seyal are 

unknown and their functional properties badly known. We do not know the reasons for the 

molecule compactness and whether such a compactness can be modified changing the 

solvent polarity or temperature. We know that assemblies with proteins are possible but 

stabilization of assemblies appear difficult. We do not know the structure of oil-in-water 

interfaces covered by this gum. However, we know that stabilization of emulsions or 

suspensions can be achieved using high gum concentrations. The presence of polyphenol can 

be detrimental as far as solubility is concerned, however this could open the possibility to 

crosslink AGP molecules by oxidative enzymes.

Nature and concentration of minor components: Acacia gums contained 3-6% of minor 

components which deserve much more attention. Part of variability in gum functional 
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properties must originate from these minor compounds. Among these components, the 

major part is composed by minerals (3-5%). The concentration and nature of ions are 

important since they are supposed to impact the charge density of AGP, which in turn plays 

an important role in the hydration, solubility and compactness of AGP as well as in the 

stabilization of colloidal suspensions. Polyphenol type molecules are present in colored gum 

nodules depending on the gum type (Acacia senegal vs Acacia seyal gum) and origin. The 

nature of these polyphenols and their concentration need to be determined; they can result 

in oxidation phenomena and modify functional properties of AGP. Traces of lipids (the GPI 

anchor) linked to high Mw AGP has been reported in Acacia senegal gum. It is obvious that 

the presence of lipids impacts the gum surface properties. We need to know whether lipids 

are present, at which concentration and whether they are limited to GPI or other kinds of 

lipids. When we perform SEC-MALLS experiments on gums, UV profiles show invariably the 

presence of highly rich-protein molecules with low Mw (long elution times) at very small 

concentrations. These molecules could be free proteins or oligosaccharide-proteins issued 

from AGP degradation. It cannot be ruled out that these molecules could be some of the 

enzymes mentioned in the literature, e.g. oxidases, or may be hydrolase-type enzymes 

responsible of the time-dependent maturation of gum. We know that these enzymes are 

present but we do not know their nature or origin.

Structure of arabinogalactan-proteins (AGP): all biopolymers in Acacia senegal and seyal 

gums are hyperbanched arabinogalactan-proteins with various Mw, size, sugar or amino-acid 

composition, sugar to amino-acid molar ratio, charge density and hydrophobicity. We know 

that protein-rich high molecular weight fractions have important surface properties and the 

ability to stabilize colloidal suspensions. We know that these fractions display anisotropic 

conformations. However, results were obtained on mixtures containing fractions in various 

proportions including gum aggregates. Highly purified molecules are then needed to provide 

new structural insights through the use of combined approaches, for instance using 

Hydrophobic Interaction Chromatography (HIC) then Size Exclusion Chromatography (SEC). 

Other possibilities are to combine controlled alcohol or salt-induced precipitation and HIC, 

SEC or Ion-Exchange Chromatography. The architecture of fractions remains unclear despite 

recent advances. The organization of sugar blocks onto the polypeptide or polypeptides 

chains is unknown, e.g. nature of interactions between sugar chains and between sugar 
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chains and polypeptides, steric constraints, possible secondary structures of sugar blocks 

(e.g. helix of the  1,3- galactan backbone). In addition, the global structural organization of 

the molecules is directly related to the amino-acid sequences of polypeptides that 

determine the linking of sugar blocks. Theses sequences are unknown for Acacia gum. 

Determine the amino-acid sequences is challenging because sugar blocks have to be 

degraded either by chemical or enzymatic treatments or both. Please note that the charge 

density of AGP should be determined as well, both to better understand the structure and 

the macromolecular functional properties.

Functional properties of Acacia gums and their arabinogalactan-proteins (AGP) fractions: 

functional properties (hydration, assembly, rheological and surface properties) of Acacia 

senegal gum have been characterized in more or less details. This is not the case for Acacia 

seyal gum. A number of issues remains (solvent affinity, formation of aggregates, unusual 

rheological behavior, etc..) but the most important one concerns the functional properties of 

the different AGP fractions that have been rarely studied so far. Only one paper reports 

emulsions made with the two major fractions purified from HIC (HIC-F1 and HIC-F2). One can 

find in the literature some conflicting data on interfacial properties of F1, F2 and F3 but 

fractions were not highly purified and no systematic investigation of experimental conditions 

was tried (gum concentration, pH, ionic strength, nature of oil, temperature). It is impossible 

to understand and control gum functional properties without a precise knowledge of 

fraction functional properties. Today, we have no idea about their hydration properties, 

their rheological properties, their solution properties (phase behavior, assembly) depending 

on the solvent polarity, their surface properties. In addition, the question of functional 

synergism between fractions deserves some attention. 

Solution properties: solvent affinity, phase behavior, formation and dynamics of aggregates: 

we have noted recently aggregation-disaggregation phenomena involving protein-rich AGP 

of Acacia senegal gum depending on gum concentration. This suggests that some molecular 

fractions display different solvent affinities. This can be seen as well through the huge 

hydration properties of the soluble part of F3 fraction as compared to total gum, F1 or F2 

fractions. The effect of solvent polarity on the dynamics of intra- and inter-molecular 

interactions between AGP should be studied in relation with the ionic strength, the 

chaotropic solvent and temperature, then varying the strength of hydrogen bonding, 
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electrostatic and hydrophobic interactions. Building phase diagrams should allow predicting 

stability of gum solutions depending on environmental conditions. The formation of a small 

concentration (1-2%) of AGP-based aggregates is mostly unavoidable and participates to the 

variability in gum functionality. 

Rheological properties: unusual flow behaviour and viscoelastic properties: shear-thinning 

and time dependent flow of diluted Acacia senegal gum is probably due to surface effects 

and may be to AGP-induced aggregation. Performing rheo-SAXS experiments will help to 

clarify the situation. At high concentrations, gum solution display viscoelastic properties 

seemingly dominated by the viscous component. We do not know whether highly 

concentrated solutions can be characterized as soft colloidal gels or polymeric gels and what 

is the role of AGP fractions on viscoelastic properties. 

Emulsifying-stabilization properties of Acacia gum: processing conditions, role of AGP, 

structure and mechanical properties of interfaces: a huge number of studies have reported 

the formation and stabilization of oil-in-water emulsions based on Acacia senegal gum. No 

clear picture emerged from such studies about the intricate relationships between gum 

concentration, nature of oil phase (hydrophobicity), protein-rich AGP concentration and 

homogenization energy. The important role of protein-rich fractions makes no doubt, 

however it seems to depend on gum concentration, hydrophobicity of dispersed phase and 

quantity of interfaces. The relative contributions of the different fractions during the full 

emulsification process need to be clarified. Solid-like viscoelastic properties of interfaces and 

electrosteric repulsion mechanisms stabilize emulsions. Depending on process conditions, 

the structure of interfaces remains unknown, especially in terms of thickness (monolayers vs 

multilayers), surface gum concentration and topology of fractions. These characteristics will 

affect emulsion stability and for instance permeability to hydrophobic molecules such as 

aroma. 

Nano/microparticles-based on AGP assembly with other biopolymers: formation, 

stabilization, industrial scaling: the formation of nano/microparticles based on electrostatic 

interactions between Acacia senegal gum and proteins is not a difficult task at the lab scale. 

On the other hand, the stabilization of these assemblies against changes in pH or ionic 

strength is a bottleneck that has limited up to now their industrial applications. Since 
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assemblies are obtained through weak interactions, cross-linking stabilization without 

chemical treatments imply either the use of enzymes or physical treatments. Using enzymes 

to stabilize Acacia gum-protein microparticles has been reported, this is a possible but 

expensive way. Another way is protein denaturation by heating, which has been proven to 

be efficient at the lab scale. An important challenge is the formation and stabilization of 

Acacia gum-protein nano/microparticles at the industrial scale. Issues about mixing 

conditions and heating in large volumes need to be considered. 

Enzymatic modification of Acacia gum: the possibility to modify the structure and functional 

properties of Acacia gums clearly represents the best future way of innovation. Actually, the 

only way to propose new ingredients based on Acacia gums is i) to enrich them with AGP, ii) 

to purify AGP, iii) to assemble them with proteins, iv) to graft lipids by chemical reaction. 

Enzymes can potentially expand the modification possibilities of gums. Two ways should be 

explored. The first one concerns hydrolysis of gums. This can be achieved either by the use 

of proteases or/and glycosidases. Proteases have demonstrated their ability to degrade 

Acacia gums and to significantly decrease their viscosity, which is of particular use in 

industry. However, protein-rich fractions are degraded, which impairs their surface 

properties. A major bottleneck is then to decrease the gum viscosity while maintaining high 

surface properties. The use of glycosidases may be a solution, however their efficiency is 

impaired by the hyperbranched characteristic of gums. Fortunately, a number of enzymes or 

enzymatic cocktails are actually available and must be screened. Enzymes with more specific 

activities could be found but the questions of their availability and costs should be 

questioned. In particular, the possibility to increase the concentration of charged 

carboxylate groups removing methyl groups appears interesting. The second way, probably 

the most promising, is to graft onto the gum specific molecules or chemical groups. Then 

one can imagine to graft lipids or oligopeptides to improve amphipathic properties of gums 

or to graft carboxylate groups to increase the gum charge density. It remains to find efficient 

enzymes compatible with an industrial use then to optimize grafting processes. Finally, one 

major bottleneck is to crosslink gum molecules by enzymes to form 100% gum 

nano/microparticles. This should open a lot of new applications as texturing agents and 

stabilized microcapsules for aroma protection.
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Figure captions

Figure 1: Rh conformation plots of spray-dried (black) and raw (red) Acacia senegal (A) and 

seyal (B) gums. 202 spray-dried and 100 raw A. senegal gums, 28 spray-dried and 6 raw A. 

seyal gums were analysed (unpublished data). 

Figure 2: (left) Elementary building blocks 1 and 2 used to build arabinogalactan-protein 

(AGP) macromolecular assembly from Acacia Senegal gum. Building block 2 was built by a 

linear arrangement of five building blocks 1. (right) Three-dimensional model of AGP made 

of the assembly of 6 building blocks 1 and 8 building blocks 2 by covalent and/or non-

covalent interactions. The elementary building blocks were constructed taking into 

consideration the quasi-palindromic nature of polypeptide backbones and as a consequence 

the overall symmetry, or self-ordering, of carbohydrate moieties and arabinoside oligomers 

attached to it. The self-similarity approach was then used to build the AGP macromolecular 

assembly from the elementary building blocks 1 and 2 (adapted from Renard et al., 2014).

Figure 3: Effect of concentration on the relative newtonian viscosity (/0) of Acacia senegal 

gum dispersions. Data were taken from Taft and Malm (1931), Riddell and Davies (1931), 

Briggs (1941), Schleif et al. (1951), Williams et al. (1990), Goycoolea et al. (1995), Mothe and 

Rao (1999), Sanchez et al. (2002) and Li et al. 2009. Gum samples were from different 

geographical origins. Measurements corresponded to different pH (4-8), temperature (20-

30°C) and ionic strengths. Solid line (this paper), dashed lines (Gooycoolea et al., 1995) and 

dot lines (Gaïa et al., 1981) are exponential fits of data (unpublished data). 

Figure 4: Phase diagram of Acacia senegal gum-ethanol-water system determined by the 

cloud point method (pH 5 citrate buffer, 25°C). Appearance of turbidity was checked by UV-

Vis spectroscopy. The solubility curve appears in red and delineates the monophasic (I) from 

the biphasic (II) region. Inset : Micrographs of Acacia senegal gum-ethanol-water system 

with concentrations of 45% ethanol and 20 g.L-1 gum. The arrow in the phase diagram 

indicates the composition of the mixture. Scale bar: 5 m (unpublished data).
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