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Abstract	16	

Silicon (Si) is the second most abundant element of the Earth’s crust, and its terrestrial cycle 17	

depends on soil, vegetation, and human activities. The spatial extent of terrestrial Si 18	

perturbation is poorly documented since maps of Si concentration in soils are rare.  In 19	

addition, Si content is rarely measured in non-paddy soil databases. Here we demonstrate that 20	

pedotransfer functions based on either pedological attributes (particle size fraction, pH, 21	

organic carbon, cation exchange capacity, calcium carbonate and parent material) or mid 22	

infrared spectra (MIRS) can be used to accurately predict total Si concentration. In this 23	
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research, we utilised a unique dataset from the French monitoring network of soil quality 24	

(RMQS - Réseau de Mesures de la Qualité des Sols) database. Pedotransfer functions were 25	

built using a regression tree model on a subset of the data for which total Si concentration was 26	

measured. To compare the relative performance of the models obtained for the two different 27	

sources of data, a suite of performance indicators were calculated. Our results showed that 28	

PTF based on MIR spectra produces highly accurate and precise estimates of the total Si 29	

concentration for French soils. The pedological PTF is less accurate, but still provides a good 30	

estimation of the Si concentration. The pedological PTF provides an alternative method when 31	

only basic soil data are available, and an approximate estimation of Si concentrations is 32	

sufficient. These PTFs can be readily applied at the European scale except on a few soil 33	

groups not represented in France. 34	

keywords	35	

Silicon, silica, pedotransfer function, diffuse reflectance, FTIR, mid-infrared spectra,   36	

regression tree, soil mointoring. 37	
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1- Introduction		39	

Silicon (Si) is the second most abundant element of the Earth’s crust, after oxygen, with an 40	

average mass concentration of 28% (Wedepohl, 1995). The SiO4 tetrahedron is the elemental 41	

brick of soil minerals which constitutes the basic structure of Si in nature from solid (silicates) 42	

to soluble (silicic acid) states. Through weathering of primary minerals, Si is released into soil 43	

solution where it is either recombined with other elements to form secondary minerals, 44	

adsorbed on oxides surfaces, absorbed by plants or exported to groundwater and rivers. 45	

Indeed, despite being considered as a non-essential element, Si is encountered in most 46	

terrestrial plants with concentrations highly variable, ranging from less than 0.2 to more than 47	

10 % dry weight (Ma and Takahashi, 2002). Meanwhile, plant Si is a significant pool of the 48	

global Si cycle as evidenced from the total annual biogenic Si retention in terrestrial plants, 49	

which is estimated in the same order of magnitude as the Si fixed annually by diatoms in the 50	

ocean (Carey and Fulweiler, 2012; Loucaides et al., 2010). The terrestrial Si cycle notably 51	

depends on the type of vegetation (Alexandre et al., 1997; Bartoli, 1983; Blecker et al., 2006; 52	

Cornelis et al., 2010) and is suggested to be perturbed by human activities through urban 53	

activities, agriculture and deforestation (Conley et al., 2008; Struyf et al., 2010; Vandevenne 54	

et al., 2012). However, the extent of this perturbation is not well documented. One approach 55	

to address this question is a spatial analysis at the territory scale. Soil Si maps are rare to our 56	

knowledge, with the notable exception of the Si map for European soils with one site every 57	

2500 km² (De Vos et al., 2006; Reimann et al., 2014). Soil silica content is mostly measured 58	

in rice-growing areas (Minasny et al., 2016), but rarely measured in non-paddy soil databases, 59	

especially in most of the national soil monitoring networks of Europe (Arrouays et al., 2008; 60	

Imrie et al., 2008; Morvan et al., 2008). The possible reasons are (1) the cost of the 61	

measurement and (2) little attention paid to Si in soil and agriculture until now. 62	
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In the literature, several soil characteristics, generally hydraulic properties or bulk density, 63	

(Baldwin et al., 2017; Van Looy et al., 2017; Wösten et al., 1999), among others), have been 64	

estimated by predictive functions based on pedological characteristics (organic matter, 65	

particle size distribution etc.). This is commonly known as pedotransfer function (PTFs).  66	

Recently, infrared spectroscopy has been proposed as a rapid and cost-effective alternative of 67	

conventional chemical analysis as one spectrum can be used to derive several soil parameters 68	

(Bertrand et al., 2002; Janik et al., 1998; McCarty et al., 2002; Minasny et al., 2009; Soriano-69	

Disla et al., 2014, 2013; Viscarra Rossel et al., 2006). In their review, Viscarra Rossel et al. 70	

(2006) demonstrated mid infrared spectra (MIRS) produce better accuracy over near infrared 71	

spectra (NIRS) for a large number of soils properties. However, that review did not show any 72	

study that predicts Si from infrared spectra. Nevertheless, Janik et al. (1995) showed that soils 73	

dominated by quartz, which is made up of SiO2, has a peak around 1700-2000 cm-1. Other 74	

studies showed that MIRS presented good predictions of oxalate extractable Si, a specific 75	

form of Si used to assess the degree of soil weathering (Bertrand et al., 2002; Minasny et al., 76	

2009). These findings suggest that MIRS could be used for prediction of total Si as recently 77	

demonstrated by Mohanty et al. (2016). 78	

In this study, we developed and compared pedotransfer functions of total topsoil Si 79	

concentrations based on either pedological data (particle size fraction, pH, organic carbon, 80	

cation exchange capacity, calcium carbonate and parent material) or MIRS. These data were 81	

derived from the French monitoring network of soil quality database, RMQS (Réseau de 82	

Mesures de la Qualité des Sols (Arrouays et al., 2003; Jolivet et al., 2006). Pedotransfer 83	

functions were built on the RMQS data subset on which total Si concentrations were 84	

measured. Subsequently, the PTFs were applied to the whole RMQS dataset to predict topsoil 85	

Si concentration for the whole of France.		 	86	
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2- Materials	and	methods	87	

2.1-	Soil	samples	88	

2.1.1-	The	RMQS	database	89	

The RMQS monitoring network encompasses 2088 sites sampled following a 16 × 16 km² 90	

regular grid across the French metropolitan territory (550 000km²). At each site, land-use, 91	

climate, soil type and parent material were described. Twenty five individual cores were 92	

sampled, from the topsoil (0-30 cm), using an unaligned sampling design within a 20 × 20 m 93	

area (Jolivet et al., 2006). Core samples were then bulked. The resulting composite samples 94	

were air-dried and sieved to 2 mm before analysis. Particle-size distribution, pH in water, 95	

organic carbon (OC), cation exchange capacity (CEC), calcium carbonate (CaCO₃) were 96	

analyzed according to international (ISO) or French (NF) standardized methods by the 97	

accredited Soil Analysis Laboratory of INRA (Arras, France) (Table 1). This study is based 98	

on the analytical results of the samples collected from 2002 to 2009 (first sampling campaign) 99	

for the previous characteristics. 100	

2.1.2-	MIRS	data	101	

MIRS were also acquired on RMQS samples (Grinand et al., 2012). 0.5-g aliquots of < 0.2-102	

mm ground sample were scanned from 4000 to 400 cm-1 (i.e., 2500-25,000 nm) at 4 cm-1 103	

resolution using a Nicolet 6700 Diffusive Reflectance Fourier Transform Spectrophotometer 104	

(Thermo Fisher Scientific Instruments, Madison, WI, USA). Then, 32 scans per sample were 105	

acquired and averaged. Spectra were recorded as absorbance.  106	

MIRS were pre-processed, before statistical modelling to reduce baseline variations, enhance 107	

spectral features, reduce the particle-size scattering effect, remove linear or curvilinear trends 108	

of each spectrum, or remove additive or multiplicative signal effects (Boysworth and Booksh, 109	
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2008). The pre-processing routine consisted of an 11 bands window smoothing Savitzky–110	

Golay filter (Savitzky and Golay, 1964) using the	sgolayfilt function from the signal R 111	

package (Ligges et al., 2015) followed by a standard normal variate (SNV, Barnes et al., 112	

1989) transform.   113	

2.1.3-	Selection	of	samples	for	total	Si	analysis	114	

To develop the pedotransfer functions, a subset of 673 samples from the 2088 RMQS 115	

samples, called hereafter the Si dataset, were analyzed for total Si concentration. The subset 116	

sites were selected using the following criteria: (1) one site out of four from the original grid 117	

excluding Corsica, and (2) 160 sites randomly selected from the remaining sites (Figure 1). 118	

This sub-sampling of the grid preserves the systematic grid sampling. This gridsampling 119	

method was established by (Brus and Saby, 2016) as a flexible design for statistical soil 120	

surveys leading to relatively accurate estimates of the statistical distribution of spatial 121	

parameters. Total Si concentration was measured on air-dried, less than 2 mm samples by 122	

inductively coupled plasma atomic emission spectrometry (ICP-AES) after sodium peroxide 123	

fusion of the samples.   124	

2.2-	Total	Si	modelling	and	predictions	125	

2.2.1-	Pedotransfer	functions	(PTFs)		126	

Pedotransfer functions predicting total Si content was established using two different types of 127	

soil variables as inputs:  128	

(1) basic pedological attributes including particle size fraction, pH, organic carbon, cation 129	

exchange capacity, calcium carbonate and parent material, or 130	

(2) pre-processed MIRS data,  131	
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These PTFs are termed as pedological PTF and MIRS PTF hereafter. The variables of the 132	

pedological PTF were chosen from the most common soil analytical variables in soil 133	

databases. For that reason, parent material was also included, while soil type was not as it had 134	

only a limited influence in the model (data not shown).  135	

2.2.2-	Statistical	modelling	approach	136	

Regression procedure: Quantitative prediction of total Si concentrations by the soil 137	

properties and the MIRS were obtained using Cubist, a type of regression tree model 138	

(Quinlan, 1992). The Cubist model is a form of regression rules that build regression trees 139	

with final nodes containing linear models instead of discrete values. Cubist creates 140	

interpretable rules that describe the relationships between predictive variables (in this case 141	

spectral bands or soil properties) and the variable of interest (Si). Minasny et al. (2009) and 142	

Minasny and McBratney (2008) demonstrated that this approach could provide higher 143	

accuracy than the partial-least-squares (PLS) approach, commonly used in chemometrics. 144	

Moreover, this type of approach is flexible as it can handle both quantitative and qualitative 145	

variables as well as spectral data, which allows having a unique approach for both PTFs, and 146	

thus their results can be fairly compared. 147	

To optimize the Cubist model, two parameters can be adjusted: the number of model trees as 148	

ensembles (committees) and the number of nearest–neighbors to adjust the prediction of the 149	

rules (neighbors). To optimize the model parameters, we  used the train function in the caret 150	

R package. The tuning parameter 'neighbors' was held constant at a value of zero to avoid 151	

shortcomings in the interpretability of the rules by local averaging. The optimal numbers of 152	

‘committees’ was found to be 5 for the two PTFs. 153	

Calibration and evaluation steps: The modelling approach is summarized in Figure 2. we 154	

used a leave p out cross-validation approach combined with a bootstrap step (James et al., 155	

2013). The p cross-validation leaves out a p proportion of samples for validation. We used a 156	
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75%-25% split for calibration and validation respectively, and this procedure was repeated 10 157	

times. Cross-validation allows a more robust assessment of the quality of the prediction. The 158	

subdivision was performed using the conditioned Latin Hypercube Sampling (cLHS) method 159	

(Minasny and McBratney, 2006). This method is a stratified random procedure that provides 160	

an efficient way of sampling variables from their multivariate distributions. The bootstrap step 161	

involved simulating 100 datasets by random sampling with replacement from 95% of the 162	

calibration dataset (formed at the cross-validation step). This whole procedure generated 100 163	

Cubist models in the calibration procedure. These outcomes were used to build the 164	

distribution of the prediction. The mean prediction could be obtained from the average of the 165	

100 bootstrapped models.  166	

Software: Our modelling approach involves a large number of model calibrations and parallel 167	

processing was used to handle the computational load. Parallel processing was implemented 168	

in R using the packages foreach (Calaway et al., 2017b) and doParrallel (Calaway et al., 169	

2017a). All data analyses were performed using the R statistical environment (R core Team, 170	

2017) for descriptive statistics, spectrum pre-processing and model building. We used the 171	

Cubist implementation from the Cubist package (Kuhn et al., 2016), the cLHS function 172	

implemented in clhs package (Roudier, 2011). 173	

2.3-	Assessments	and	interpretations	174	

2.3.1-	Representativeness	assessment	175	

Before evaluating the prediction ability of the two PTFs, we first checked that the Si dataset 176	

used to develop the PTFs was representative of the whole RMQS dataset. Graphical and 177	

numerical comparison of the statistical distribution of the basic pedological data, and the MIR 178	

spectra were performed. The Wilcoxon test for the quantitative soil attributes was also 179	

performed to compare the two datasets (the Si dataset and the RMQS database). In addition, 180	
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principal component analyses (PCA) was performed on the pedological attribute as well as the 181	

MIRS variables. Using the PCA, samples with or without Si measurements can be readily 182	

compared.  The PCA allows comparison of the multivariate variables, while the distribution 183	

analyses only consider one soil variable at a time. 184	

	185	

2.3.2-	Accuracy	assessment	186	

To compare the relative performance of the models obtained for the two PTFs, three 187	

conventional performance indicators were calculated: the coefficient of determination (R²), 188	

the root mean square error (RMSE, also known as standard error of prediction, SEP) and the 189	

bias, which is the mean residual of the model. In addition, we took into account the 190	

probability distribution of model predictions using the continuous rank probability score 191	

average (CRPS, equation 6). The CRPS represents the closeness between the prediction 192	

distribution and the corresponding observations (Gneiting et al., 2007). This score is 193	

commonly used in meteorological forecasts as a verification tool for (probabilistic) forecast 194	

systems (Hersbach, 2000; Trinh et al., 2013). The metric is calculated using: 195	

𝐶𝑅𝑃𝑆 = 	 𝐵𝑆 𝑦 	𝑑𝑦0
10 	,   (6) 196	

𝐵𝑆(𝑦) = 	 4
5

	{ 𝐹8 𝑦 − 𝟙	 𝑥8 ≤ 𝑦 =5
8>4 	, (7) 197	

where 𝐵𝑆(𝑦) denotes the Brier score (Brier, 1950) for probability forecasts of the binary 198	

event at the threshold value 𝑦 ∈ ℝ , 𝑥 is the observation and 𝑦 is the model prediction, 𝑛	 the 199	

number of samples, 𝐹 is the cumulative distribution function (CDF) of X, a random variable, 200	

such as 𝐹 𝑦 = 𝑃 𝑋	 ≤ 𝑦  and 𝟙 is the Heaviside step function. This function is a 201	

discontinuous function where the value is zero for negative argument and unity for positive 202	

argument. 203	

The CRPS is a distance criterion, which is a positive value and should be close to 0. The 204	

prediction is expressed in terms of a probability distribution rather than a single value. The 205	
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CRPS compares the cumulative probability distribution of the predicted value to the observed 206	

value. In our case, we only took into account the uncertainty of the prediction and assumed 207	

the uncertainty of the observation is small. The probability distribution of our observation is 208	

set to  equal to 1 for the observed value and null elsewhere. As a distance, the CRPS can be 209	

linked to the mean absolute error used in the deterministic prediction. It uses the information 210	

provided by the probabilistic prediction instead of just using the mean of the median value. 211	

We used the crps function implemented in the verification package (Laboratory NCAR-212	

Research Applications, 2015). 213	

 214	

2.3.3-	The	importance	of	the	predictors	in	the	model	215	

In order to interpret the PTFs results, we extracted and computed the variable of importance 216	

from the Cubist rulesets. The variable of importance is computed as the percentage of times 217	

each variable was used in a rule condition and/or a linear model. Following our calibration 218	

and validation step, we calculated the average importance of predictors over the 100 Cubist 219	

models produced by bootstrap and then over the 10 iterations of the cross-validation step for 220	

each PTF. Because it is an average value, the sum of the variables of importance do not sum 221	

up to 100.	  222	
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3- Results	&	Discussion		223	

3.1-	Representativeness	of	the	Si	dataset	compared	to	the	whole	RMQS	224	

dataset		225	

Measured Si concentrations range from 22.81 to 455.8 g kg⁻¹ over the Si dataset with a 226	

median equal to 327.2 g kg-1 (Figure 3). Soils with low total Si concentrations (under 227	

124 g kg⁻¹, the statistical threshold for outliers in this dataset) were poorly represented (17 228	

over 674; Figure 3). The corresponding samples originated from soils developed in 229	

sedimentary parent materials, mostly calcareous with a carbonate concentration of greater or 230	

equal to 395 g kg⁻¹.  231	

The parent material distribution of both the Si dataset (n=673) and the RMQS set (n= 2088) 232	

are very similar (Figure 4). For the pedological attributes, the empirical density estimates of 233	

soil properties were well represented, both in the Si dataset and the RMQS (Figure 5). The 234	

summary statistics of the pedological attributes were reported in Table 2. The empirical 235	

density functions for both datasets overlapped. This is supported by the Wilcoxon test which 236	

showed no significant difference in the distribution for the considered attributes (p-values 237	

recorded in Table 2). Considering the whole dataset, the PCAs showed a good overlap 238	

between the RMQS sites with and without Si measurement (Figure 6). Therefore, we can 239	

consider the Si dataset to be representative of the whole RMQS.  240	

 241	

3.2-	Total	Si	prediction	by	the	PTFs	242	

The validation of the MIRS PTF estimating Si content was excellent with an R² of 0.96. 243	

Estimates from this PTF were unbiased, and their average RMSE is 15.31 g kg-1 (Table 3). 244	

The average CRPS was very close to the RMSE value. The validation of the pedological PTF 245	
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was also very good with an R² of 0.87. Estimates from the pedological PTF were slightly 246	

biased, with an average RMSE of 26.48 g kg-1. Finally, the average CRPS were larger 247	

indicating higher prediction uncertainty. The results of leave p out cross-validation were also 248	

used to compute indicators of the variability of the performance indicators (Table 3). The 249	

standard deviation of these indicators for the MIRS PTF was small. 250	

To better figure out the difference between the accuracy of the two PTFs, we plotted the 251	

predicted versus measured Si concentrations for one iteration of the cross-validation steps 252	

(Figure 7). For the MIRS PTF, the prediction and analytical uncertainties of the data are of the 253	

same order of magnitude (Figure 7a) as suggested by the RMSE values. This means that this 254	

PTF gives good predictions, and close to analytical measurements. In contrast, the pedological 255	

PTF presents a larger prediction uncertainty than the MIRS PTF, and it also has larger 256	

uncertainty compared to the analytical uncertainty (Figure 7b) as shown by RMSE results. In 257	

addition, total Si concentration tends to be over-estimated by the pedological PTF at low 258	

concentrations (≤ 270 g kg⁻¹) and under-estimated at high concentrations (≥ 370 g kg⁻¹). This 259	

is further confirmed by the coefficients of the linear regression between observed and 260	

predicted values of the pedological PTF, with 67.18 for the intercept and 0.80 for the slope. In 261	

comparison, the MIRS PTF has an intercept of 22 g kg⁻¹ and slope of 0.07. The bias maybe 262	

due to the low representation in the dataset of samples having Si concentration lower than 263	

12.5 %, as discussed earlier. The bias can also come from sites which were over predicted 264	

where the Si concentrations are between 200 and 300 g kg⁻¹.  265	

All in all, the MIRS PTF tends to show an accuracy as good as the chemical analysis when 266	

considering both the prediction and analytical uncertainties. However, as predictions were 267	

made on the basis of analytical measurements, the prediction uncertainty does not only come 268	

from the model accuracy but also from the uncertainty of analytical measurements (Janik et 269	

al., 1998). In our case, the analytical uncertainty was not taken into account in the prediction 270	
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uncertainty calculation, as they were not always available. Despite this, the obtained PTFs 271	

show an exceptional accuracy that is rarely obtained in the PTFs literature (Minasny et al., 272	

2009; Viscarra Rossel et al., 2006).  Viscarra Rossel et al. (2006) reported the accuracy of 273	

MIRS PTFs for different soil properties from the literature have R² values ranging from 0.07 274	

to 0.98, where one third of the cases an R² value larger or equal to 0.90 was obtained. 275	

Minasny et al. (2009) built MIRS PTFs for predicting soil properties on three different 276	

databases and reported R² values from 0.0 for total S to 0.92 for CEC and OC. They 277	

concluded that basic soil organic and mineral constituents, as well as properties that are 278	

related to the mineral and organic components could be well predicted. This study confirms 279	

the hypothesis. PTFs based on pedological properties are generally used to predict 280	

hydrological properties that are difficult to measure (e.g., Baldwin et al., 2017; Wösten et al., 281	

1999, among others) but seldom developed to predict chemical characteristics.  282	

3.3-	The	Pedological	significance	of	the	calibrated	PTFs	283	

Regarding pedological significance, the MIRS PTF uses mostly combination-overtones bands 284	

of quartz ranging from 1800 to 2000 cm-1 (Table 4), to predict total Si concentration, which is 285	

expected, as quartz	is a mineral composed of Si and oxygen (O) atoms (SiO2) (Figure 8a). 286	

This region	of the spectrum presents the peak with the most important weight (>80%) around 287	

2000 cm-1 followed by two other peaks around 1800 and 1900 cm-1 (> 40%, Figure 8b, Table 288	

4). The carbonate concentration also has a role in the MIRS PTF, with carbonates bands 289	

ranging from 2400 to 3100 cm-1, which correspond to CaCO3 bonds (Table 4). It exhibits 290	

three peaks of average weight > 20%, one around 2500 and two around 3000 cm-1 (Figure 8b). 291	

As shown in Figure 8a, samples with low Si concentration contain carbonates while samples 292	

with high Si concentration do not. This link is due to the absence of Si in carbonates (Table 293	

4). Bands related to Si-O bond ranging from 1400 to 400 cm-1 also presents a noticeable 294	

weight in the PTF (Figure 8b).  295	
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For the pedological PTF, the two most important predictors are the organic carbon and the 296	

carbonate concentrations, with an average weight of 78.6% and 73.6% respectively. 297	

Carbonates as discussed for the MIRS PTF act as a diluent for Si, which is also the case of 298	

organic carbon. No significant organic carbon contribution was observed in the MIRS PTF 299	

probably because, in MIRS, "organic carbon cannot be identified with clearly separated peaks 300	

but as a whole spectral region with overlapping bands", as stated by Grinand et al. (2012). In 301	

the pedological PTF, an important influence of the sand fraction could be expected as a 302	

positive correlation between total Si and both fine and coarse sand is observed (Kendall’s 303	

correlation coefficient: tau = 0.17 and p-value = 3.585 10-11; tau = 0.11 and p-value = 3.108 304	

10-5, respectively). Indeed, these two variables have an average weight of 37% in the 305	

pedological PTF (Figure 9). In addition, the clay fraction also has an important weight in the 306	

pedological PTF (60%) with a negative correlation between the total Si concentration and the 307	

clay fraction (Kendall’s correlation coefficient: tau = - 0.46 and p-value < 2.2e-16).  308	

As a conclusion, the two PTFs were mainly underlined by the same processes: dilution of the 309	

Si concentration by carbonates, organic carbon and possibly the clay fraction to a lesser extent 310	

and concentration due to the presence of quartz mainly in the sand fractions.  311	

3.4-	Domain	of	potential	application	of	the	developed	PTFs		312	

We compared pedological PTF predictions of total Si concentration for the non-Si analysed 313	

RMQS sites to that predicted by the MIRS PTF (Figure 10). The relative difference of 314	

predictions between the two PTFs is small, 90% of the time, the difference between the 2 315	

PTFS is less than 20%. This result highlights the consistency of the two PTFs and confirms 316	

that despite less accurate, the pedological PTF gives a reasonable estimation of the soil Si 317	

concentration for the whole dataset. The soil observations of this study came from a 318	

systematic probability sampling which leads to good spatial coverage, i.e. the sites are 319	

uniformly spread over France. This design proves to be efficient in providing accurate 320	
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estimates of means over the whole area and can be used to generalize the results for the whole 321	

area of France  (Brus and Saby, 2016).  322	

We further investigated if the domain of application of our PTFs at the European scale by 323	

comparing the Si concentrations statistical distribution of the Si measurements analytically 324	

measured from the RMQS to that of the Geochemical Mapping of Agricultural Soils 325	

(GEMAS) dataset (De Vos et al., 2006; Reimann et al., 2014). The GEMAS study provided a 326	

few soil Si data over the French territory with one site every 2500 km², i.e. 214 sites for 327	

France. Comparing those two distributions for France showed 1) a slight over-estimation of 328	

the occurrence of soils with concentrations around 300 g kg⁻¹ ; 2) an under-estimation of soils 329	

with concentrations around 400 g kg⁻¹ ; 3) a slight smaller median of the French soil Si 330	

concentrations (320.7 g kg⁻¹). Nevertheless, the Mann and Whitney test shows no significant 331	

difference between the two datasets (p-value = 0.5757). For the European territory, the 332	

comparison is shown in Figure 11. The two datasets cover the same range of Si concentration 333	

with an over-representation of the soils with Si concentration ranging from 350 to 400 g kg-1 334	

in French compare to other European soils, resulting in contrasted median Si-concentrations 335	

of 327.2 g kg-1 and 313.9 g kg⁻¹ respectively. When looking at the Si average, the Mann and 336	

Whitney test also shows a small significant difference between the two datasets (0.05 > p-337	

value = 0.02273 > 0.01). This result was expected since France is one of the countries 338	

exhibiting the largest soil diversity in the world (Minasny et al., 2010). Thus, the established 339	

PTFs can be applied at the Europeans scale to predict total soil Si concentrations at a higher 340	

spatial density than that provided by the GEMAS study with the exception of some soil types 341	

that are not represented in France, such as Chernozems, Kasternozem, Solonetz.  342	

Finally, to better define the application range of our PTFs outside of Europe, future users can 343	

determine the appropriate domain of application of a specific PTF to a new dataset using 344	

distance metrics, such as the one presented by Tranter et al. (2009).	 	345	
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4- Conclusions	346	

We developed PTFs based on either MIRS or pedological data to estimate the topsoil total Si 347	

concentration. Both PTFs provide accurate estimations of the total Si concentration for French 348	

soils. These PTFs are underlined by the link between Si and quartz, organic matter, and 349	

carbonate contents. The PTF based on MIRS data produces a highly accurate and precise 350	

estimates. Since the acquisition of MIRS data allows the estimation of a range of soil 351	

properties, such as particle size fraction, major elements or chemical properties that are 352	

related to surface solid characteristics like CEC, the use of MIRS PTF represents a powerful 353	

tool for populating soil databases. The pedological PTF is less accurate, but still provides a 354	

reasonable estimation of the Si concentration for French soils. It is an alternative method 355	

when only pedological data are available and an approximate estimation of Si concentrations 356	

is sufficient. This PTF can be applied to databases of legacy soil data to provide an initial 357	

estimate of Si distribution. 358	

Both PTFs can be readily applied at the European scale with the possible exclusion of a few 359	

soil groups not represented in France. For these soil types, this study provides a pathway for 360	

the development of new calibration PTFs procedure to local data. 361	

This modelling approach yields very robust results with an adaptable method. Overall, this 362	

work provides the first approach to estimate nation-wide topsoil total Si concentration and 363	

opens the way for further works on Si in soils.  364	
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- Figure 1: Location of the sampling sites of the French monitoring network of soil 540	

quality (RMQS).	Black	triangles	represent	the	sites	for	which	Si	measurements	were	541	

available. 542	

- Figure 2: Schematic diagram of the modelling procedure.  543	

- Figure 3: Distribution of the Si concentrations in the Si dataset: a- histogram; b- 544	

boxplot. The dashed grey line represents the Si overall	mean . 545	

- Figure 4: Percentage	of	samples	in	different	parent material classes for both the 546	

French monitoring network of soil quality (RMQS) database and the Si dataset.  547	

- Figure 5: Comparison of the empirical density estimates of the pedological properties 548	

computed for all the sites (2088) of the French soil monitoring network (RMQS) and 549	

those of the Si dataset (673 sample). 550	

- Figure 6: Principal component analysis of the whole dataset (2088 sampling sites) for 551	

two set of variables: Mid-infrared spectra (MIRS) (a and c) and pedological attributes 552	

(b and d). Bivariate plot of the scores of PCs 1 and 2 (a  and b). Most correlated MIRS 553	

band are plotted in a. Score plot of first two components (c and d) (black points 554	

correspond to the extrapolated dataset from the French soil monitoring network 555	

(RMQS) and grey points to the Si dataset).  556	

- Figure 7: Predicted versus measured Si concentrations (in g kg-1) for the first cross 557	

validation replication of (a) the mid-infrared spectra (MIRS) and (b) the pedological 558	

pedotransfer Functions (PTFs). In black, the one to one line and in red, the fitted 559	

regression line. Black vertical error bars represent the prediction’s uncertainty and 560	

blue horizontal error bars represent the analytical uncertainty.  561	
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- Figure 8:	(a)	Mid-infrared	reflectance	spectra	(MIRS)	of	two	sites	randomly	selected	562	

among	those with low Si concentrations (in grey) and high Si concentration (in black) 563	

respectively; (b) average importance based on cubist models of spectral region for the 564	

prediction of total Si concentration. Most important wavelengths (vertical lines) are 565	

identified in Table 4. 566	

- Figure 9: Average	importance	based	on	cubist	model	of	the	variables	used	for	the	567	

prediction	of	total	Si	concentration	by	pedological	attributes. 568	

- Figure 10: Scatterplot of the total Si concentration (in g kg-1) predicted by the 569	

pedological PedoTransfer Function (PTF) versus those predicted by the mid-infrared 570	

spectra PTF. The samples correspond to the non-Si analysed sites of the French 571	

monitoring network of soil quality (RMQS) (1407 sites). 572	

- Figure 11: Empirical density estimate of Si concentrations obtained for the sites of the 573	

French monitoring network of soil quality (RMQS) (this study) to those obtained for 574	

French and European sites in GEMAS (Reimann et al., 2014). Vertical lines represent 575	

the median values: 327.2 g kg-¹, 320.7 g kg-¹ and 313.9 g kg-¹ respectively.  576	
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Table 4 : Analytical methods employed for the selected soil properties 617	
 618	

Soil properties Method Source 

Clay, fine silt, coarse silt, fine 
sand, coarse sand Robinson’s pipette after water sieving (NF X 31-107) RMQS 

CEC Cobalthexammine extraction (NF X 31-130) RMQS 

pH Water (ISO 10390) RMQS 

Organic carbon Dry combustion (NF ISO 10694) RMQS 

Carbonates Volumetric method (NF X 31-106) RMQS 

Total Si ICP-AES after sodium peroxide fusion This study 

MIR Sectra Diffusive Reflectance Fourier Transform 
Spectrophotometer from 4000 to 400 cm-1 

(Grinand et al., 2012) 

 619	
  620	
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 621	
 622	

 623	
  624	

Table 5: Summary statistics of pedological attributes for the two datasets: the RMQS and Si dataset. 

Properties Units RMQS, n=2088 Si dataset, n=673 Wilcox-test 
p-value range Median range Median 

Clay g kg-¹ 2 - 819 211 5 - 819 212 0.65 
Fine silt g kg-¹ 1 - 539 231 1 - 539 231 0.99 
Coarse silt g kg-¹ 1 - 551 146 1 - 518 144 0.81 
Fine sand g kg-¹ 3 - 722 115 4 - 677 118 0.43 
Coarse sand g kg-¹ 1 - 970 140 2 - 966 137 0.83 
CEC cmol kg-¹ 0.3 - 64 10 0.5 - 60 10 0.36 
pH - 3.7 - 9.2 6.2 3.8 - 8.9 6.2 0.61 
OC g kg-¹ 0.6 - 243 19.3 2.6 - 243 18.8 0.36 
carbonates g kg-¹ 0.5 - 866 0.5 0.5 - 866 0.5 0.57 
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Table 6: Summary statistics of performance indicators of the cross-validation for the two PTF models. RMSE, bias 625	
and CRPS are in g kg⁻¹. 626	

 627	
	628	
	 	629	

Model statistics R2      RMSE      Bias      CRPS 

pedological 

Min. 0.85   23.21   0.43  53.47   
Max. 0.90   28.57   5.63   64.88   

1st Qu. 0.86   25.50   1.19  55.62   
3rd Qu. 0.87   27.39   3.66  60.07   
Median 0.86  26.95   1.94 57.68   
Mean 0.87   26.48   2.37 58.04   
Var. 0.2 10-3 2.47 3.12 13.16 

 sd. 0.01 1.57 1.77 3.63 

MIRS 

Min. 0.94  11.41   -0.12 17.43   
Max. 0.98   17.67    3.71 29.65   

1st Qu. 0.95 14.21    0.20  19.74   
3rd Qu. 0.96   17.07    2.06  24.59   
Median 0.95  16.04    0.64 21.25   
Mean 0.96   15.31    1.15   22.36   
Var. 0.2 10-3 4.70 1.57 14.32 

 sd. 0.01 2.17 1.25 3.78 
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Table 7:	Important wavelengths in MIRS along with reported peaks and their assignments. 630	

 631	
 Reported peaks 
(wavenumber in 

cm−1) 

MIRS region from 
reference (wavenumber 

in cm−1) 

Soil constituent and 
Assignment Reference 

567 600-150 clay : Si-O, Al-O 
bending Vaculíková and Plevová, 2005 

721 727-713 carbonates : CO₃  Vaculíková and Plevová, 2005; 
Nguyen et al., 1991 

1107 1120-1000  clay : O-Si-O stretching Saikia and Parthasarathy, 2010; 
Madejová, 2003 

1300-1338 1360-1347 clay : Al-O as Si cage 
(TO₄ ) Saikia and Parthasarathy, 2010 

1801 
2000-1650 quartz : O-Si-O 

stretching 
Bertrand et al., 2002;  Janik et al., 

1998; Nguyen et al., 1991 1878 
1994 

2534 2600-2500 
carbonates : CaCO₃  

overtone and 
combinaison vibrations 

D’Acqui et al., 2010; Du and Zhou, 
2009; Vaculíková and Plevová, 

2005; Bertrand et al., 2002; 
McCarty et al., 2002; Nguyen et al., 

1991 

2881 2880 
carbonates : CaCO₃  

overtone and 
combinaison vibrations 

Vaculíková and Plevová, 2005; 
Bertrand et al., 2002; McCarty et 

al., 2002; Nguyen et al., 1991 

2997 3000-2900 
carbonates : CaCO₃  

overtone and 
combinaison vibrations 

Vaculíková and Plevová, 2005; 
McCarty et al., 2002; Nguyen et al., 

1991 

3730 3697 (1), 3750-3400 (2) clay : Al---O-H 
stretching 

Saikia and Parthasarathy, 2010 (1);  
Vaculíková and Plevová, 2005 (2); 

Nguyen et al., 1991 

	632	
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