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Genome-enabled predictions for fruit
weight and quality from repeated records
in European peach progenies
Filippo Biscarini1,8†, Nelson Nazzicari1,2†, Marco Bink3,10, Pere Arús4, Maria José Aranzana4,
Ignazio Verde5, Sabrina Micali5, Thierry Pascal6, Benedicte Quilot-Turion6, Patrick Lambert7,
Cassia da Silva Linge7, Igor Pacheco7,9, Daniele Bassi7, Alessandra Stella1,8 and Laura Rossini1,7*

Abstract

Background: Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the
agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if
predictions show higher levels of accuracy compared to phenotypic selection. The available IPSC 9K SNP array V1
allows standardized and highly reliable genotyping, preparing the ground for GS in peach.
Results: A repeatability model (multiple records per individual plant) for genome-enabled predictions in eleven
European peach populations is presented. The analysis included 1147 individuals derived from both commercial and
non-commercial peach or peach-related accessions. Considered traits were average fruit weight (FW), sugar content
(SC) and titratable acidity (TA). Plants were genotyped with the 9K IPSC array, grown in three countries (France, Italy,
Spain) and phenotyped for 3–5 years. An analysis of imputation accuracy of missing genotypic data was conducted
using the software Beagle, showing that two of the eleven populations were highly sensitive to increasing levels of
missing data. The regression model produced, for each trait and each population, estimates of heritability (FW:0.35,
SC:0.48, TA:0.53, on average) and repeatability (FW:0.56, SC:0.63, TA:0.62, on average). Predictive ability was estimated
in a five-fold cross validation scheme within population as the correlation of true and predicted phenotypes. Results
differed by populations and traits, but predictive abilities were in general high (FW:0.60, SC:0.72, TA:0.65, on average).
Conclusions: This study assessed the feasibility of Genomic Selection in peach for highly polygenic traits linked to
yield and fruit quality. The accuracy of imputing missing genotypes was as high as 96%, and the genomic predictive
ability was on average 0.65, but could be as high as 0.84 for fruit weight or 0.83 for titratable acidity. The estimated
repeatability may prove very useful in the management of the typical long cycles involved in peach productions. All
together, these results are very promising for the application of genomic selection to peach breeding programmes.

Keywords: Peach (Prunus persica), Genome-enabled predictions, Fruit weight, Sugar content, Titratable acidity,
Genotype imputation, Repeatability model

Background
Peach (Prunus persica L. Batsch) has been bred and cul-
tivated for more than 4 000 years [1] and is both an
important crop and a model species for the Rosaceae fam-
ily [2]. The total world peach production was 21.6 million
tonnes in 2014, of which 18.5% (4 million tonnes) from
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Europe [3]. Likemost fruit trees, peach is a perennial crop.
Because of their long juvenile phase, breeding perennial
plants is a complex task that requires careful planning
and precise economic evaluations [4]. In addition, vari-
eties need to be tested in multiple locations over multiple
years to assess their adaptation to the geographical envi-
ronment and their production potential. The generation
interval in current peach breeding programmes can be up
to 5–7 years [5], and this limits the genetic gain potentially
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achievable per unit of time. An additional complication
is that several relevant phenotypes are typically mea-
sured late in life (e.g. fruit size, plant yield, maturation
time), thereby increasing the length and costs (e.g. keeping
selection candidates) of peach breeding programmes.
In species with long breeding cycles, genomic selection

bears the potential of improving selection efficiency –
through e.g. reduced generation intervals, thereby speed-
ing up genetic progress [6]. This was the major motivation
behind the swift uptake of genomic selection in dairy cat-
tle [7]. The relative high economic value of cattle, helped
dairy cattle breeders pioneer the use of genomics in agri-
culture [8]. The constant decrease of sequencing costs and
the availability of SNP genotyping technologies for an ever
increasing number of species [9–11], has expanded the
interest for genomic selection in modern breeding pro-
grammes. The genome sequence of peach is available [12],
and an updated version has been recently released [13].
SNP chips for P. persica have also been designed [14].
The availability of SNP data allows –given a refer-

ence population that is both genotyped and phenotyped-
– for genomic predictions of unobserved phenotypes
and genetic values for relevant traits in selection candi-
dates, which is an essential element for the application of
genomic selection to breeding. Genomic predictions for a
variety of traits have been successfully modelled in a wide
range of plant species e.g. the forage crop alfalfa [15], sugar
beet [16, 17], loblolly pine [18], eucalyptus [19], including
some important fruit trees like apple [20] and pear [21].
Traits considered focussed initially on yield and fruit size,
but interest is growing also for traits related to fruit qual-
ity and response to environmental conditions, for life cycle
traits (longevity, disease resistance, adaptability etc.), and
for multiple-trait selection [22].
In perennial plants, the long life cycles and mul-

tiple records over successive years call for the mod-
elling of repeated records. Not only the genetic/breeding
value of plants is relevant for selection, but also
the possibility of predicting the future performance,
for management purposes. Repeatability models have
found widespread application in animal breeding [23],
while their use in plant breeding has been limited
(e.g. maize [24]; cashew [25]).
In this paper, a repeatability model for genome-enabled

predictions in eleven European peach populations is pre-
sented, where repetition refers to measurements in multi-
ple successive years. Traits considered were fruit weight,
and sugar content and acidity, which are key traits related
to the quality of the fruit. To our knowledge, this is
the first time that genomic predictions for any traits are
reported in P. persica, and the first application overall of
a repeatability model to genomic predictions in plants.
The heritability, repeatability and predictive ability for
the three phenotypic traits in each peach population

are reported. In addition, the accuracy of missing geno-
types imputation has been estimated, and statistical
issues related to genome-enabled predictions have been
discussed.

Methods
Plant material and genotypes
From research fields in Italy, France and Spain, 1 147
peach plants from 11 crosses were available: four
crosses from Italy (459 plants), two crosses from France
(250 plants), and five crosses from Spain (438 plants).
Italian crosses came from orchards of the University of
Milan and of the Fruit Tree Research Centre (CREA-
FRU) in Roma; French crosses from orchards at INRA-
Avignon; Spanish crosses from orchards at IRTA in Lleida.
The crosses were: Bolero x Oro (BxO), Max x Rebus028
(MxR028), PI91459 (NJ Weeping) x Bounty (WxBy), and
IF7310828 x (IF7310828 x Ferganensis) (PxF) from Italy;
Bolinha x Bolinha (BoxBo) and (SD40 x Summergrand) x
Zéphyr (BC2) from France; Big Top x Armking (BtxAk),
Belbinette x Nectalady (BbxNl), Big Top x Nectacross
(BtxNr), MB1.73 x Earlygold (T1E) and MB1.73 x MB1.73
(TxE) from Spain. The parental “SD40” originated from a
cross between P. persica and P. davidiana.
All plants were genotyped with the peach IPSC 9K SNP

array [14, 26], with an average call-rate of 96.7%. Of the
initial 1 147 samples, 57 had a call-rate ≤ 0.90 and were
discarded. Of the initial 8 144 SNP markers, 2 068 SNP
that were monomorphic in all populations or had a call-
rate ≤ 0.90 were removed from the dataset, leaving 6 076
SNP for the analysis. The residual average missing rate
was 3.19% (1.17% in BbxNl; 5.79% in TxE). A summary of
plant populations (i.e. progenies) and genotype data can
be found in Table 1.

Phenotypic data
Fruit weight, sugar content and acidity measurements
were available for the 1 090 peach trees left after edit-
ing for call-rate from the 11 P. persica populations. Fruit
weight (FW) in grams wasmeasured as the average weight
of 10 random peaches sampled from each tree. Sugar
content (SC) and titratable acidity (TA) were measured,
respectively, as average Brix degrees (soluble solid con-
tent) andmeq/100ml in the juice of at least five ripe fruits.
FW was available for all 11 peach crosses; SC and TA only
for 9 crosses (all except BoxBo and WxBy).
In most cases, phenotypic records for multiple years

were available (most commonly two or three years; only
one for FW in BoxBo, as many as 6 for FW in PxF), col-
lected between 1995 and 2013. The number of records
spanned from 16 (TA, TxE, 2011) to 127 (FW, BC2, 2005).
Figure 1 shows the boxplots of the phenotypic distribu-
tions per peach population and year of measurement.
All phenotypes were approximately normally distributed.
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Table 1 Distribution of plants per cross and summary of SNP-genotype data

Cross Code Origin Samples CR>0.9 MR MAF=0 Mean MAF

Belbinette x Nectalady BbxNl Spain 102 102 0.01 48.90% 28.30%

Big Top x Armking BtxAk Spain 77 74 0.01 45.50% 44.10%

Big Top x Nectacross BtxNr Spain 51 43 0.03 49.00% 47.60%

Bolinha x Bolinha BoxBo France 115 111 0.03 42.20% 40.40%

Bolero x OroA BxO Italy 129 126 0.02 37.50% 34.60%

IF7310828 x (IF7310828 x Ferganensis) PxF Italy 130 130 0.04 22.10% 22.60%

Max10 x Rebus MxR028 Italy 73 72 0.04 49.50% 32.70%

MB1.73 x Earlygold T1E Spain 148 124 0.04 9.40% 21.10%

MB1.73 x MB1.73 TxE Spain 60 54 0.06 30.40% 27.50%

(SD40 x Summergrand) x Zéphyr BC2 France 135 131 0.04 19.00% 24.00%

NJ Weeping x Bounty WxBy Italy 127 123 0.03 40.50% 36.20%

Entire dataset 1147 1090 0.03 2.20% 26.40%

CR > 0.9: call-rate > 0.90; MR: residual missing rate after editing on the whole dataset;MAF = 0: monomorphic SNP

Descriptive statistics on the measured phenotypes per
cross and year are reported in Additional file 1.

Imputation of missing genotypes
After genotyping and editing for call-rate, residual miss-
ing genotypes were imputed using the localized haplotype
clustering imputation (LHCI) method implemented in the
software “Beagle” [27]. Originally developed for human
genetics, LHCI has since found wide application also in
animal and plant genetics (e.g. [11, 17, 20, 28]). Imputation
was carried out in each cross separately, to avoid potential
problems due to population heterogeneity.
The accuracy of imputation was measured. For each

cross, a subset with no missing data was extracted from
the total dataset, and increasing proportions of miss-
ing genotypes were then artificially introduced: 1, 2.5, 5,
7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and 30%. Miss-
ing genotypes were imputed using the LHCI method in
Beagle. For each missing rate and cross, the imputation
was repeated 10 times, each time resampling randomly
the genotypes to be set to missing. The average propor-
tion of correctly imputed genotypes over the 10 repli-
cates for each missing rate was then used to estimate
an empirical curve of the imputation accuracy in each
peach cross.

Assessment of the population structure
The population structure in the analysed peach popula-
tion was assessed based on the kinship among all crosses.
From imputed SNP genotypes, marker-based genomic
relationships were estimated à la Astle & Balding [29]:

G = 1
L

L∑

l=1

(
Z.,l

) (
Z.,l

)′

4pl (1 − pl)
(1)

where L is the number of marker loci, Z.,l is the lth col-
umn of the matrix of marker genotypes corrected by allele
frequencies, and pl is the allele frequency at locus l.
From the kinship matrix in Eq. 1, the Neighbor-Joining

(NJ) tree [30] of the 11 peach crosses was constructed.

Repeatability model for genome-enabled predictions
For the prediction of fruit size, sugar content and acid-
ity based on SNP genotypes, a GBLUP (Genomic Best
Linear Unbiased Predictions) approach was used [31].
GBLUP was run for each peach population separately, and
SNP with within-population MAF < 1% were removed
before the analysis. Since multiple measurements for the
same trait were recorded in successive years on individual
peach trees, a repeatability model was used to fit system-
atic, additive genetic and permanent environment effects
[23]. In matrix notation, the model had the following
form:

y = Xb + Za + Wpe + e (2)

where y is the vector of (repeated) observations for each
of the three traits; b is the vector of fixed effects: the
overall mean and the year of measurement (categorical);
a is the vector of additive genetic effects; pe is the vec-
tor of permanent environment effects; e is the vector of
residual effects; X, Z andW are incidence matrices which
relate records in y to fixed, additive genetic and per-
manent environment effects, respectively. Residuals and
permanent environment effects are assumed to be inde-
pendent and normally distributed, with mean zero and
variances Iσ 2

e and Iσ 2
pe.The additive genetic effects are also

assumed to follow a normal distribution, and have mean
0 and variance Gσ 2

a , where G is the matrix of genomic
relationships –within cross– calculated as in Eq. 1. From
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Fig. 1 Boxplots of phenotypic records per trait, year and cross. Crosses from France are reported in red, from Italy in green and from Spain in blue

variance components, the narrow sense heritability (h2)
and repeatability (R) were derived:

h2 = σ 2
a

σ 2
a + σ 2

pe + σ 2
e

(3)

R = σ 2
a + σ 2

pe
σ 2
a + σ 2

pe + σ 2
e

(4)

For specific combinations of peach cross and trait the
sample size was rather small in terms of number of
records and, especially, number of unique individuals (see
Additional file 1). This, at times, made matrices singular
and non-invertible, leading to numerical problems with
the estimation of parameters. Therefore, the model in
Eq. 2 was fit using either Restricted Maximum Likelihood
(REML: [32]) or an MCMC approach [33].

Estimation of the predictive ability
For each trait and cross, the predictive ability (PA) of
model 2 was assessed through a 5-fold cross-validation.

Plant records were randomly partitioned into 5 subsets of
approximately equal size (from ∼ 12 records for TA in
TxE, to ∼ 120 records for FW in PxF). In turn, the records
in one subset were set to missing and predicted using
the model trained in the remaining four subsets, until all
subsets were once used as validation set and every obser-
vation was used both to train and validate the model. The
5-fold cross-validation was repeated 100 times, each time
resampling different subsets, eventually yielding 500 repli-
cates of the analysis (per peach cross, per trait). In each
replicate, h2, R and the predictive ability were calculated.
PA was calculated as the correlation between observed

and predicted phenotype, r(ŷ, y), in the validation set. Pre-
dicted observations were obtained by summing up effects
from the model (Eq. 2): ŷ = μ+ ˆyear+ â+ p̂e. Estimates of
h2, R and r(ŷ, y) were averaged over the 500 replicates to
obtain robust estimates of the central tendency and vari-
ability of the genetic parameters for fruit size and quality
and of the accuracy of genomic predictions.
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Software used
Imputation of missing genotypes was performed using
the Beagle software [27]. Variance components were esti-
mated with a restricted maximum likelihood approach
using the Asreml software [34] or with aMCMC approach
using the BGLR R package [35]. Data manipulation,
the parsing of results and plots were done using the R
software [36].

Results
SNP genotypes and imputation accuracy
After imputation of residual missing genotypes, the pro-
portion of monomorphic SNP ranged from 9.4% in T1E
to 49.5% in MxR028, with an average of 35.8% over all
crosses. After monomorphic SNPs were removed, the
minor allele frequency (MAF) ranged from 21.20% (T1E)
to 47.60% (BtxNr), with an average of 26.4% over all sam-
ples. Details on monomorphic markers frequency and
MAF are reported in Table 1.
The imputation accuracy was measured per cross as

the ratio of correctly imputed genotypes over the total
number of artificially introduced missing genotypes, for

increasing missing rates (from 1 to 30%). Results from 10
repetitions (per cross, per missing rate) are reported in
Fig. 2; the interpolating lines are the average accuracies.
Standard deviations and further details can be found in
Additional file 2.
The average imputation accuracy over all crosses and

missing rates was 0.82, and varied from 0.96 (BC2) to
0.58 (BxO). Imputation accuracy was typically higher with
low proportions of missing genotypes in the data: 0.97
in BC2 and 0.95 in T1E at 1% missing rate. The low-
est imputation accuracy (0.564) was found for BxO at
30% missing genotypes. Most crosses showed a generally
flat response to increasing missing rates, with imputa-
tion still performing well even with 20% or more miss-
ing genotypes. Exceptions were PxF and BbxNl, whose
imputation accuracy dropped by 17 and 20 percent-
age points, respectively, between 1 and 30% missing
rates.

Kinship matrix and neighbor-joining tree
From the multidimensional scaling of the reciprocal of the
kinship matrix in Eq. 1 (1 − G), principal coordinates and

Fig. 2 Imputation accuracy over increasing percentages of missing genotypes in the data. Results are from 10 replicates per cross (the line is the
average). Crosses from France are reported in red, from Italy in green and from Spain in blue
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corresponding eigenvalues were obtained. The two first
dimensions accounted for 27.5% of the genetic variability
(50.3% the first five), and are plotted in Fig. 3: a strong pop-
ulation structure is apparent, with specific peach crosses
clearly clustering together. BoxBo and WxBy clustered
separately from other crosses: BoxBo formed a very com-
pact cluster, while the WxBy cluster is more spread out.
Five crosses (BbxNl, MxR028, BC2, BtxAk, BtxNr) formed
an entangled cluster and higher-order dimensions are
required to visually separate them. The highly structured
nature of the dataset is confirmed by the Neighbor-Joining
(NJ) tree [30] obtained from the across-population kin-
ships and shown in Fig. 4.

Heritabilities and repeatabilities
Average h2 and R, with the corresponding variability, for
the three phenotypes analysed are reported in Table 2.
The average heritability for FW was mostly moderate, in
the range from 0.207 (T1E) to 0.361 (TxE), except for
crosses MxR028 (0.422), WxBy (0.468) and BxO (0.783),
where high h2 for FW were estimated. The standard
deviation of estimated h2 ranged from 0.034 (BC2) to
0.392 (TxE). For TA, average h2 varied between 0.304

(PxF) and 0.832 (BbxNl), with standard deviation in the
range 0.005 (PxF) - 0.261 (BC2). Average h2 of SC ranged
from 0.078 (BC2) to 0.861 (BbxNl) (std. dev.: 0.005 (PxF) -
0.269 (TxE)).
Repeatability estimates were on average 51.95% higher

than corresponding h2 estimates: from as little as 0.09%
for TA in BbxNl, or 1.99% for FW in BC2, to as much
as 273.9% (almost four times) for SC in TxE (from h2 =
0.210 to R = 0.787). The variability of repeatability
estimates was substantially lower than that of heritabil-
ity estimates (average coefficient of variation: 12.45% vs
36.05%). Figures 5 and 6 show the boxplots of the 500 h2
and R estimates per trait and cross.

Predictive ability
Predictive ability (PA, r(ŷ, y)) was measured in the valida-
tion set from a 5-fold cross-validation scheme (Table 2).
Each trial was repeated 100 times to assess the variability
of PA. Figure 7 reports PA per trait and cross. Moderate
values of predictive ability were observed when averaged
over crosses: from 0.72 for SC, to 0.65 for TA and 0.60
for FW. When predicting TA the best average perfor-
mance was achieved in BbxNl (0.83 ± 0.044), the worst

Fig. 3MDS plot of the matrix of genomic relationships across peach crosses: first two principal coordinates. Crosses from France are reported in
shades of red, from Italy in shades of green and from Spain in shades of blue. Labels for each progeny are added for clarity
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Fig. 4 NJ tree of the 11 peach crosses analysed in this study. Crosses from France are reported in shades of red, from Italy in shades of green and from
Spain in shades of blue. Labels for each progeny are added for clarity

in PxF (0.5 ± 0.074), with TxE and MxR028 showing high
variability of results (standard deviation 0.19 and 0.11,
respectively). For FW, the highest predictive ability was
estimated in BxO (0.84 ± 0.039) and the lowest in BtxNr
(0.39 ± 0.197), with BoxBo displaying by far the largest
variability (standard deviation 0.395).
Finally, genomic predictions for SC showed the narrow-

est range, with average values all falling in the 0.66 (TxE)
- 0.78 (BC2) interval. The most variable predictive ability
was estimated in TxE (standard deviation 0.16).

Discussion
The joint effort between this paper and the paper by
Hernandez-Mora et al. [37] constitutes the first large work
to investigate the applicability of genomics-assisted breed-
ing for complex quantitative traits (QTL mapping and
genome-enabled predictions) in P. persica. The genetic
materials and phenotypic records in the two works largely
overlap; however, Hernandez-Mora et al. focussed on

QTL detection, and looked at genome-enabled predic-
tions as a collateral result. In this study we provide further
insights into genomic predictions in peach trees, consid-
ering also the variability of estimates in specific cross-trait
combinations. We selected three quantitative continuous
traits (fruit weight, sugar content, titratable acidity) based
both on their commercial importance and on the avail-
ability of complete datasets spanning several crosses and
years. The phenotypic information from records in dif-
ferent years has not been pooled, rather used to allow
for the effect of permanent environment to be estimated.
GBLUP was used for genomic predictions (and estima-
tion of heritability and repeatability), instead of a weighted
sum of QTL effects as in FlexQTL®[38]. Additionally, we
implemented a repetition protocol to ensure numerical
stability in spite of the stochastic variability embedded
in cross-validation and Gibbs samplings (BGLR). Finally,
the accuracy of imputing missing genotypes in peach was
measured in this work.
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Table 2 Heritability (h2), repeatability (R) and predictive ability (PA: r(ŷ, y)) for fruit weight, sugar content and acidity in the 11 peach
populations analysed in this study

Country Cross Trait Avg(h2) Sd(h2) Avg(R) Sd(R) Avg(PA) Sd(PA)

France BoxBo FW 0.22 0.22 0.34 0.28 0.42 0.39

France BC2 TA 0.63 0.26 0.87 0.03 0.76 0.08

France BC2 FW 0.24 0.03 0.25 0.03 0.54 0.06

France BC2 SC 0.08 0.03 0.18 0.03 0.78 0.11

Italy BxO TA 0.34 0.07 0.44 0.04 0.52 0.09

Italy BxO FW 0.78 0.16 0.83 0.02 0.84 0.04

Italy BxO SC 0.63 0.14 0.70 0.03 0.69 0.06

Italy PxF TA 0.30 0.00 0.38 0.00 0.50 0.07

Italy PxF FW 0.33 0.15 0.45 0.16 0.49 0.24

Italy PxF SC 0.53 0.00 0.64 0.00 0.75 0.05

Italy MxR028 TA 0.39 0.00 0.49 0.00 0.66 0.11

Italy MxR028 FW 0.42 0.16 0.55 0.09 0.71 0.11

Italy MxR028 SC 0.46 0.01 0.58 0.00 0.77 0.08

Italy WxBy FW 0.47 0.08 0.58 0.06 0.58 0.12

Spain BbxNl TA 0.83 0.02 0.83 0.02 0.83 0.04

Spain BbxNl FW 0.27 0.20 0.78 0.05 0.63 0.11

Spain BbxNl SC 0.86 0.04 0.89 0.03 0.67 0.09

Spain BtxAk TA 0.43 0.12 0.46 0.07 0.59 0.10

Spain BtxAk FW 0.29 0.21 0.57 0.10 0.70 0.17

Spain BtxAk SC 0.62 0.13 0.65 0.03 0.72 0.07

Spain BtxNr TA 0.50 0.08 0.65 0.04 0.60 0.11

Spain BtxNr FW 0.29 0.18 0.45 0.10 0.39 0.20

Spain BtxNr SC 0.57 0.11 0.71 0.04 0.68 0.13

Spain T1E TA 0.67 0.08 0.74 0.07 0.79 0.07

Spain T1E FW 0.21 0.20 0.54 0.20 0.53 0.29

Spain T1E SC 0.41 0.07 0.54 0.06 0.75 0.09

Spain TxE TA 0.67 0.13 0.78 0.08 0.58 0.19

Spain TxE FW 0.36 0.39 0.86 0.06 0.81 0.13

Spain TxE SC 0.21 0.27 0.79 0.08 0.66 0.16

General aspects: heritability, repeatability and estimation
model
This study reports a systematic investigation of the
applicability of genomic prediction models to key traits
for peach fruit quality and marketability. Examples of
genomic selection studies in fruit trees include apple
[20, 39, 40], Japanese pear [21] and grapevine [41]. A
comprehensive review is given by Iwata et al. [42].
Estimated heritability, repeatability and accuracy of

genomic predictions varied widely across specific peach
crosses and traits. Sample size and phenotypic variabil-
ity are factors that can affect the absolute value and
variability of estimated genetic parameters and genomic
predictions. The average sample size (across years) var-
ied dramatically: from 19.6 plants for TA in TxE to 237.5

plants for FW in WxBy. Substantial phenotypic variabil-
ity was found: the phenotypic coefficient of variation
ranged from 16.3 to 48.8% in FW, from 7.2 to 36.9%
in SC, and from 10.4 to 73.1% in TA. This reflects the
wide range of variability in the peach materials included
in the study, and directly influences the estimates of h2
and R. Additional files 3 and 4 show the coefficient of
variation of estimated h2, R and predictive ability as a
function, respectively, of the average sample size and of
the phenotypic coefficient of variation. It appears that for
larger sample size and phenotypic variance, the estimates
of parameters are more reliable (less variable), indicat-
ing that these two factors do affect the estimation of
heritability, repeatability and the accuracy of genomic
predictions.
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Fig. 5 Boxplots of heritability estimates for acidity, fruit weight and sugar content in 11 peach populations. Results from 5-fold cross-validation
repeated 100 times (500 replicates) are presented. Crosses from France are reported in red, from Italy in green and from Spain in blue. Crosses are
ordered by increasing median value

Fruit phenotypes are affected by genetic, ontogenetic
(age-related: i.e. consecutive years of growth) and envi-
ronmental (i.e. climatic years) factors. These can be sta-
tistically separated to clarify their contribution to the
observed phenotypes (e.g. [43, 44]). From a repeatabil-
ity model, such as that in Eq. 2, the variance com-
ponents due to the genetic, permanent and temporary
environmental effects are estimated. The permanent
environment actually catches the effect of consecutive
years of growth, while the temporary environment cap-
tures the variability linked to the climatic conditions
of specific years. For instance, for sugar content in
MxR028, genetics, permanent and temporary environ-
ments account for, respectively, 45.6% (h2), 12.4% (R− h2)
and 42% (1 − R) of the phenotypic variability. There-
fore, the repeatability model may be used as an alterna-
tive approach to estimating the genetic, ontogenetic and
climatic effects in fruit trees. The less variable the esti-
mates of the genetic parameters, the more reliable the
approximations.

Compared to traditional QTL-oriented marker assisted
selection, genomic selection is generally thought to per-
form better for selecting traits controlled by a large num-
ber of minor genes, each contributing a small proportion
of the total phenotypic variability. The traits used in
this study are largely polygenic (FW: [45] SC: [46]) and
thus well suited for GBLUP and similar approaches (like
SNP/RR-BLUP e.g. [47]), which build on the hypothesis of
many small additive allele contributions to the phenotype
(i.e. “infinitesimal model” [48]).
We therefore selected a GBLUP framework to apply

a repeatability mixed model to the problem of estimat-
ing genetic parameters and genomic predictions for fruit
weight and quality from SNP genotypes. The model in
Eq. 2 was solved either through REML or MCMC, imple-
mented, respectively, in a commercial (ASREML) and an
open source (BGLR) software package. This nicely illus-
trates the difference between statistical model of analysis
(GBLUP repeatability model), method of resolution, and
specific algorithmic implementation into a software.
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Fig. 6 Boxplots of repeatability estimates for acidity, fruit weight and sugar content in 11 peach populations. Results from 5-fold cross-validation
repeated 100 times (500 replicates) are presented. Crosses from France are reported in red, from Italy in green and from Spain in blue. Crosses are
ordered by increasing median value

Imputation accuracy
The imputation of missing genotypes has been repeat-
edly shown to be very accurate: e.g. 95% in humans [49],
∼ 99% in cattle [50], ∼ 98% in rice [28]. Lower imputa-
tion accuracy has been observed in other plant species:
e.g. 84% in sugar beet [17], ∼ 80% in alfalfa [28]. Imputa-
tion errors may have a detrimental effect on the accuracy
of genomic predictions (e.g. [51]), and there is therefore
interest in assessing imputation accuracy when genotypes
are used to predict phenotypes or breeding values. Our
results showed that imputation accuracy is quite variable
over peach crosses, with a difference of 35.5 percent-
age points between the best (BC2: 0.96) and the worst
(BxO: 0.61) case. The response to increasing missing rates
was quite flat in all crosses, with the exception of PxF and
BbxNl. Such variable results suggest a strong influence of
the genetic background of each population on genotype
imputation in peach.
Putting together the average missing rates in the orig-

inal datasets (Table 1) with the corresponding estimated

imputation accuracies (Additional file 2), the amount of
imputation errors in the data used for genomic predic-
tions can be estimated in the range 0.88% (BbxNl) - 5.33%
(TxE), with an average of 2.71%. Given the low initial
missing rates, and the generally good imputation accu-
racy, there are therefore few residual imputation errors,
which are expected to have negligible impact on genomic
predictions.

Population structure
Unaccounted population stratification is known to poten-
tially have detrimental effects on genome-wide associa-
tion studies [52–54] and genomic predictions [41, 55–57]:
the association between SNP and phenotype may differ
between (sub)populations or be in reverse phase. If possi-
ble, it may therefore be advisable, when analysing hetero-
geneous populations, to account for this in the model (e.g.
[58, 59]).
In this study, peach crosses were analysed separately.

Still, it is interesting to look at population structure,
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Fig. 7 Boxplots of the estimated predictive ability for acidity, fruit weight and sugar content in 11 peach populations. Results from 5-fold
cross-validation repeated 100 times (500 replicates) are presented. Crosses from France are reported in red, from Italy in green and from Spain in blue.
Crosses are ordered by increasing median value

since this can help interpret the obtained results, and
provide guidance for future modeling of genomic pre-
dictions in peach populations. The BoxBo resulted in
a very compact and isolated cluster, and the relatively
limited genetic variability may be related to the com-
paratively poorer accuracy of genomic predictions in
this population. This cross is indeed a self pollination
of a partially heterozygous variety. The WxBy cluster is
more spread out and prediction accuracy was higher.
The separation of this progeny from the other crosses
is likely linked with the ornamental NJ Weeping par-
ent —indeed ornamental germplasm is known to have
undergone divergent breeding history compared to edi-
ble cultivated accessions [60, 61]. The separation of
T1E and TxE from the main peach group of progenies
from commercial peaches can be attributed to the ori-
gin of these populations from almond x peach crosses.
The two crosses sharing a parent (T1E and TxE) clus-
tered very closely together. Five crosses (BbxNl, MxR028,

BC2, BtxAk, BtxNr) formed an entangled cluster and
higher order dimensions are required to visually separate
them.

Accuracy of genomic predictions
The accuracy of genomic predictions for fruit weight,
titratable acidity and sugar content was variable across
and within crosses, but less so compared to estimates of
heritability and repeatability: for FW, the average predic-
tive ability (PA) ranged from 0.39 in BtxNr to 0.84 in
BxO; for TA, it ranged between 0.50 in PxF and 0.83 in
BbxNl; for SC average PA was in the range 0.66 (TxE)
- 0.78 (BC2). The average standard deviation of PA was
0.17, 0.09 and 0.09 for FW, TA and SC respectively.
Predictive abilities appear therefore to be more reliable
and robust than estimates of variance components due
to different sources of variation (additive genetic effects,
permanent environment). This is related to the general
observation that predictions and inference (e.g. trying to
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understand the relative influence of genetics and envi-
ronment on the phenotype) are different problems, and a
model may yield good predictions even when the under-
lying biological mechanisms are poorly understood or
estimated (and vice-versa: [62]). In some cases, PA showed
very low variability, like in BxO for FW or in BbxNl
for TA; in other cases, PA was so variable to become
practically unreliable, like FW in BoxBo, where predic-
tive ability went from -0.5 to 0.99. The performance of
genomic predictions can be influenced by the size of
the analysed dataset, the heritability and repeatability of
the trait, and by the phenotypic variability. Additional
files 3 and 4 show the coefficient of variation of PA
as a function of sample size and phenotypic variability
(x-axis). In both figures, the general trend is that the
variability of estimates tends to be larger with smaller
sample size and smaller phenotypic variability. Additional
file 5 shows the coefficient of variability of predictive
ability vs the heritability. Again, the larger the heritabil-
ity, the smaller the variability of predictions, hence their
reliability.
Predictive ability is defined as the correlation between

the observed phenotype and the phenotype predicted by
the model, r(ŷ, y). In plant and animal breeding it is often
of interest to predict not only the (future) phenotypic
value of an individual, but also its unobserved breed-
ing (genetic) value. By dividing predictive abilities by the
square root of the heritability of the trait, the accuracy of
genomic breeding values (GEBVs) can be estimated [63]:

rg,ĝ = ry,ŷ√
h2

(5)

We thus obtained average GEBV accuracies of 0.82,
0.83 and 0.97 for fruit weight, acidity and sugar content,
respectively. The higher GEBV accuracy for sugar content
reflects the higher average predictive ability (0.72), and
the lower variability of estimated heritability (average s.d.
0.088) and repeatability (average s.d. 0.034).

Applications to management and breeding
Genomic selection is having a profound impact on plant
breeding. Major drivers behind this success are the pos-
sibility of obtaining accurate genomic predictions even
without pedigree data, a reference genome or dense
marker genotypes, and the higher genetic gains per unit of
time that are likely to be achieved (2-3 fold: [64–66]). This
is especially true for plant species with a long breeding
cycle, since selection candidates can be chosen at a much
earlier stage than in traditional breeding programmes.
Fruit trees are characterised by a long juvenile phase;
in peach breeding programmes, the average generation
interval spans 5–7 years, taking into account the length
of the juvenile period and repeated years of phenotypic

evaluation, and thus the benefits from shortened cycles
through genome-enabled predictions are evident.
The benefits of genomic selection stem not only from

accurate genome-enabled predictions and shorter genera-
tion intervals, but also from potentially lower phenotyping
costs. Collecting phenotypes in fruit trees is costly [67],
and restricting phenotypic evaluation to smaller subsets
of progenies for shorter times may be beneficial. Cou-
pling genomics, high-throughput phenotyping [68, 69],
databases and tools for breeding has the potential of creat-
ing effective platforms for genomics-assisted breeding in
all plant species (e.g. rice, [70]), particularly in fruit trees,
including peach (see Iwata et al. 2016 for a review [42]).
Genome-enabled predictions are mainly used to select

breeding candidates in genetic improvement schemes.
However, in species with a long life-cycle, accurate
genome-enabled predictions may be particularly useful
to predict future phenotypes of the plant: e.g. which
plants are most likely to repeatedly give a certain pro-
duction in successive years, which plants to cull, keep,
fertilize, which plants are expected to be more resilient
to temporary environmental effects (e.g. climatic varia-
tions). Additionally, in general breeders/farmers tend to
prefer “repeatable/reliable” plants which show little vari-
ability in phenotypes from year to year. Resende et al. [71]
showed that genomic predictions modelled at early age
did not appear to perform well in predicting phenotypes
at later ages (6 years). In our study, we modeled multi-
ple records over successive years and obtained accurate
genome-enabled predictions of phenotypes in peach. This
indicates that there may be value from the application of
repeatability GBLUP models in peach breeding.

Conclusions
In this paper, results from a repeatability GBLUP model
for fruit weight, sugar content and titratable acidity in
peach trees were reported. This is the first work to show
the applicability of genomic predictions in P. persica. A
very diverse set of peach crosses was used, in terms of
genetic background of the germplasm, phenotypic vari-
ability and, especially, sample size. Still, the obtained
results are very promising for the application of genomic
selection to peach breeding programmes. The accuracy of
imputing missing genotypes was as high as 96%, and the
genomic predictive ability was on average 0.65, but could
be as high as 0.84 for fruit weight or 0.83 for titratable
acidity. The estimated repeatability may prove very useful
in the management of the typical long cycles involved in
peach productions, since it may indicate which plants bear
the potential of being more resilient to temporary fluc-
tuations and give repeatable performances. Additionally,
the repeatability model may prove valuable in disentan-
gling genetic, ontogenetic and environmental effects in
the analysis of complex traits.
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All together, the results of this work suggest that the
implementation of genomic selection may be very advan-
tageous in P. persica, for it can realistically lead to higher
genetic gains per unit of time, improved management of
the orchard and reduced costs of breeding programs.
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