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The purpose of this study is review and evaluation of computing methods used in genomic selection for animal breeding.
Commonly used models include SNP BLUP with extensions (BayesA, etc), genomic BLUP (GBLUP) and single-step GBLUP
(ssGBLUP). These models are applied for genomewide association studies (GWAS), genomic prediction and parameter estimation.
Solving methods include finite Cholesky decomposition possibly with a sparse implementation, and iterative Gauss–Seidel (GS) or
preconditioned conjugate gradient (PCG), the last two methods possibly with iteration on data. Details are provided that can
drastically decrease some computations. For SNP BLUP especially with sampling and large number of SNP, the only choice is GS
with iteration on data and adjustment of residuals. If only solutions are required, PCG by iteration on data is a clear choice.
A genomic relationship matrix (GRM) has limited dimensionality due to small effective population size, resulting in infinite number
of generalized inverses of GRM for large genotyped populations. A specific inverse called APY requires only a small fraction of
GRM, is sparse and can be computed and stored at a low cost for millions of animals. With APY inverse and PCG iteration, GBLUP
and ssGBLUP can be applied to any population. Both tools can be applied to GWAS. When the system of equations is sparse but
contains dense blocks, a recently developed package for sparse Cholesky decomposition and sparse inversion called YAMS has
greatly improved performance over packages where such blocks were treated as sparse. With YAMS, GREML and possibly single-
step GREML can be applied to populations with >50 000 genotyped animals. From a computational perspective, genomic selection
is becoming a mature methodology.
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Implications

Tools used in genomic selection range from those based on
estimation of SNP effects to animal models using a genomic
relationship matrix (GRM). When many animals are unge-
notyped, modeling options include multi-step or single-step
methods. Computations involving mixed models with SNP
effects or the inverse of GRM have good computing proper-
ties, whereas those including their combination or plain GRM
do not. Recent discovery of efficient inverse of GRM removed
computing limits from genomic analyses involving GRM.
Same discovery enables GREML for very large data sets.

Introduction

The concept of genomic selection (Meuwissen et al., 2001)
generated great excitement in the animal breeding commu-
nity. With genomic information from SNP panels, one can

achieve accuracy from young animals almost as high as from
a progeny test (Schaeffer, 2006; VanRaden et al., 2009) at a
greatly reduced cost. Initially the genomic computations
used versions of BLUP with SNP fitted as random effects,
such as SNP BLUP, BayesB, etc., (see Gianola et al., 2009 for
a review). An alternative form of SNP BLUP is genomic
BLUP (GBLUP), where the animal effect is fit with a GRM
(VanRaden, 2008). For prediction, SNP BLUP and GBLUP
are equivalent models (VanRaden, 2008; Strandén and
Christensen, 2011).
When only a small fraction of the population is genotyped,

the information from ungenotyped animals can be summarized
in pseudo-observations for genotyped animals. Alternatively,
GBLUP can be extended to single-step GBLUP (ssGBLUP)
(Aguilar et al., 2010; Christensen and Lund, 2010), where a
numerator relationship matrix (NRM) for all individuals and
GRM are combined and then applied to BLUP. Benefits of
ssGBLUP include simplicity of application (another BLUP),
avoidance of double counting, and accounting for pre-selection
on Mendelian sampling (Legarra et al., 2014). ssGBLUP was† E-mail: Ignacy@uga.edu
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extended to be based partially or completely on SNP effects
(Fernando et al., 2014; Liu et al., 2014).
Large interest in the genomic community exists in identi-

fying an optimal set of SNP and their variances for increased
accuracy of evaluation. Such an identification is straightfor-
ward with Bayesian SNP models (e.g. Gianola et al., 2009).
As SNP BLUP and GBLUP are equivalent, SNP and their
variances selected in Bayesian SNP models can be trans-
formed to weighted GRM and subsequently BLUP. Methods
exist to generate SNP weights directly in the GBLUP model
(VanRaden, 2008; Zhang et al., 2010; Sun et al., 2012)
or ssGBLUP (Wang et al., 2012).
Initially the extent of genomic selection was limited by

costs of genotyping. With these costs dropping dramatically,
the number of genotyped animals has increased dramati-
cally, with very high-density SNP chips available. In dairy
cattle, over 1 million Holsteins had been genotyped in the
United States as of March 2016 (Council on Dairy Cattle
Breeding; https://www.cdcb.us/Genotype/cur_density.html).
Subsequently, computing costs are becoming more of an
issue. The purpose of this paper is to present and discuss
computational methods in genomic selection.

Definition of terms and basic models

Let A denote a NRM based on pedigrees. Let Z be a matrix of
gene content with zij being the number of occurrences of the
minor allele in SNP j of animal i. The values of ‘raw’ zij are 0,
1 and 2, whereas that of centered zij is −2pj, 1− pj and
2− pj, where pj is gene frequency of SNP j. The simplest SNP
BLUP model is

yi = μ +
X
j

zijaj +ei

where yi is a (pseudo)phenotype of animal i, a � N 0; Iσ2a
� �

the vector of SNP effects, e � N 0; Iσ2e
� �

the vector of
residuals, and σ2a and σ2e are SNP and residual variances,
respectively. GBLUP can be defined as

yi = μ + ui + ei

where u � N 0;Gσ2u
� �

is a vector of animal effects, G the
GRM and σ2u the additive variance. G can be derived by a
transformation from SNP BLUP:

G= ZZ0
σ2a
σ2u

possibly with an alternative scaling factor (VanRaden, 2008):

G=
ZZ0P

j
pj 1�pj
� �� �

If SNP BLUP involves heterogeneous variance for SNP:
a � Nð0;Dσ2aÞ, where D is a diagonal matrix of weights,

the equivalent ‘weighted’ G is

G=
ZDZ0P

j
pj 1�pj
� �� �

SNP BLUP and GBLUP are equivalent models (Strandén
and Christensen, 2011).
When only a fraction of animals is genotyped, the

numerator and genomic relationships can be combined
(Legarra et al., 2009; Christensen and Lund, 2010):

H= A + A12A�1
22 0

0 I

� �
I
I

� �
ðG�A22Þ I I½ � A�1

22 A21 0
0 I

� �

where H is a combined matrix and indices in A refer to
ungenotyped (1) and genotyped (2) animals. The inverse of
matrix H is (Aguilar et al., 2010; Christensen and Lund, 2010)

H�1 = A�1 +
0 0
0 G�1�A�1

22

� �

BLUP with matrix H is called ssGBLUP.

Computing operations in animals breeding

Common operations in animal breeding include solving of
mixed model equations and variance component estimation
either via REML or Bayesian methods with Gibbs sampling.
Such operations in the animal breeding context are described
in Mrode (2014) and Misztal (2014), and are typically based
on Henderson’s mixed model equations (MME). Let this lin-
ear system of equations be

B x= y

where B is left-hand-side (LHS), y the right-hand side, and
x the vector of solutions. Solving mixed model equations can
be accomplished by finite and iterative methods. In finite
methods, exact solutions (except for numerical errors) are
obtained in a finite number of steps. Popular methods
for general matrices are based on the LU decomposition
(B = LU, where L and U are lower and upper triangular,
respectively) and for symmetric matrices the Cholesky
decomposition (B = LL', where L is lower triangular). As
often mixed model equations are not full rank, finite methods
used for mixed models need to compute generalized solu-
tions rather than cause numerical exceptions. For example,
the Cholesky decomposition can be modified to

B= LDL′
where D is a diagonal matrix with zero elements for redun-
dant equations and non-zeros otherwise. Although finite
methods usually compute solutions with high precision, their
cost is high, usually close to cubic. Finite methods can be
used to calculate inverses, which are used in REML or for
prediction error variance (PEV) calculations. In general, the
cost of the inverse is a few times that of a solution by
decomposition.
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When matrices are sparse, with nearly all elements of
LHS equal to 0, a ‘sparse’ Cholesky decomposition exists that
avoids operations with zeros, leading to about quadratic
rather than cubic costs (George and Liu, 1981). Also, an
algorithm exists for computing a ‘sparse’ inverse, where
elements computed are those corresponding to non-zeroes in
the original matrix (Takahashi et al., 1973). Such an inverse
is sufficient to calculate traces in REML (Misztal and
Perez-Enciso, 1993) or PEV. However, equations involving
SNP effects are usually dense. When the system of equations
is sparse but contains dense blocks, a sparse matrix package
can be modified for greatly improved performance in REML
and other applications (Masuda et al., 2015). This is quite
new as most matrix packages are efficient for either dense
or sparse matrices, but not for mixtures of both.
Iterative methods are such that progressively more

accurate solutions are obtained every next round. Two such
methods are popular in animal breeding. The first one is
Gauss–Seidel iteration (GS), which is also a backbone of
Gibbs sampling. GS is very simple, but requires access
to equations by rows. The second one is preconditioned
conjugate gradient (PCG), a method difficult to understand,
but easy to implement and usually with superior convergence
rate to GS (Tsuruta et al., 2001).
In animal breeding application, the size of LHS can be

much larger than the size of data to generate LHS. For
example, one line of data in a 10 trait model with 10 effects
per trait includes 20 numbers (one for each trait and effect)
but generates 10 000 contributions to LHS. A special imple-
mentation of iteration algorithms is matrix-free or by itera-
tion on data (Schaeffer and Kennedy, 1986; Misztal and
Gianola, 1987), where coefficients of LHS are regenerated
from the data every round of iteration. Although the imple-
mentation of iteration on data by GS can be complicated as
the coefficients need to be recreated row by row, such an
implementation in PCG is trivial as PCG only requires a
product of B by a vector (Bq, with q a given vector), with no
individual elements necessary (except for diagonals).

Tricks and rules in mixed model and
genomic computations

Product of numerator relationship matrix
Computing the NRM A by a tabular method has a quadratic
cost. Also, computing relationships for specific animals
requires creating a matrix for all ancestors. For large popu-
lations, A would not fit into memory. When only a product
A by a vector, say q, is needed, Aq can be computed inex-
pensively by two scans of the pedigree (Colleau, 2002). By
selecting zeros in q, one can also compute a product of a
section of A by a vector (e.g. A22 q) (Misztal et al., 2009;
Aguilar et al., 2011).

Sequential multiplication and preconditioned
conjugate gradient
The LHS of the mixed model equations contains expressions
like Z'Z. The PCG algorithm by iteration on data requires

computing Z'Zq, where q is a given vector. Strandén and
Lidauer (1999) found that while the cost of (Z'Z)q is very
high, the cost of Z'(Zq) is much lower.

Convergence properties with various systems of equations
When mixed models are solved by iteration (GS or PCG), the
convergence rate is better with fewer equations per pheno-
type. Experiences indicate that the convergence rate is very
good with sire models, much slower with animal models, and
could be especially slow with young animals not tied to
phenotypes or progeny.
The regular MME equations involve an inverse of

A or G, e.g.

I +A�1α
� �̂

a= y

An equivalent system of equation avoids creating an
inverse (Strandén and Garrick, 2009):

A + Iαð Þ̂a = Ay

The convergence rate in such models is poor and may not
occur for larger systems of equations. This is because A−1

‘connects’ only parents and progeny resulting in ‘sparse’
equations, whereas all animals in A are connected, resulting
in dense equations. As G differs little from A (VanRaden,
2008; Wang et al., 2014), the same thinking applies to
models with G and G− 1.

Computations in SNP BLUP (and BayesX)

SNP BLUP and its various forms (including BayesA, BayesB,
etc.) are very popular models in genomic computations.
When the number of SNP is small, the MME for SNP BLUP
can be created explicitly. As the memory and compute
requirements are quadratic, explicit storage of SNP BLUP
equations is unfeasible with large number of SNP. For
example, memory requirements for MME with 1 million SNP
would be 1012 elements also with 1012 elements of MME
created from each genotyped animal. Various options in such
a case have been explored by Legarra and Misztal (2008)
with a data set on about 2 k individuals and 20 k SNP mar-
kers. Solution by Cholesky decomposition took 2 h, and
computations would increase cubically with the number of
SNP, whereas memory would increase quadratically. With
solution by GS and straightforward iteration on data, com-
putations took about 4 days, with linear memory and
quadratic memory costs. With a special GS implementation
called GSRU, where currently computed solutions are used to
adjust residuals for all individuals, computing took about
1min and both computing and memory costs were linear.
Finally, with PCG iteration on data, computing took only
20 s, with approximately linear costs for memory and com-
putations. Although GSRU is the only realistic algorithm with
millions of SNP for Bayesian models, the PCG approach can
be useful for models where SNP variances are derived from
SNP solutions (Zhang et al., 2010; Sun et al., 2012;
Wang et al., 2012). A hybrid method would use PCG iteration
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with inner (non-Monte Carlo-based) updates of weights
(VanRaden, 2008).

Variations of single-step equations

Due to the prohibitive cubic cost of inversion of G with many
genotyped animals, alternative equations were proposed for
ssGBLUP. Equations in Misztal et al. (2009) used H rather
than H− 1. Convergence was achieved only with a small
number of animals. Equations by Legarra and Ducrocq (2012)
used G and A22, which are easy to use, instead of G−1 and
A22
− 1. The convergence rate was slow with medium models

and not achieved with large models (Aguilar et al., 2013).
Liu et al. (2014) proposed equations with SNP effects for
genotyped animals. They reported lack of convergence with
real data. All these models illustrate computing advantages
with inverses of dispersion matrices (A−1 or G− 1). As SNP
BLUP models have good computing properties, Fernando
et al. (2014) looked into ssGBLUP where ungenotyped ani-
mals were imputed and only SNP effects (plus imputation
errors for ungenotyped animals) were estimated. Although
convergence rates were good, imputations required a
supercomputer and imputed genotypes required large
memory for big populations. Better computing times were
reported using a computer with fast graphic cards (Golden
et al., 2016). Meuwissen et al. (2015) presented a new type
of H matrix based on (possibly fractional) imputation of
ancestors by segregation analyses, followed by a sophisti-
cated tailoring of G to A to compensate for errors in impu-
tation. Although the cost of segregation analysis is high, it is
not yet clear whether such an approach offers accuracy
benefits when most ancestors are genotyped, and the pro-
cess of tailoring is rather complex. All non-traditional
ssGBLUP would require new research and investment in
code for implementation of more complex models, such as
multiple-trait, random regression or maternal models.

Sparse genomic relationship matrix

Computations with ssGBLUP would be easy for large number
of animals if G−1 was sparse, like A− 1. Past studies suggested
that G had a limited rank, as inversion is unstable with >5 to
10 k animals, and Gs as used in genetic evaluations are
blended with A22 (VanRaden, 2008; Aguilar et al. 2010) to
achieve full rank. The eigenvalue decomposition of G is:

G = UDU0

where U is a matrix of eigenvectors and D the matrix of
eigenvalues. If all eigenvalues are positive, the inverse of G is

G�1 = U0D�1U

If some eigenvalues are 0, the inverse does not exist. If,
due to noise, many eigenvalues are close to 0 and carry no
information, they can cause instability of the inverse through
large elements of D−1.

Let Dt indicate a fraction of D with non-
negligible eigenvalues, and let Ut be corresponding eigen-
values. Then

G� = U
0
tD

�1
t Ut

If G−1 is to be created explicitly, the computing cost is
cubic with quadratic storage. If G− is used by a PCG algo-
rithm as

G� q = U
0
t D�1

t Utq
� �� �� 	

and the number of eigenvalues in Dt is small, G
−q can be

calculated and stored at linear cost with respect to the
number of genotyped animals. However, computing U and D
is expensive and requires storage of G in full.
When G has a limited dimensionality, Misztal et al. (2014)

proposed to calculate G− 1 using only a fraction of G and
without eigenvalue decomposition. Let

G= Gcc Gcn

Gcn Gnn

� �

where index c denotes core animals and index n non-core
animals. In the algorithm for proven and young animals
(APY)

G�1 � G�1
cc 0
0 0

� �
+ �G�1

cc Gcn

I

� �
M�1 �GncG�1

cc I
� �

;

where M is a diagonal matrix with elements
mi =gii�GicG

�1
cc Gci for individual i in the core group.

Inversion of G by APY has a cubic cost (and quadratic
memory) for core individuals and a linear cost (and linear
memory) for non-core individuals. Figure 1 shows an exam-
ple non-zero structure of a regular inverse (after blending to
make it positive-definite) and different APY inverses. The
inverses are diagonal for non-core animals. As the regular G
is singular for a large population, an infinite number of
generalized inverses exist, including those by the APY algo-
rithm with different sets of core animals.
Core animals can be randomly selected (Fragomeni et al.,

2015), with an optimal number of about 12 000 for Holsteins

Figure 1 Non-zero pattern of a regular (a) and APY (b to d) inverses of
the genomic relationship matrix with different choices of core animals.
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(Masuda et al., 2016) and 10 000 for Angus (Lourenco et al.,
2015). The number of core animals is linked to effective
population size (Misztal, 2016). Optimal number of core
animals is equal to the number of the largest eigenvalues in
D explaining 98% of the variance in G (Pocrnic et al., 2016a).
With such a number, prediction of breeding values with APY
was more accurate than with a regular inverse. Computation
of G−1 for 570 k genotyped Holsteins by APY took only about
2 h, whereas a month computing with a large memory would
be required for a regular inverse (Masuda et al., 2016).
The APY algorithm removes computing limits from inversion
of G and subsequently ssGBLUP.

Computing of A22

ssGBLUP as in Aguilar et al. (2010) requires A�1
22 . Although

A−1 is sparse, A�1
22 may be relatively dense (Faux and

Gengler, 2013), and its storage for potentially millions of
genotyped animals impossible. This matrix can be calculated
indirectly (Strandén and Mäntysaari, 2014).

A�1
22 =A22� A12� �0

A11� ��1
A12

where all submatrices are sparse and can be stored explicitly.
With PCG iteration, explicit A�1

22 is not required, and its
product with a vector q can be calculated every round as
follows (Masuda et al., 2016):

A�1
22 q= A22� A12� �0

A11� ��1
A12

h i
q

In particular

s= A11� ��1
A12q

is computed as a solution to:

A11s = A12q

As all matrices are sparse, the cost of above calculations is
small (Masuda et al., 2016).

GREML and APY

GREML is REML using a GRM. Similarly, REML using matrix
H can be called single-step GREML (ssGREML). In the past,
the success with REML in animal populations was due to
sparse inverse of A− 1 and sparse matrix factorization/
inversion (Misztal and Perez-Enciso, 1993; Pérez-Enciso
et al., 1994). If G is dense and large, Masuda et al. (2015)
showed that GREML with the old sparse matrix package is
inefficient and unstable. A new package called YAMS
recognizes dense blocks in MME, rearranges computations
accordingly, allowing also for parallel computations for large
dense blocks. With YAMS, GREML was much faster and more
reliable.

Additional issues

This paper focused on algorithmic issues relevant to current
mixed model computations in genomics in animal breeding.
Many other issues exist and many will become relevant. For
example, genotyping of animals with small amount of
information leads to greater importance of avoidance of
double counting in multi-step evaluations, or of more accu-
rate match between genomic and additive relationships in
ssGBLUP. With efforts to use sequence data, important
operations are aligning short fragments, imputation, geno-
mewide association studies, and incorporations of the
detected variants in the evaluation. In dairy, a de facto global
breeding scheme for Holsteins creates a need for a compre-
hensive genomic evaluation by Interbull that has a high
accuracy, yet does not compromise privacy of the member
countries. In general, while brute-force approaches may be
formidable, as or more accurate yet inexpensive approaches
may exist that exploit peculiarities of data including a limited
effective population in farm populations. For instance, the
sequence includes three G base pairs, but farm populations
can be described by about 4000 to 20 000 chromosomal
segments (Pocrnic et al., 2016b). This means a block size of
about 150 to 750 kbases with hard to differentiate SNPs, and
ability to reduce costs by working with blocks rather than
individual SNP. This also suggests that increases of genomic
accuracies past 4000 to 20 000 of high accuracy genotyped
animals are limited (ignoring G× E and decays of predictivity
over time). Similarly, if Interbull countries are unwilling to
share genotypes on individual bulls or SNP effects derived
from their population, they can contribute GEBV and geno-
types of artificially generated animals (Maantysaari, 2015,
personal communication) with their number and accuracies
relevant to each country.

Conclusions

In conclusion, common operations in genetic selection are
computationally feasible for an almost unlimited number of
genotyped individuals using appropriate algorithms. Solving
‘SNP’ equations is best accomplished by iteration on data
using either a special form of GS iteration or the PCG algo-
rithm. Solving ssGBLUP is best accomplished by iteration on
data using the PCG algorithm. For GREML, a sparse matrix
package needs to account for dense blocks. Computations in
the two latter cases greatly benefit from efficient (and
sparse) inverse of the GRM.
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