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Review Article

Low Pathogenic Avian Influenza and Coinfecting Pathogens: A Review of

Experimental Infections in Avian Models
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THAP, Université¢ de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 37076 Toulouse, France
Received 14 October 2016; Accepted 7 November 2016; Published ahead of print 17 November 2016; Published March 2017

SUMMARY. Low pathogenic avian influenza virus (LPAIV) usually causes mild disease or asymptomatic infection in poultry.
LPAIV has, however, become a great threat to poultry industry due to mixed infections with other pathogens. Coinfections do
frequently occur in the field but are not easily detected, and their impact on pathobiology is not clearly defined due to their
complicated nature, but it is well known that there is an impact. One way to increase our knowledge of coinfections in poultry is to
challenge birds in experimental and controlled conditions. While many articles report i vivo experiments with LPAIV in avian
models, only a few have studied coinfections. Moreover, researchers tend to choose different bird types, ages, inoculation routes,
and doses for their experiments, making it difficult to compare between studies. This review describes the state of the art for
experimental infections with LPAIV alone or associated with coinfecting pathogens in avian models. It also discusses how best to
mimic field infections in laboratory settings. In the field of avian diseases, experimental design is obviously directly linked with the
research question addressed, but there is a gap between field and experimental data, and further studies are warranted to better
understand how to bring laboratory settings closer to field situations.

RESUMEN. Estudio Recapitulativo. Influenza aviar de baja patogenicidad y patdgenos co-infectantes: Revision de las infecciones
experimentales en modelos aviares.

Los virus de la influenza aviar de baja patogenicidad (con las siglas en inglés LPAIV) generalmente causan enfermedad leve o
infeccidn asintomatica en las aves comerciales. Sin embargo, los virus de la influenza aviar de baja patogenicidad se han convertido
en una gran amenaza para la industria avicola debido a infecciones mixtas con otros patdgenos. Las co-infecciones ocurren con
frecuencia en el campo pero no son detectadas facilmente y su impacto en la patobiologia de estos virus no estd claramente definido
debido a su naturaleza complicada, pero se reconoce que existe un impacto. Una forma de aumentar el conocimiento de las co-
infecciones en las aves comerciales es desafiar a las aves en condiciones experimentales y controladas. Mientras que muchos articulos
reportan experimentos iz vivo con virus de la influenza aviar de baja patogenicidad en modelos aviares, s6lo unos pocos han
estudiado co-infecciones. Ademds, los investigadores tienden a elegir diferentes tipos de aves, edades, rutas de inoculacién y dosis
para sus experimentos, lo que dificulta las comparaciones entre los estudios. Esta revisién describe lo mds reciente con las
infecciones experimentales con virus de la influenza aviar de baja patogenicidad, solos o asociados con patégenos de co-infectantes
en modelos aviares. También se analiza la mejor manera de replicar las infecciones de campo en condiciones de laboratorio. En el
campo de las enfermedades aviares, el disefio experimental estad obviamente relacionado directamente con la hipétesis de
investigacion abordada, pero existe una brecha entre los datos experimentales y de campo y se necesitan mas estudios para
comprender mejor como adecuar los pardametros de laboratorio a las situaciones de campo.

Key words: low pathogenic avian influenza viruses, coinfection, avian models

Abbreviations: Al = avian influenza; AIV = avian influenza virus; AP = Avibacterium paragallinarum; C = intracloacal; CFU =
colony-forming unit; EIDsq = 50% egg infectious dose; HA = hemagglutination; HPAIV = highly pathogenic avian influenza
virus; IBV = infectious bronchitis virus; IC = intracloacal; IDsq = 50% infectious dose; IM = intramuscular; IN = intranasal; 10 =
intraoviduct; I'T = intratracheal; IV = intravenous; LPAIV =low pathogenic avian influenza virus; MG = Mycoplasma gallisepticums
NA = neuraminidase; NDV = Newcastle disease virus; O = intraocular; ORT = Ornithobacterium rhinotracheale; PO = per orally;
SA = Staphylococcus aureus; SPF = specific-pathogen-free; TCID = tissue culture infectious dose; TOC = tracheal organ culture

In poultry farms, infections with avian influenza viruses (AIVs) are
dreaded as they are very often associated with severe economic losses.
To better understand the clinical outcomes, pathogenesis, and
transmission in the field, researchers have developed animal models
to study infections in laboratory settings. Here we present a survey of
the state of the art for experimental infections with low pathogenic
avian influenza virus (LPAIV) alone or associated with coinfecting
pathogens in avian models. On this basis we then discuss how to best
mimic field infections in laboratory settings and highlight a gap
between field and experimental data that requires further studies to
fill. This review is not a meta-analysis but was performed using
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PubMed and a combination of the following keywords: low
pathogenic avian influenza virus, coinfection, chicken, turkey, duck,
poultry, experimental infection, in vivo. Only studies with
experimental infections of birds with a LPAIV alone or with a
coinfecting pathogen were considered here.

AVIAN INFLUENZA VIRUSES: HIGH AND LOW PATHOGE-
NICITY

Avian influenza (Al) is caused by avian influenza viruses (AIVs)
that belong to the genus Influenza virus A of the family
Orthomyxoviridae. AIV harbors a segmented genome of eight
distinct single-stranded RNA molecules, which encode at least 10
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different viral proteins (50). On the basis of antigen variations of
the surface glycoprotein hemagglutinin (HA) and neuraminidase
(NA), there are 18 antigenically distinct HA and 11 NA subtypes
of influenza A viruses (82). With the exception of the recently
described influenza A (H17N10 and H18N11) viruses of bats, all
other subtypes circulate in birds (84). AIVs are classified into two
pathotypes in gallinaceous birds known as a highly pathogenic
avian influenza virus (HPAIV) and a low pathogenic avian
influenza virus (LPAIV) based on the existing World Organization
for Animal Health criteria (16). For AIVs to be highly pathogenic,
they must meet one of two criteria: 1) intravenous pathogenicity
index > 1.2 or lethality for 75% or more of intravenous susceptible
chickens (Gallus gallus domesticus) or (2) viruses of H5 or H7
subtypes with multiple basic amino acids at the HA cleavage site.
All other AIVs are characterized as LPAIVs (78). HPAIVs are
responsible for rapid and fatal systemic infection inducing
mortality up to 100% in broilers, layers, and breeders, while
LPAIVs lead to asymptomatic or milder infections. All HPAIVs
identified up to date belong to H5 and H7 subtypes, even though
all H5 or H7 viruses are not always highly pathogenic (86).
Pathogenicity of HPAIVs is associated with polybasic amino acids
(arginine and lysine) at their HA cleavage site motif (85), which
enable them to replicate and damage a wide range of vital organs
and tissues, ultimately resulting in the death of the infected birds
(64). In contrast, LPAIVs are capable to replicate only in limited
tissues of respiratory and digestive systems. In the field, LPAIVs
can cause severe disease if the host is stressed or if other diseases are
present (1,47). In cases of subclinical LPAIV infections, produc-
tion losses are observed due to anorexia in meat birds and drop in
egg production in breeders/layers. LPAIVs of HIN1 and HIN2
subtypes were shown to replicate in chicken and turkey
reproductive tracts (57,58,63,83,89). In the present review we
choose to focus on LPAIVs.

INFLUENZA A VIRUSES AND EVOLUTION

Because AI RNA-polymerase does not possess a proofreading
function, faulty nucleotides are integrated during replication with
high mutation rates of 102 o 1074 substitutions/site/year.
Besides mutations, viruses with segmented genomes change
genetically through genetic reassortment (antigenic shift) by
exchange of one or more segments between two related viruses
that infect a host cell at the same time (4,6). Genetic variability is
of vital importance for the survival of AIVs, and it is ensured
through mutations (antigenic drift) and reassortment (antigenic
shift) during the replication cycle of the virus (26). Infections with
multiple strains of AIV are well documented in ducks and lead to a
high viral genetic diversity. In contrast, mixed infections in
poultry are relatively rare and generally seen in areas where several
endemic strains circulate (1,79). In nature, the high prevalence of
mixed infections in chickens and ducks can then lead to genome
reassortment and result in antigenic shift (27,59). It has been
confirmed that genetic reassortment in LPAIVs has led to novel
phenotypes and increased virulence (37,40). Previous studies have
shown that seven genes of the H5N1 virus isolated in the Hong
Kong outbreak in 1997 have high sequence similarity to LPAIV
virus HONT1 (69). Similarly, in Pakistan extensive cocirculation of
HON2 viruses with other AIVs, including highly pathogenic
H5N1 and H7N3 subtypes, coupled with extensive vaccination

has generated a novel variant HIN2 with possibly increased
epizootic and zoonotic potentials (51). The novel HIN2 viruses
(A/chicken/Pakistan/UDL-01/08-like virus) currently circulating
in Pakistan have acquired PB2, PB1, PA, and NS gene segments
from HPAI H7N3 viruses with the other genes originating from
G1-like lineage HON2 viruses (40). Some LPAIVs, such as HON2,
can indeed break species barriers and provide genes to other
influenza virus, which could present a risk for severe human
infection (31).

LPAIVs AND COINFECTING PATHOGENS IN FIELD CON-
DITIONS

Over the last 15 years, influenza viruses of the HON2 subtype have
been isolated from outbreaks in poultry in various countries such as
Germany, Italy, Ireland, Saudi Arabia, Iran, Egypt, Israel, Pakistan,
China, Hong Kong, South Africa, and the United States (1,2,7,16).
Laboratory examination of specific-pathogen-free (SPF) chicken
showed that HON2 avian influenza virus causes little disease, but in
the last decade Asian and Middle Eastern countries have faced
frequent outbreaks of HON2 infection with high mortality (8,31). It
was reported that outbreaks of HON2 influenza viruses in Iranian
broiler chicken farms caused a 20-65% mortality rate, and the most
prominent lesions in affected dead birds were respiratory airway
hyperemia and severe exudation, which lead to tubular cast
formation in the tracheal bifurcation, extending to the lower
bronchi (52,53,66). However, it is also documented that LPAIVs,
such as the HIN2 subtype in domestic poultry, manifest mild
clinical signs and respiratory diseases with low mortality, not
exceeding 5% (79). Disease effects of Al may be far more devastating
in the presence of other organisms or other forms of stress (1). It is
proposed that concurrent infections may play a key role in
exacerbating mortality in chicken infected with mild AIVs.
Coinfection with other respiratory pathogens may complicate the
respiratory disease syndrome during outbreaks of non-highly
pathogenic avian influenza viruses and cause severe disease and high
mortality. Strains of infectious bronchitis viruses (IBVs) were
isolated from several broiler flocks during the course of the HON2
outbreak in Iran (55). Previous studies demonstrate that HON2 virus
infection contributes to respiratory distress and is involved in
diseases caused by other respiratory pathogens in the poultry
industry (36,79). Mixed infections of influenza virus with other
respiratory pathogens have been found to be responsible for high
mortality and resulted in great economic losses (1,8,29,49). Mixed
infections with Newecastle disease virus (NDV) and LPAIVs have
been reported in waterfowl, and competition between viruses during
isolation suggests an underestimation of coinfections in the
laboratory (24).

Other respiratory copathogens, such as Mycoplasma gallisepticum
(MG), Escherichia coli, and IBV, have been commonly identified in
the field and could have increased the severity of clinical syndromes
accompanying HON2 Al virus infections (70). MG and E. coli were
isolated from the field cases and may have played a role as
copathogens to Al virus in the clinical disease syndrome. Fibrino-
necrotic casts in the tracheal bifurcation were reported in turkeys
during the 1999 outbreak of H7N1 Al in Italy in association with
secondary bacterial pathogens such as E. coli, Riemerella anatipestifer,
and Pasteurella multocida (17).
respiratory pathogens, including LPAIVs, can cause severe air-
sacculitis (9,10,53). This suggests a common pathogenic mechanism

MG in combination with other
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with multiple lineages of AIVs causing extensive damage to
respiratory airways, followed by additional damage by secondary
pathogens. In severe cases, death was perceived as the result of
occlusion of the airway and resulting asphyxiation. The individual
role of HIN2 Al virus and copathogens needs to be determined in
future studies.

LPAIVs IN EXPERIMENTAL STUDIES

The pathogenicity and transmission of many LPAIV strains have
been investigated in experimental conditions in avian models. SPF
chickens are the most frequently used as a standard well-
characterized and relatively homogeneous host to carry out LPAIV
experimental infections. Table 1 summarizes the main experimental
infections of avian species with LPAIVs. Considering that different
research teams used various animal models (in term of species and
age), LPAIV strains, routes of inoculation, and doses, Table 1
illustrates the difficulty one may have to compare data generated
from different studies.

Avian models of 3-4 wk of age are commonly used for
experimental studies, likely because of their easy handling and low
feed cost at this age. Moreover, the intranasal route (IN) for the
inoculation of respiratory pathogens in avian models is the most
common followed by intratracheal (IT), per orally (PO), intraocular
(O), intramuscular (IM), intravenous (IV), intraoviduct (IO), and
intracloacal (C). The aerosol route is the most common route for the
spread of respiratory pathogens, which is why many researchers
choose IN or IT routes to simulate respiratory transmission of
LPAIV and complicating pathogens. Inoculation routes (IN, IC, and
0) were compared in a study where hens were inoculated with 10°
EIDs, of A/chicken/CA/1255/02(H6N2) or A/chicken/NJ/12220/
97(HIN2). Hens inoculated IN with H6N2 virus presented mild
clinical signs and shed higher virus titers in the higher respiratory
tract (as measured in oropharyngeal swabs) than their H6N2-
inoculated counterparts. Birds were less susceptible to HON2, which
was detected only in oropharyngeal swabs and only when inoculated
IN. Clinical signs and lesions were also less pronounced when the
pathogen was inoculated through oral and cloacal routes (57). In this
latter study the IN route of inoculation was hence the most efficient.
But it may be virus strain-specific and linked with preferential
binding of these HON2 and HIN2 viruses to the respiratory rather
than digestive tract of the chickens.

As far as inoculation dose is concerned, the most common dose
used in experimental studies is 10° EIDs for LPAIVs, and this dose
usually induces clinical signs and lesions. The latter are indeed dose
dependent. Thus, quail and turkeys infected oro-nasally with
increasing doses (10°~10° EIDs,/0.1 ml) of LPAIV (A/quail/Hong
Kong/G1/97) showed more disease and lesions when inoculated
with higher virus doses. Quail were more susceptible than turkeys;
they were readily infected with lower challenge doses (13).

Ex vivo tracheal organ culture (TOC) models have been proposed
as possible alternative to experimental LPAIV infections of the
respiratory tract to address some specific questions: TOC may be of
interest to compare the host susceptibility to different LPAIV strains
by monitoring induction of ciliostatis, necrosis of the epithelium, or
viral replication (61). But tissue cultures show obvious limitations
since they cannot address accurately the contribution of the immune
response.

LPAIVs AND COINFECTING PATHOGENS IN EXPERIMEN-
TAL STUDIES

It is well appreciated that upper respiratory tract viral infections in
poultry are often complicated by more serious bacterial diseases.
While influenza virus is most commonly thought of in this context,
other respiratory viruses, including NDV, IBV, and infectious
laryngotracheitis virus, may also predispose to secondary infections.
Several different bacteria have also been implicated, including MG,
E. coli, Avibacterium paragallinarum, Ornithobacterium rhinotra-
cheale (ORT), and Staphylococcus aureus (SA) (35,36,77). It is
thought that certain pairings of organisms better complement each
other than other potential pairings. Coinfections of poultry present a
complicated clinical picture confusing the identification and
diagnosis, and unfortunately little is known on the interactions
between coinfecting pathogens (19). Tables 2 and 3 summarize the
literature on experimental infections of birds with LPAIVs and
bacteria, and LPAIVs and avian viruses, respectively. Coinfection of
poultry with more than one bacterial and/or viral agent is common
and often results in increased clinical signs when compared to single-
agent infections (56,73,74). Conversely, infection of a host with one
virus may affect infection by a second virus, a phenomenon
explained by the occurrence of viral interference; cells infected by a
virus may not permit multiplication of a second virus (22). In
addition, viral interference may be detrimental to detecting viruses
in coinfected flocks since lower or undetectable virus titers might fail
to give a complete diagnosis (24). Coinfection of LPAIV A/chicken/
Iran/SH-110/99 (H9N2) with infectious bronchitis live vaccine led
to increased clinical signs and mortality rates as well as longer virus
shedding in chickens (36).

Significantly higher antibody titers against AIV was observed
during coinfection with IBV, which may indicate that IBV could
promote the propagation of HIN2 AIV (A/chicken/Iran/SH110/
99(HIN2)) or stimulate the immune response (67). IBV and LPAIV
coinfections have not been thoroughly studied, but live attenuated
IBV vaccine has been shown to interact with LPAIV HIN2
infection, leading to a more severe disease outcome than with
LPAIV alone (35,36). Coinfection of LPAIV A/mallard/MN/
199106/99(H3N8) and NDV (mallard/US(MN)/A106-978/2006)
in ducks resulted in a higher number of cloacal swabs detected
positive for LPAIV and a lower number of cloacal swabs detected
positive for NDV (25). Coinfection of chickens and turkeys with
NDV and LPAIV (A/turkey/VA/SEP/67/2002(H7N2) affected the
replication dynamics of these viruses but did not alter clinical signs
(19). ORT infection could lead to a higher mortality and economic
losses in presence of HIN2 AIV in chicken (56). Coinfection of
HIN2 influenza virus with SA or A. paragallinarum enhances the
replication of the virus in chickens, resulting in exacerbation of the
HON2 virus infection (42). Bacterial and viral infections cause huge
economic losses in the form of morbidity and mortality of birds.
Poor diagnosis, antibiotics, and vaccination cost for the prevention
or treatment of viral and bacterial infections (and emergence of
antibiotics-resistant bacteria) are major issues for poultry industry.
The medical community has expressed concern that antibiotic use in
food animals may promote the development of antibiotic-resistant
strains of bacteria that could impact human health too (32).
Antibiotic resistance is also an economic burden on the health care
system. This global trend toward restriction of antibiotics use in
poultry farms may lead to an increase of bacterial coinfections and
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Main findings

oropharyngeal shedding in other ducks and gulls

lesions in all type of ducks
e Efficient virus replication

¢ Efficient replication of all virus strains
® Cloacal shedding of H3N8 and H5N2 in mallards but

* No morbidity, mortality, gross and histopathological

® H7N3 virus shedding in respiratory tract only
® No clinical signs but high virus shedding

route
IN
IN

Infection

Infection
dose (/bird)

10° EIDsg
10%° EIDsg

Animals/age

10-16-wk-old duck
ducks, laughing gulls)

(mallards, red heads, wood

4-wk-old duck

Continued.
Influenza virus strain
A/mallard/MN/355779/00(H5N2)

A/mallard/MN/182761/98(H7N3)
cx: chicken, dk: duck, dpi: days post inoculation, EID: egg infectious dose, HA: hemagglutination, IC: intracloacal, IHC: immunohistochemistry, IN: intranasal, IO: intraoviduct, IP:

intraperitoneal, I'T: intratracheal, IU: intrauterine, IV: intravenous, LPAIV: low pathogenic avian influenza virus, O: intraocular, PO: per orally, qu: quail, SPF: specific-pathogen-free, TCID: tissue

A/mallard/MN/199106/
culture infectious dose, ty: turkey.

99(H3N8)

(H3N8)

Table 1.
A

A/mallard/Minnesota/199106/99

Coinfections in avian models 9

stresses the need for better understanding of these complex
interactions 77 vivo to define innovative approaches of control.

As for LPAIV infections alone, the most common avian models
for the study of viral and bacterial coinfections are chickens. Ducks,
turkeys, quail, and partridges have also been used to address different
research questions. One possible reason for the most widely use of
chicken as an avian model may be their easy handling, availability,
low price, and early maturity as compared with other avian models.
In addition to this, chickens are also the most economically
important (largest industry) type of poultry worldwide.

The classical doses used for bacteria inoculation (MG, E. coli) as
described in literature are 10° to 10° colony-forming units (CFUs).
Clinical signs and lesions severity have been shown to increase in a
dose-dependent manner. Bacterial coinfections lead to more severe
lesions when the bacterial were inoculated IN or via an aerosol route.
In an experimental coinfection study with LPAIV H3N8 (A/
mallard/Hungary/19616/07) and MG inoculated through aerosol
spray, the authors showed that LPAI H3N8 virus alone did not
cause any clinical signs, but MG infection caused clinical signs,
reduction of body weight gain, and colonization of the inner organs.
These parameters were more severe in the birds coinfected with MG
and LPAIV H3N8 than in the group challenged with MG alone.
Coinfection with LPAIV H3N8 thus enhanced the pathogenesis of
MG significantly (73,74). Barbour ez al. coinfected chickens IT or
intrathoracically with HON2 LPAIV and E. co/i. High and acute
mortality was observed with the intrathoracic inoculation route for
E. coli (9,10).

LPAIV coinfection with other viruses promotes replication of
LPAIV, leading to increase the severity of clinical signs, mortality
rate, and gross lesions (35,67). However, these viruses can interfere
during viral replication phase as reported in previous studies. Franga
and colleagues documented higher shedding of LPAIV in cloacal
swabs when mallards were coinfected with LPAIV and NDV on the
same day. Conversely, marked reduction of NDV in cloacal swabs
was observed during the study. At the same time, reduced LPAIV
and NDV was observed in oropharyngeal swabs. However,
coinfection with LPAIV and NDV did not affect replication of
LPAIV (H3NS8) in intestine and bursa of Fabricius. Viral
interference during replication can be a possible reason for the
decrease of NDV shedding in cloacal swabs, and LPAIV may have
reduced or inhibited NDV replication (25). Similarly, Costa-
Hurtado and colleagues reported that coinfection of chicken and
turkeys with LPAIV (H7N2) and NDV can affect replication
dynamics of these viruses but did not affect clinical signs. This virus
replication pattern was dependent on timings of inoculation and
bird species, suggesting that coinfection with two different viruses
can result in temporary cell receptor binding competition (19).
During this study, chickens and turkeys were infected with an NDV
vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/ SEP-67/
2002) simultaneously or sequentially 3 days apart. No clinical signs
were observed in chickens coinfected with NDV and LPAIV, while
all turkeys showed mild clinical signs during coinfection. The
replication dynamics of these viruses was, however, affected by the
coinfection: lower virus titers and fewer birds with virus replication
were recorded, especially when LPAIV was followed by NDV. These
results suggest that infection with a heterologous virus may result in
temporary competition for cell receptors or competent cells for
replication, most likely interferon-mediated, which decreases with
time (19).
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Main findings
clinical signs, and higher mortality in coinfected birds

turkeys, respectively, after single or coinfection
* Delay in virus shedding peak in coinfected chickens

coinfected birds
* Higher antibody titers against HIN2 virus in coinfected

* No clinical signs and mild clinical signs in chickens and
* Higher digestive shedding of AIV for coinfected birds
* Exacerbated clinical signs, gross lesions, and mortality in

* Longer shedding period of HON2 virus, more severe

* Efficient AIV and NDV replication

A

Infection
route
O, IN
IN + spray
IN
IN

Infection dose

107 EI Ds,
sample

10° EIDsg

(H9N2),

10° EIDs,

(IBV)

10° EIDs,

0.2 ml homogenized

Animal/age
3—4-wk-old chicken (white
leghorn layer) and turkey

3-wk-old chicken (broiler)
3-wk-old chicken (broiler)

Summary of LPAIV and avian virus coinfections in different avian models in experimental conditions.
5-wk-old mallard

Viral strains

Alty/VAISEP/67/02(H7N2)
attenuated vaccine, Mass type,

H120 strain)
A/mallard/MN/199106/99(H3N8)

Table 3.

Mallard/US(MN)/AI06-978/06 (NDV)
Alcx/Tran/SH110/99(HIN2)

APMV1/ex/US(N]J)/LaSota/46 (NDV)
IBV vaccine strain IB 4/91

Alcx/Tran/SH-110/99(HIN?2),
IBV live vaccine (freeze-dried live

Coinfections in avian models 11

Viral interference is a phenomenon in which a cell infected by a
virus does not allow replication of a second homologous or
heterologous superinfectant virus (22). Viral interference can result
from different mechanisms, including competing by attachment
interference therefore reducing or blocking of receptor sites for the
superinfecting virus, competing intracellularly for replication host
machinery, and virus-induced interferon interference. NDV and
LPAIV replicate in cells where there are trypsin-like enzymes such as
in the upper respiratory and intestinal epithelia and might compete
for the same target cells or replicate in adjacent cells (77). Both
NDV and AIV bind to sialic acid-linked glycoconjugates on host
cells and may also compete for host cell machinery during viral
replication (25,76). In addition, previous replication in the same site
of another virus may affect replication by activating antiviral
immune responses. Although the LaSota NDV strain is known to be
a weak interferon inducer as part of their low virulent phenotype
profile, local interferon production might still be able to interfere
with LPAIV replication (23). In fact, previous studies in
embryonated eggs showed that LaSota NDV could suppress growth
of a HIN2 LPAIV, provided NDV was inoculated prior to LPAIV
(28). Influenza virus—induced interferons may be the other possible
reason for the inhibited replication of NDV (43). Viral interference

birds

has also been suggested in other studies with influenza virus in
humans (HIN1). It was reported that increase in the proportion and
number of rhinovirus can decrease influenza virus diagnoses in
human, suggesting that rhinoviruses may compete with influenza
virus for receptor binding and replication (4). Bacterial and viral
coinfections usually show synergistic effects and exacerbate clinical
signs and lesions. No competition between pathogens is observed
then.

TIMING OF COINFECTIONS

In an attempt to put together the available methods reported in
the literature for coinfections in experimental conditions, and
mainly to see which time line may best fit field coinfections
situations, we drew time arrows summarizing LPAIV and
coinfecting bacteria experiments (Fig. 1) as well as LPAIV and
coinfecting virus experiments (Fig. 2). The studies in experimental
conditions conducted so far report either simultaneous infections
(central parts of the figures, in the arrows), or subsequent infections
usually 3 days apart (bacteria or virus followed by LPAIV, LPAIV
followed by bacteria or virus on the top or bottom panel of the
figures, respectively). The 3-day interval chosen between subse-
quent infections was pretty consistent throughout literature (10,19,
35,42,73,74). Just five studies compared in parallel simultaneous
and subsequent infections with similar experimental conditions.
Kishada and colleagues first studied LPAIV HIN2 and Avibacte-
rium  paragallinarum with simultaneous inoculation and SA
infection followed by LPAIV HIN2 inoculation (42). The use of
two different bacteria made a systematic comparison of the timing
of coinfection difficult. Pan ez al. coinfected chickens with LPAIV
HIN2 and ORT and showed that when ORT was inoculated
before or at the same time as LPAIV HIN2, the disease outcome
was more severe (56). LPAIV (H7N2 in chickens or H3NS8 in
mallard) and NDV experimental coinfections have been more
systematically studied (19,25). While a minimal effect of the
LPAIV and NDV coinfection was observed on a clinical point of
view, an altered shedding pattern was detected in both mallards

cx: chicken, EID: egg infectious dose, IBV: infectious bronchitis virus, IN: intranasal, LPAIV: low pathogenic avian influenza virus, NDV: Newcastle disease virus, O: intraocular, ty: turkey.

A
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- no clinical signs and gross lesions
with H3N8 virus infection alone
- rc{spirfitf)ry ;igns, ai.rsaccglitis, and - 1o signs of disease were
peritonitis with MG mf§ctlon glone found }i:n chickens
- More severe clinical signs with -exacerbation of clinical signs and inoculated with virus or
. H3N8 and MG [73,74] gross lesions during co-infection bacteria alone.
bactel‘la followed by with HON2 virus and SA or AP [42] - severe clinical signs and
LPALIYV infection e
MG [73,74] H3N8 [73,74]
' SA [42) HON2 [42]
d1s ) d22 HON2 [56] d28 d31
75 2l QT 4y e r
simultaneous ORT + HIN2 [6] ORT + H9N2 [56] AP+HIN2[42] . coli+ H3N8 [62]
inoculations
d28
dig 21y — 'y d35@
d20 d23 d24
HYN2[56] = ORT [56]
. - Enhanced clinical sign:
LPAIV followed by | | -Severe clinica HON2[10]  E. coli 078 [10] and gross Iesions [10]

bacteria infection

Fig. 1.

signs, gross lesions
and mortality in co-
infected birds [6]

- severe clinical signs and mortality with
simultaneous infection or ORT followed by HON2
- no mortality or clinical signs with ORT alone,
HIN2 alone, or HON2 followed by ORT [56]

Time arrow of LPAIV and bacteria coinfections in experimental conditions. AP: Avibacterium paragallinarum, d: day, LPAIV: low

pathogenic avian influenza virus, MG: Mycoplasma gallisepticum, ORT: Ornithobacterium rhinotracheale, SA: Staphylococcus aureus.

and chickens, irrespective of the timing of the coinfection (19,25).
When LPAIV and IBV live vaccines were both administered to
chickens, the coinfection led to more severe clinical signs and
longer LPAIV shedding, again irrespective of the timing of
coinfection (35). In the laboratory setting, the timing of
coinfections therefore does not seem to play an essential role in
pathogenesis. While common knowledge in virology associates
coinfections with a virus coming first followed by a bacterium, the

virus followed by

(3,5,48,71).

timing in the field may actually be opposite with commensal
bacteria that are there first and may become a problem when a virus
superinfects the birds (14). Manheimia haemolytica, Gallibacterium
anatis, and Pseudomonas aeruginosa have indeed been identified as
commensal bacteria of the upper respiratory tract of poultry, while
they may also be found in sick birds either in the presence of a
coinfecting pathogen or in difficult environmental conditions

- no clinical signs in chickens for single and co-infections
- mild clinical signs in turkeys with or without NDV

- lower early virus shedding (2-3 dpi) but higher late virus
shedding [19]

- minimal effect of LPAIV and NDV co-infection in

mallard

- co-infection increased LPAIV and reduced NDV
digestive shedding and simultaneous co-infection
altered oropharyngal shedding [25]

by virus infection

Fig. 2.

- extension of the shedding
period of H9N2 virus, more
severe clinical signs, higher
mortality rate [36]

- exacerbation of clinical signs and gross lesions
- increased mortality and extended viral shedding
period of HIN2 virus [35]

pathogenic avian influenza virus, NDV: Newcastle disease virus.

LPAIYV infection
1B HIN2
¥ [35] ’ NDV[19] NDV[25] H7N2 [19] H3NS [25]
d21 d24 d28 d33 d31 d35-38
(] (] [} [ [} (]
simultaneous
IBV + HIN2 [36 NDV + H7N7 [19 NDV + H3NR8 [25 IBV + HON2 [35
inoculations 361 [19] (5] [35] 1BV +HIN2[67]
O O O O
d21 d26 d28 d3l
HON2 BV H7N7 NDV
[35] [19]
LPAIYV followed

- clinical signs, mortality rate and gross
lesions exacerbated

- significantly higher antibody titer against
HON2 virus [67]

Time arrow of LPAIV and avian virus coinfections in experimental conditions. d: day, IBV: infectious bronchitis virus, LPAIV: low
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SPF VERSUS COMMERCIAL BIRDS FOR EXPERIMENTAL
INFECTIONS

In chickens, to avoid interference with other pathogens and in an
attempt to “standardize” experiments, researchers usually inoculate
SPF birds. The absence (or very limited supply) of SPF turkeys,
quail, and other poultry species makes it of course difficult:
commercial birds are then used in experimental conditions. The SPF
versus commercial bird (broiler, layer, or breeder) comparison for
LPAIV infections (with or without complicating pathogens) has,
however, never been properly investigated. The immune responses
of two types of chickens have been compared to some extent in
vaccine studies that aimed at understanding differences in vaccine
protection in the laboratory and in the field (30,38,65,81). These
studies show a better antibody response of SPF chickens than
commercial birds, likely due to the differences among genetic lines
of chickens in antibody development.

To our knowledge a single study compared SPF and commercial
birds for LPAIV pathogenicity. Ladman ez al. (45) indeed observed
respiratory signs, airsacculitis, and microscopic lesions in the trachea
and lung of broilers infected with LPATV H7N2 but very rarely in
SPF layers. Systemic (serum) antibodies were also detected earlier in
broilers than in SPF layers. The authors suggested that one rethink
the choice of bird type for LPAIV pathogenesis studies. To mimic
the field situation, commercial birds of course seem more
appropriate also in experimental settings, but care should be taken
to control the health status of the birds. Vaccination history should
also be respected to be closer to the farm situation.

To study LPAIV pathogenesis to better understand disease
outcome in the field, thought should be given to the design of
experimental settings. Depending upon the research question
asked, different protocols may be selected. In addition to the
variables we have just reviewed, bird type, single infections or
coinfections, timing, dose of infection(s), and environmental and
management variables play a critical but poorly controlled role in
the disease outcome in farms. Contaminated dust is a known
source of respiratory pathogens, which is very difficult to reproduce
in laboratory settings. One way to address the spread of respiratory
pathogens with dust in experimental conditions is to inoculate
birds by aerosol rather than IN or IT. In a clinical study, authors
compared the 50% infectious dose (IDsqg) by aerosol and IN
inhalations and showed a 100-fold lower IDs in the first case (80).
Access of virus particles to the deep air sacs is actually bypassed
when birds are infected IN or IT. The use of aerosols for 7 vivo
infections may help reduce the gap between the laboratory and the
field. Temperature and humidity can now also be regulated (and
brought closer to the farm conditions) in poultry isolators with
relevant technicity. All these improvements in experimental
conditions will contribute to bringing laboratory settings closer
to the field situation, but one should stay aware of the remaining
gap between the two configurations and not overinterpret
experimental results.

CONCLUSION

Taken together, this review of literature suggests that to study
coinfections with LPAIV and a complicating pathogen in
experimental conditions, using young (3—4 wk-old) birds, 10°
EIDs of virus, and 10 CFU of bacteria per bird, IN, would most
likely lead to clinical observations and would allow for better

comparison of the findings with previously published studies. While
using SPF birds (for chickens) makes comparison with published
data easier, commercial birds with a carefully checked health status
better reflect the field situation and may be even more susceptible to
infections than their SPF counterparts. Further studies are warranted
to truly assess the cost benefit of using commercial birds and to
determine the adequate timing of the coinfection in relation to the
field situations. Environmental factors (temperature, relative
humidity, ammonia level, etc.) should also be taken into account
because they definitely play a role in the field but have so far not
been much looked at in experimental settings.
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