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ABSTRACT 

Genomic prediction models have been commonly employed in plant breeding but only in 

reduced data sets comprising a few hundred genotyped individual plants. However, pedigree 

information for an entire breeding population is frequently available, as are historical data on the 

performance of a large number of selection candidates. The single-step method extends the 

genomic relationship information of genotyped individuals to pedigree information from a larger 

number of phenotyped individuals so as to combine relationship information on all members of 

the breeding population. Furthermore, genomic prediction models that incorporate genotype × 

environment interaction (G×E) have produced substantial increases in prediction accuracy 

compared to single-environment genomic prediction models. The main objective of this study 

was to show how to use single-step genomic and pedigree models to assess the prediction 

accuracy of a large number of CIMMYT wheat lines (58,798) evaluated in several simulated 
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environments in Cd. Obregon (Mexico), and predict the grain yield performance of some of them 

in several sites of South Asia (India, Pakistan and Bangladesh) using a reaction norm model that 

incorporates G×E. Another objective of this study was to describe the statistical and 

computational challenges encountered when developing the pedigree and single-step models in 

such large data sets. Results indicate that genomic prediction accuracy achieved by models using 

only pedigree, only markers, or both pedigree and markers to predict varying environments in 

India, Pakistan and Bangladesh is higher (0.25-0.38) than prediction accuracy of models that use 

only phenotypic prediction (0.20) or that do not include the G×E term. 

 

Keywords: wheat pedigree prediction, wheat genomic prediction, single-step prediction 

accuracy, genotype × environment interaction, international environments. 

 

 

 

INTRODUCTION 

Global wheat production is increasing less than 1% annually, and recently wheat yields have 

stagnated in many regions of South Asia (Ray et al., 2012). In South Asia, the wheat crop is 

already being grown under high temperature conditions; however, due to climate change, 

temperatures could increase well beyond the optimal for growing wheat, which would further 

reduce grain yield. As a result, South Asian countries may not be able to meet the region’s 

already growing demand for wheat grain. 

Well managed crop improvement programs are necessary to increase food production in 

different parts of the world. Several molecular marker methods have proven their relevance in 

different cereal crops. Genomic selection (GS) is becoming a standard approach to achieve 

genetic progress in plants because it reduces the generation interval by reducing the need to have 

progeny field-tested every cycle. Breeding values can be predicted as the sum of the effects of all 

markers by regressing the values of the phenotypes on all markers (Meuwissen et al., 2001). 

Several authors have successfully implemented GS in plant breeding with intermediate-to-high 

density marker coverage for traits such as grain yield, biomass yield, resistance to several 

diseases, and flowering evaluated under different environmental conditions. Studies have 

demonstrated that some of the factors determining prediction accuracy in GS are the heritability 

of the trait, the number of markers, the size of the training population, the relationship between 
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the training and the testing sets, and genotype × environment interaction (G×E) (de los Campos 

et al., 2009; Crossa et al., 2010, 2011; Pérez-Rodríguez et al., 2012; Burgueño et al., 2012; 

Hickey et al., 2012; González-Camacho et al., 2012; Riedelsheimer et al., 2012; Weber et al., 

2012). Furthermore, including high-density marker platforms with G×E interactions adds power 

to GS models (Burgueño et al., 2012; Jarquín et al., 2014; López-Cruz et al., 2015; Heslot et al., 

2012). 

Recently, genomic predictions have been extensively studied in bread wheat using elite 

germplasm sets (de los Campos et al., 2009, 2010; Crossa et al., 2010; Gónzalez-Camacho et al., 

2012; Heslot et al., 2012; Pérez-Rodríguez et al., 2012; López-Cruz et al., 2015). The results 

have proven that the use of dense molecular markers coupled with pedigree information 

increases the prediction accuracy of unobserved phenotypes. One of the problems usually 

encountered by GS in animal and plant breeding is that the number of evaluated lines exceeds the 

number of genotyped lines, due to genotypic costs. Nejati-Javaremi et al. (1997) were the first to 

propose incorporating genotypic information for predicting the breeding values of animals in a 

manner similar to the way pedigree information is used in the Best Linear Unbiased Predictor 

(BLUP) method. When the pedigrees of all phenotyped individuals were available but only some 

were genotyped, dairy cattle researchers (Misztal et al., 2009; Legarra et al. 2009; Aguilar et al. 

2010, 2011; Christensen et al., 2012) derived a unified (single-step) computation approach for 

Genomic Best Linear Unbiased Predictor (ssGBLUP) for combining phenotypic, pedigree and 

genomic information based on Henderson’s (1975, 1976) standard mixed model equations. 

These authors augmented pedigree-based relationship matrix (A) with contributions from 

genomic relationship matrix (G) of the genotyped individuals. They showed how to modify the 

original A matrix to obtain an H matrix that includes not only the pedigree-based relationship 

matrix but also a matrix that contains the differences between genomic-based and pedigree-based 

matrices. These authors also developed efficient computer algorithms for inverting matrix H 

computed from large numbers (millions) of animals in the data. 

Although augmenting matrix A by using only a fraction of the individuals that were 

genotyped would reduce genotyping costs, the ssGBLUP method has not been extensively 

applied in plant breeding. Just recently, Ashraf et al. (2016) were the first to investigate the 

impact on prediction accuracy when some wheat lines were not genotyped and only pedigree and 

phenotype information was available; the authors concluded that the ssGBLUP method for 
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deriving matrix H can provide higher prediction accuracy than either genomic or pedigree-based 

prediction. In plants, the ssGBLUP approach proposed by Ashraf et al. (2016) has been used 

with a limited number of lines. The approach has not been tested on large datasets, e.g., every 

cropping cycle, CIMMYT’s Global Wheat Program (GWP) generates thousands of new breeding 

lines that are candidates for field evaluation. Applying GS in the GWP is economically feasible 

(1) when advancing breeding lines in the first preliminary yield trials to predict the performance 

of the selected lines in multi-environment trials or (2) for predicting a selected set of lines in 

different international target environments using as a training set the parents evaluated in Mexico 

and the progeny to be predicted in international environments such as those in South Asia. 

In recent years, the GWP aimed at forming a large reference data set comprising 58,798 

breeding lines, including their phenotypic and pedigree data from the last seven cropping cycles 

in Cd. Obregon (Mexico) and South Asia. This large reference set contains complete phenotypic 

data and pedigree information; however, only 29,484 of the lines have been genotyped. 

Therefore, an H matrix that combines wheat lines having only molecular markers with those 

having pedigree and phenotype must be generated. 

The main objectives of this study were (1) to use the large reference set for predicting the 

performance of wheat lines in several environments in South Asia; and (2) to perform the 

predictions using phenotypic, pedigree and genomic information to genetically evaluate the 

wheat lines using a single-step model that combines pedigree and marker information into a 

unified H matrix. Here we used information for genotyped and non-genotyped individuals 

combined, by applying the method proposed by Legarra et al. (2009) and Aguilar et al. (2010). 

Prediction accuracy was studied using a G×E interaction multiplicative model (the reaction norm 

model of Jarquín et al., 2014) with pedigree information (A), genomic information (G), or both 

(H) and comparing its prediction accuracy results to those of a genomic model that does not 

include G×E interaction. This reaction norm model uses highly random dimensional matrices for 

the genomic and pedigree matrices. We also describe the statistical and computational challenges 

encountered when developing the pedigree and single-step models in such large data sets. 
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MATERIALS AND METHODS 

Experimental data 

The data set included a total of 58,798 wheat lines that were evaluated at the Norman E. Borlaug 

Experiment Research Station in Ciudad Obregon, Mexico, under various field management 

conditions (Optimal, Drought, Late Heat, Severe Drought and Early Heat) during seven cycles 

(2009-2016). Some of the lines were also evaluated under the same conditions in South Asia 

(Jalbapur, Ludhiana and Pusa in India; Faisalabad in Pakistan; and Jamalpur in Bangladesh) 

during 2013-2016. Original data from each year comprise a large number of trials, each 

established using an alpha-lattice design with three replicates. The field management conditions 

under which each trial was established in each year are described in Table 1. The conditions-

location combinations will be referred to as environments. Table 2 shows the number of lines 

evaluated in each environment. 

The basic model fitted to each of the 12 environments described in Table 2 comprises the 

random effects of the trials, the random effects of the replicates within trials, the random effects 

of the incomplete blocks within trials and replicates, and the random effects of the breeding 

lines. 

A pedigree relationship matrix (A) for the 58,798 individuals was computed using a 

modified version of the software ‘pedigreemm’ (Bates and Vazquez, 2009) that accounts for self-

pollination; the latest version of the routines can be found at 

https://github.com/Rpedigree/pedigreeR. Given the dimensions of A, it is difficult to hold it in 

RAM memory and compute it. Appendix A shows the small R script (R Core Team, 2016) that 

was used to obtain and store the relationship matrix. It uses results from partitioned matrices to 

obtain the result and speed up the computations; R was recompiled from source and linked 

against OpenBLAS (http://www.openblas.net ). For further details on the computations, see 

Appendix A. In total, 29,484 individuals were genotyped using Genotyping by Sequencing 

(GBS) (e.g., Elshire et al., 2011). We kept all the SNP markers and imputed the missing values 

using observed data. Markers with minor allele frequency (MAF) of less than 0.05 were 

removed; after this process, 9,045 markers were available for prediction. 

 

Statistical models 
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Recently, Jarquín et al. (2014) and López-Cruz et al. (2015) proposed statistical models 

for performing genomic predictions taking into account G×E. The models were originally 

developed to incorporate genetic information from molecular markers and, in the case of 

Jarquín’s model, it is also possible to incorporate environmental covariates. The Jarquín model 

has also shown to be useful when the genetic information is obtained from a pedigree (Pérez-

Rodríguez et al., 2015). Here we describe Jarquín’s model based on genomic and pedigree 

information. To speed up the computations and make them feasible, we re-parametrized the 

original model by using very well-known results from Cholesky decomposition and mixed 

models (e.g., Henderson, 1976; Harville and Callanan, 1989). 

 

Model 1: GE interaction using pedigree 

The parametric GE interaction model takes into account the main effect of 𝐸 

environments, the main effect of genotypes and the interaction between genotypes and the 

environment. In matrix notation, the model can be written as: 

𝒚 = 𝜇𝟏 + 𝒁𝐸𝜷𝐸 + 𝒁𝑔𝒖1 + 𝒖2 + 𝒆,            (1) 

where 𝒚 = (𝒚1, … , 𝒚𝐸)′ is the response vector, and 𝒚𝑗 represents the observations in the j-th 

environment (𝑗 = 1,… , 𝐸). The general mean is 𝜇; 𝒁𝐸 is an incidence matrix for environments, 

which is assumed multivariate with 𝜷𝐸~𝑀𝑁(𝟎, 𝜎𝐸
2𝑰); 𝒁𝑔 is an incidence matrix that connects 

genotypes with phenotypes; 𝒖1 represents the random effect of genotypes; it is assumed 

multivariate with 𝒖1~𝑀𝑁(𝟎, 𝜎𝑢
2𝑨); and 𝒖2 represents the effect of GE interaction. We assume 

𝒖2~𝑀𝑁(𝟎, 𝜎𝑔𝑒
2 (𝒁𝑔𝑮𝒁𝑔

′ )#(𝒁𝐸𝒁𝐸
′ )), where # denotes the Hadamard product (cell-by-cell) of the 

two matrices in parentheses (see Jarquín et al., 2014; Pérez-Rodríguez et al., 2015). Finally, we 

assume that the residuals are distributed as follows: 𝒆~𝑀𝑁(𝟎, 𝜎𝑒
2𝑰). 

Since 𝑨 is positive definite and symmetric, it can be factored as 𝑨 = 𝑳𝑳′ by using 

Cholesky decomposition. Therefore, from (1): 

𝒁𝑔𝒖1 =
𝑑
 𝒁𝑔𝑳𝒖1

∗              (2) 

where 𝒖1
∗~𝑀𝑁(𝟎, 𝜎𝑢

2𝑰). Furthermore, it is not necessary to perform the 𝒁𝑔𝑳 product because for 

each row of the resulting matrix, we just need to copy the k-th row of L, where k is the column in 

the i-th row of 𝒁𝑔 that is different from zero, that is, 𝒁𝑔(i, k) is equal to one. The matrix 𝒁𝐸𝒁𝐸
′  is 

block diagonal; blocks different from zero correspond to matrices with ones, i.e., 
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𝒁𝐸𝒁𝐸
′ = (

𝑱1    
 𝑱2   
  ⋱  
   𝑱𝐸

),            (3) 

where 𝑱𝑗  (𝑗 = 1,… , 𝐸) is a square matrix with ones whose dimensions correspond to the number 

of genotypes evaluated in environment 𝑗. Since 𝒁𝐸𝒁𝐸
′  is block diagonal, in order to compute 

𝒁𝑔𝑨𝒁𝑔
′ #𝒁𝐸𝒁𝐸

′ , we just need to compute the corresponding block elements in the diagonal of 

𝒁𝑔𝑨𝒁𝑔
′ = 𝒁𝑔𝑳𝑳

′𝒁𝑔
′ . Let 𝒁𝑔𝑳 = �̃�; then 

�̃� = �̃��̃�′ =

(

 

�̃�11 �̃�12 ⋯ �̃�1𝐸
�̃�21 �̃�22 ⋯ �̃�2𝐸
⋮ ⋮ ⋱ ⋮
�̃�𝐸1 �̃�𝐸2 ⋯ �̃�𝐸𝐸)

 

(

 

�̃�11 �̃�12 ⋯ �̃�1𝐸
�̃�21 �̃�22 ⋯ �̃�2𝐸
⋮ ⋮ ⋱ ⋮
�̃�𝐸1 �̃�𝐸2 ⋯ �̃�𝐸𝐸)

 

′

, 

The block diagonal elements of �̃�, can be computed as follows: 

�̃�11 = ∑ �̃�1𝑗�̃�1𝑗
′

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠

= 𝑨11 

                                     ⋮            (4) 

�̃�𝐸𝐸 = ∑ �̃�𝐸𝑗�̃�𝐸𝑗
′

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠

= 𝑨𝐸𝐸  

where 𝑨𝑗𝑗 , corresponds to the relationship matrix for individuals evaluated in environment 𝑗. 

From (3) and (4) and by using Cholesky decomposition, the term 𝒁𝑔𝑨𝒁𝑔
′ #𝒁𝐸𝒁𝐸

′  can be obtained 

as follows: 

𝒁𝑔𝑨𝒁𝑔
′ #𝒁𝐸𝒁𝐸

′ = 𝐵𝐷𝑖𝑎𝑔(𝑨11, … , 𝑨𝐸𝐸) = 𝐵𝐷𝑖𝑎𝑔(𝑳1𝑳1
′ , … , 𝑳𝐸𝑳𝐸

′ ) = 𝑳𝑔𝑒𝑳𝑔𝑒
′ ,    (5) 

 

where 𝑳𝑔𝑒 = 𝐵𝐷𝑖𝑎𝑔(𝑳1, … , 𝑳𝐸). Therefore, from (5): 

𝒖2 =
𝑑
 𝑳𝑔𝑒𝒖2

∗ ,                           (6) 

where 𝒖2
∗~𝑀𝑁(𝟎, 𝜎𝑔𝑒

2 𝑰) and “=
𝑑
 ” stands for equality in distribution. 

 

Therefore, using results from (2) and (6), model (1) can be written as: 

𝒚 = 𝜇𝟏 + 𝒁𝐸𝜷𝐸 + 𝒁𝑔𝑳𝒖1
∗ + 𝑳𝑔𝑒𝒖2

∗ + 𝒆           (7) 

Models (1) and (7) are equivalent, but model (7) has at least two advantages over model 

(1): (i) it avoids many matrix products, and (ii) it can be implemented relatively easily using the 

well known Gibbs sampler (Geman and Geman, 1984) in the Bayesian framework. 
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Model 2: GE interaction using molecular markers 

Let 𝑾 be a 𝑔 × 𝑝 matrix of standardized markers, where 𝑔 is the number of genotyped 

individuals and 𝑝 is the number of markers; let 𝑮 = 𝑾𝑾′/𝑝 be the genomic relationship matrix 

(López-Cruz et al., 2015). A model similar to (1) can be obtained by replacing 𝑨 with 𝑮. 

 

Model 3: GE interaction using molecular markers and pedigree (single-step approach) 

In this model, the information for genotyped and non-genotyped individuals is combined 

using the approach proposed by Legarra et al. (2009) and Aguilar et al. (2010). A relationship 

matrix that includes full pedigree and genomic information is given by: 

𝑯 = [
𝑨𝑛𝑛 + 𝑨𝑔𝑛

′ 𝑨𝑔𝑔
−1(𝑮𝑎 − 𝑨𝑔𝑔)𝑨𝑔𝑔

−1𝑨𝑔𝑛 𝑨𝑔𝑛
′ 𝑨𝑔𝑔

−1𝑮𝑎

𝑮𝑎𝑨𝑔𝑔
−1𝑨𝑔𝑛 𝑮𝑎

], 

where the matrix is divided based on whether the individuals have been genotyped or not. 

Submatrices 𝑨𝑔𝑔, 𝑨𝑛𝑛 and 𝑨𝑔𝑛 are submatrices of 𝑨 containing relationships among genotyped 

individuals, among non-genotyped individuals and between genotyped and non-genotyped 

individuals, respectively (Legarra et al., 2009; Christensen et al., 2012). 𝑮𝑎 is an adjusted 

relationship matrix obtained from the genomic relationship matrix given by López-Cruz et al. 

(2015), i.e., 𝑮 = 𝑾𝑾′/𝑝 and 𝑨𝑔𝑔, that is: 

𝑮𝑎 = 𝛽𝑮+ 𝛼, 

where 𝛽 and 𝛼 are obtained by solving the following system of equations: 

𝐴𝑣𝑔(𝑑𝑖𝑎𝑔(𝑮))𝛽 + 𝛼 = 𝐴𝑣𝑔 (𝑑𝑖𝑎𝑔(𝑨𝑔𝑔)), 

𝐴𝑣𝑔(𝑮)𝛽 + 𝛼 = 𝐴𝑣𝑔(𝑨𝑔𝑔), 

where 𝑮𝑎 is a rescaled matrix such that: (i) the average of the diagonal elements is equal to the 

average of the diagonal elements of 𝑨𝑔𝑔, and (ii) the average of all the elements is equal to the 

average elements of 𝑨𝑔𝑔. See Christensen et al. (2012) for further details. Note that in this 

formulation based on H (and not its inverse), H does not need to be full rank. 

Appendix B shows the R code that allows us to build the H matrix. A parametric GE 

interaction model takes into account the effect of 𝐸 environments, the main effect of genotypes 

and the interaction between genotypes and the environment. A model that uses information 
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obtained from markers and pedigree can be obtained by replacing the A matrix in model (1) with 

the H matrix described above. 

 

Model without GE interaction 

Note that models that do not include the GE term can be derived from models 1-3 just 

by removing the corresponding random GE term. For example, by removing the term 𝒖2 

representing the effect of GE from model (1), it becomes 

𝒚 = 𝜇𝟏 + 𝒁𝐸𝜷𝐸 + 𝒁𝑔𝒖1 + 𝒆  

In this case, the resulting models are equivalent to the across-environment GBLUP model 

of López-Cruz et al. (2015). We include models without the GE term in order to compare the 

prediction accuracy of models with and without GE interaction. The single-environment model 

was not included because all the wheat lines included in the prediction of South Asian 

environments had complete pedigree and markers; thus developing matrix H for the single-step 

model does not make sense. 

 

Assessing the model’s predictive ability 

The main interest of breeders is to predict the performance of non-evaluated lines in South Asian 

sites (Jalbapur, Ludhiana, Pusa in India; Faisalabad in Pakistan; and Jamalpur in Bangladesh). To 

mimic that situation, we designed a cross-validation scheme where we fitted the GE models 

(models 1-3) as well as models without GE using as the training set all available records under 

Drought, Late Heat, Optimal and Severe Drought conditions obtained in Cd. Obregon (Mexico), 

and 20% of available records in each of the South Asian sites assigned at random. In the 

prediction process, 80% of lines in the corresponding sites in the South Asian countries (India, 

Pakistan, and Bangladesh) were predicted using the rest of the records. A total of 20 random 

partitions (such as the ones described above) were generated. 

The models’ predictive ability was compared by using Pearson’s correlation coefficient. 

The models that use the A and H matrices included the phenotypic information of the 58,798 

wheat lines, whereas the model that is based on markers only included information for 29,484 

wheat lines that correspond to the individuals that were genotyped. The genotyped individuals 

are a subset of the individuals with pedigree information; therefore, lines in the testing set have 

pedigree and marker information. The numbers of individuals in the testing sets in South Asian 
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sites are shown in Table 3, so in each random partition, the same individuals are predicted with 

three different models based on the A, G and H matrices. 

 

Software 

The models described above were fitted using a modified version of the BGLR package 

(de los Campos and Pérez-Rodríguez, 2015). The package was modified in order to accept as 

inputs big.matrix objects created using the bigmemory package (Kane et al., 2013). The 

bigmemory package was used to handle the huge matrices that have to be used during the 

analysis and also to take advantage of what in computer science is known as shared memory. 

Once loaded into RAM memory, the data can be accessed from several processors, making it 

possible to perform a cross-validation relatively easily. 

 

Data availability 

The complete phenotypic and marker data can be found at 

http://genomics.cimmyt.org/wheat_50k/PG/. 

 

RESULTS 

Descriptive statistics 

Figure 1 shows a boxplot of grain yield by location and median yield per location. From the plot 

it can be seen that the Optimal conditions had the highest grain yield, while the Late Heat and 

Severe Drought conditions had the worst grain yield. Yields in South Asian environments, 

especially in Pakistan and Bangladesh, were usually lower than in Mexican environments. Table 

4 shows the number of lines evaluated in each environment, and lines in common between pairs 

of environments. It also shows sample correlations for grain yield for each pair of environments. 

The number of lines evaluated in common between pairs of environments ranged from 537 to 

4,735. The phenotypic sample correlation ranged from -0.05 to 0.53, which suggests large GE. 

Figure 2 displays the distribution of the diagonal entries for matrices A, H and G. Note 

that in the A matrix, the diagonal entries are around ~1.5; in this case, 𝑎(𝑖, 𝑖) = 1 + 𝐹𝑖, where 𝐹𝑖 

is the inbreeding coefficient of the i-th individual. The diagonal entries of the G matrix are 

around 1.0, reflecting the fact that the markers were centered and standardized. The diagonal 

Page 10 of 40Plant Gen. Accepted Paper, posted 01/25/2017. doi:10.3835/plantgenome2016.09.0089

http://genomics.cimmyt.org/wheat_50k/PG/


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Pérez-Rodríguez, P., Crossa, J., Rutkoski, J., Poland, J., Singh, R., Legarra, A., Autrique,

E., De Los Campos, G., Burgueño, J., Dreisigacker, S. (2017). Single-step genomic and pedigree
genotype x environment interaction models for predicting wheat lines in international

environments. Plant Genome, 10 (2). , DOI : 10.3835/plantgenome2016.09.0089

 

 11 

entries of the H matrix are around 1.5, which stems from the standardization of G to be on the 

same scale as A. 

 

Prediction accuracy of models without G×E 

Table 4 shows the phenotypic correlations between pairs of environments. For 

example, the phenotypic correlation of the 4062 common wheat lines between environments 

B5I_OBR and B2I_OBR is 0.156, whereas the phenotypic correlation of the 1537 common 

wheat lines in B5I_OBR and STN_PUS (Pusa, India) is 0.210. In general, phenotypic 

correlations were not high, ranging from -0.051 to 0.481. 

 Table 5 shows the average Pearson’s correlations between observed and predicted 

phenotypes and their corresponding standard deviation for the model without including 

G×E. The average correlations come from 20 random partitions with all the data records 

available in Mexico and 20% of the data available in South Asia. Note that these are the 

predictions of 80% of the entries included in the six South Asia environments. Prediction 

accuracies are relatively low, with those based on pedigree being slightly higher than those 

based on markers or on both pedigree and markers. 

 

Prediction accuracy of G×E models 

Table 6 shows the average of Pearson’s correlations between observed and predicted 

phenotypes and its corresponding standard obtained using the same cross-validation scheme 

described above, but now including the G×E term. The predictive ability of models based on 

Pedigree, Markers and Pedigree + Markers is about the same, with pedigree prediction 

accuracy being higher than genomic and pedigree + genomic prediction accuracy in four 

environments (DLP_FAS, STN_JAM, STN_JBL, and STN_PUS). Ludhiana and Faisalabad 

under standard management conditions (0.3785, 0.2455, respectively) were the best 

predictive models for the genomic and pedigree + genomic model, respectively. 

Figure 3(a)-(c) shows scatterplots of predictive correlations for each of 20 cross-

validations across the six environments in South Asia. Figure 3a depicts the correlations 

between predicted values based on markers (G) versus those based on matrix H and shows 

that prediction accuracy based on G was superior to that obtained based on H. Figure 3b 
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displays the correlation based on markers (G) versus that obtained based on pedigree (A), 

where the prediction based on pedigree seems slightly better than that based on H (Fig. 3c). 

Table 7 shows the percentage change in prediction accuracy of models with and 

without G×E. The % change was calculated as (𝑟𝐺×𝐸 − 𝑟𝑛𝑜 𝐺×𝐸)/𝑟𝑛𝑜 𝐺×𝐸 × 100, where 𝑟𝐺×𝐸 

is the Pearson’s correlation for a model with the G×E term and 𝑟𝑛𝑜 𝐺×𝐸 is the Pearson’s 

correlation for a model without the G×E term. From results in Table 7, it is clear that models 

that include the G×E term predict better than those that do not include G×E. For example, 

the G×E model using matrix H gave a 66% increase in prediction accuracy compared to the 

model using matrix H but without G×E. 

Figure 4 presents a bar plot of correlations for each predicted environment in South 

Asia using the H matrix. Bars in black represent the mean of the weighted phenotypic 

correlation of a given environment and the rest of the environments in Table 4. The 

phenotypic correlation for environment j in South Asia can be obtained as follows: 𝑟𝑗 =

∑
𝑛𝑗𝑘

𝑛𝑗
𝑟𝑗𝑘𝑘≠𝑗 , where 𝑗 = 1,… ,6 (environments in South Asia) and 𝑘 = 1,… ,11 represents the 

set of environments in South Asia and Mexico excluding environment j, 𝑛𝑗𝑘 corresponds to 

the number of lines in common between environments j and k, 𝑛𝑗 = ∑ 𝑛𝑗𝑘𝑘  and 𝑟𝑗𝑘 is the 

phenotypic correlation between environments j and k. As an example, Table 8 presents the 

information needed to compute the weighted correlation for environment DLP_FAS; the 

columns present the information needed to compute the weighted correlation (note that this 

information was obtained from Table 4). The rest of the correlations were obtained using the 

approach described above. The gray bars represent the means of the correlations between 

observed and predicted values obtained from cross-validations. Note that in general the G×E 

models give good predictions, usually better than the phenotypic correlations. Although we 

are predicting 80% of the records in each of the South Asian environments, the correlations 

are higher than the phenotypical correlations between a given environment and the rest of 

the environments. 

 

DISCUSSION 

In wheat breeding, the cost of genotyping thousands of plants in segregating populations or in 

advanced generations makes the application of GS unfeasible. One possibility for solving this 
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problem would be to augment the numerical relationship matrix (A) of all individuals with the 

genomic relationship matrix (G) of the genotyped individuals and perform predictions based on 

the resulting complete H, which will allow performing prediction of non-genotyped individuals 

in the testing set. Augmenting matrix A by using only a fraction of the genotyped individuals 

would reduce genotyping costs. Furthermore, as described by Christensen et al. (2012), the 

single-step method allows the genomic relationship matrix of genotyped individuals to be 

extended using pedigree information to a combined relationship matrix H of all individual plants 

or lines. This allows using all phenotypic data and not only those phenotypes that have pedigree 

and marker information; this extra phenotypic information should also enhance prediction 

accuracy. This makes the models and methods developed by Misztal et al. (2009), Legarra et al. 

(2009) and Aguilar et al. (2010; 2011) very attractive for predicting unobserved and non-

genotyped plants. 

In a recent article, Fernando et al. (2014) proposed a single-step Bayesian regression 

strategy that allows using all genotyped and non-genotyped individuals by means of imputed 

marker covariates for non-genotyped individuals. The advantage of the Bayesian approach over 

the single-step BLUP is that it does not require computing the inverse of G. However, this model 

has not yet been applied to realistic datasets. 

The single-step approach of Misztal et al. (2009), Legarra et al. (2009) and Aguilar et al. 

(2010; 2011) was used in dairy cattle studies and first applied to plant breeding data by Ashraf et 

al. (2016) in a set of 1, 176 genotyped CIMMYT wheat lines and 11,131 non-genotyped wheat 

lines tested in five environments in Cd. Obregon, Mexico, during the 2012-2013 cycle. The 

authors developed optimized weighting factors for matrix H and applied a multivariate method 

for assessing G×E; they found that the prediction accuracy of the single-step H matrix was 

higher than the accuracies achieved using the A and G matrices. The present study used seven 

selection cycles of CIMMYT wheat breeding with a total of 58,798 wheat lines evaluated in Cd. 

Obregon and predicts several wheat lines in South Asian environments (India, Pakistan, and 

Bangladesh). 

 

Genomic prediction accuracy for models with and without G×E 

From the results in Tables 5, 6 and 7, it is clear that models that include the G×E term predict the 

environments in South Asia better than models that do not include the G×E term. The gain in 
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prediction accuracy of models that include G×E ranges from 16 to 90% with an average of 40%. 

However, models that do not incorporate G×E but use pedigree or high density molecular 

markers, or both, are still superior in terms of prediction accuracy than those that use only 

phenotypic data. 

 

Genomic prediction accuracy versus phenotypic prediction accuracy of G×E models 

In this study, we assessed the prediction accuracy of a large number of wheat lines evaluated in 

several environments and years in Cd. Obregon, Mexico, and predicted lines in several South 

Asian environments. For Ludhiana, Pusa, and Jabalpur, about 1227 wheat lines were predicted 

based on the performance of these lines in six environments in Cd. Obregon, plus the 

performance of about 57,000 wheat lines related to those to be predicted (1227) and evaluated in 

previous years in Cd. Obregon, Mexico. 

Prediction accuracy was the correlation between the predicted values of the lines in Cd. 

Obregon plus a low proportion of them (20%) in six environments in South Asia using three 

G×E models (A, G, and H) with the observed values of 80% of the lines in the six environments 

in South Asia (that were not phenotyped). The correlations for all the environments were around 

0.25-0.27, except for Ludhiana in India, which showed higher prediction accuracy (0.36-0.37). 

These genomic prediction accuracies were higher than the prediction accuracies computed from 

the common phenotypic correlations between all pairs of environments. These results indicated 

that the prediction accuracy with which breeders make selections in Cd. Obregon, Mexico, is 

lower than the accuracy they could obtain by performing genomic selection and prediction. 

Although wheat breeders expect that lines selected in Cd. Obregon will perform well in South 

Asian environments, the results of this study should prompt them to increase research on 

genomic selection in Cd. Obregon (a very stable site with high radiation) of candidates for 

selection that will perform well in several environments in different South Asian countries 

(India, Pakistan, and Bangladesh). 

 The prediction accuracy of models with A, G, and H for models with or without G×E did 

not change much. This is an important result that allows, through the use of matrix H, using all 

phenotypic data to predict the genetic values of the unobserved wheat lines, thereby avoiding 

having to use only a subset of the phenotypes of those lines with pedigree and another subset of 
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phenotype data of lines with only marker data. Also the single-step method for computing H 

allows the inclusion of both components of the breeding value to be predicted, the parental 

average or between-family variability captured by the pedigree and Mendelian sample 

component (or with family variability) accounted by markers. 

 

Big data used to derive pedigree and combine it with markers into the single-step 

prediction method with a G×E model 

So far, no studies using plant breeding data on more than 50,000 lines have been reported in the 

genomic selection literature. This is the first study that shows that large training populations can 

provide genomic predictions that are more precise than phenotypic predictions. This is the first 

time that the theory used to develop and implement the pedigree system for such a large number 

of lines is reported in plant breeding. Although the models used for prediction are now well 

known, from the computational and statistical points of view, it is necessary to develop 

algorithms and data structures that allow researchers to handle the data and fit the models 

efficiently. 

 In this study, we used the G×E reaction norm model on a large data set in conjunction 

with pedigree, markers, or both, in genomic selection and prediction. We compared models 

including and excluding G×E and also in the genomic prediction literature there are plenty of 

examples where including those interactions significantly improved the prediction accuracy of 

untested individuals. The single-step method that combines the use of pedigree and markers 

through matrix H allows using all the available information. Also, the reaction norm G×E model 

allows borrowing information among positively correlated environments, although the predictive 

power of the model was similar to that of the model that includes markers only. Ashraf et al. 

(2016) used the single-step H approach on a set of only 11,131 non-genotyped and 1176 

genotyped wheat lines. 

Animal breeders make extensive use of the fact that relationship matrix A has a very 

sparse inverse that can be computed directly from the pedigree, if all individuals (including those 

with no phenotype) are included (Henderson, 1976, 1977). This results in a sparse 𝑯−1 structure 
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as well (Aguilar et al., 2010; Christensen and Lund, 2010), with a storage cost quadratic in the 

number of genotyped individuals and only linear in the number of non-genotyped individuals. 

These sparse inverses exist for any level of autopolyploid species (Kerr et al., 2012) and could 

potentially be used for prediction with large data sets. However, this would preclude the use of 

Cholesky decomposition used in (7). 

 

CONCLUSIONS 

This study shows how to solve statistical and computational challenges when incorporating and 

combining highly dimensional pedigree and genomic matrices into a single-step model for 

predicting unobserved individuals in other environments. We found that genomic prediction of 

genotyped and non-genotyped wheat lines produces higher prediction accuracy than that of lines 

predicted based on phenotypic data. The results provide evidence that the single-step approach 

that combines pedigree and marker information is useful for reducing genotyping costs while 

maintaining the prediction accuracy of unobserved individuals at relatively intermediate levels. 

The incorporation of G×E models using a combination of pedigree and genomic information is 

another way of increasing the prediction accuracy of unobserved candidates for selection and 

offers plant breeders an important alternative for predicting germplasm evaluated under different 

environmental conditions. 
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Table 1: Description of the conditions under which the 58,798 wheat 

lines were evaluated in different environments. 

Description 

 

Field Management 

Conditions 

Standard management conditions (STN) Optimal 

Delayed planting (DLP) Late Heat 

Bed planting and 5 irrigations (B5I) Optimal 

Bed planting and 2 irrigations (B2I) Drought 

Zero till, bed planting and 5 irrigations (Z5I) Optimal 

Zero till, bed planting and 2 irrigations (Z2I) Drought 

Melgas flat planting and 5 irrigations (MEL) Optimal 

Melgas flat planting and drip irrigation (DRM) Severe Drought 

Bed planting and drip irrigation (BDR) Severe Drought 

Early heat (EHT) Early Heat 

Late heat (LHT) Late Heat 
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Table 2: Number of lines evaluated in different 

environments during 2009-2016 by the GWP.  

Environment Number of lines evaluated 

B5I_OBR 56,964 

B2I_OBR 4,063 

DRB_OBR 5,913 

EHT_OBR 2,188 

LHT_OBR 4,736 

MEL_OBR 4,735 

DLP_FAS 1,547 

STN_FAS 1,547 

STN_JAM 537 

STN_JBL 1,548 

STN_LDH 1,548 

STN_PUS 1,548 

FAS=Faisalabad, Pakistan; JAM=Jamalpur, 

Bangladesh; JBL=Jabalpur, India; 

LDH=Ludhiana, India, OBR=Cd, Obregon, 

Mexico; PUS=Pusa, India. Standard management 

conditions (STN); Delayed planting (DLP); Bed 

planting and 5 irrigations (B5I); Bed planting and 

2 irrigations (B2I); Zero till, bed planting and 5 

irrigations (Z5I); Zero till, bed planting and 2 

irrigations (Z2I); Melgas flat planting (MEL); 

Drip irrigation to impose drought in flat (DRM); 

Drip irrigation to impose drought, beds (DRB); 

Early heat (EHT); Late heat (LHT). 
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Table 3: Number of individuals in the testing set in 

South Asian sites. 

Environment Number of individuals in the 

testing set 

DLP_FAS 1237 

STN_FAS 1237 

STN_JAM 429 

STN_JBL 1238 

STN_LDH 1238 

STN_PUS 1238 
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Table 4: Number of genotypes (diagonal and upper triangular) and sample phenotypic 

correlations (lower triangular) by environment. 

 

FAS=Faisalabad, Pakistan; JAM=Jamalpur, Bangladesh; JBL=Jabalpur, India; LDH=Ludhiana, 

India, OBR=Obregon, Mexico; PUS=Pusa, India. Standard management conditions (STN); 

Delayed planting (DLP); Bed planting and 5 irrigations (B5I); Bed planting and 2 irrigations 

(B2I); Zero till, bed planting and 5 irrigations (Z5I); Zero till, bed planting and 2 irrigations 

(Z2I); Melgas flat planting (MEL); Drip irrigation to impose drought in flat (DRM); Drip 

irrigation to impose drought, beds (DRB); Early heat (EHT); Late heat (LHT).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Env B5I_OBR B2I_OBR DRB_OBR EHT_OBR LHT_OBR MEL_OBR DLP_FAS STN_FAS STN_JAM STN_JBL STN_LDH STN_PUS

B5I_OBR 56964 4062 4090 2187 4734 4735 1537 1537 532 1537 1537 1537

B2I_OBR 0.156 4063 4063 2186 4063 4062 1515 1515 530 1515 1515 1515

DRB_OBR -0.050 0.534 5913 2186 4091 4090 1535 1535 530 1535 1535 1535

EHT_OBR 0.479 0.186 -0.051 2188 2187 2187 1062 1062 532 1062 1062 1062

LHT_OBR 0.203 0.262 0.167 0.199 4736 4734 1537 1537 532 1537 1537 1537

MEL_OBR 0.370 0.238 0.117 0.354 0.169 4735 1537 1537 532 1537 1537 1537

DLP_FAS 0.154 0.094 0.111 0.131 0.067 0.174 1547 1547 537 1547 1547 1547

STN_FAS 0.124 0.120 0.167 0.009 0.029 0.102 0.338 1547 537 1547 1547 1547

STN_JAM 0.228 0.146 0.130 0.160 0.079 0.113 0.170 0.206 537 537 537 537

STN_JBL 0.188 0.176 0.168 0.082 0.136 0.143 0.235 0.263 0.136 1548 1548 1548

STN_LDH 0.225 0.079 0.078 0.190 0.040 0.168 0.206 0.286 0.382 0.140 1548 1548

STN_PUS 0.210 0.137 0.099 0.117 0.025 0.173 0.280 0.241 0.481 0.255 0.222 1548
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Table 5: Correlations between predicted and observed values obtained using 

the cross-validation where all the wheat lines from Cd. Obregon, Mexico, 

plus 20% of the wheat lines in each of the environments in India, Pakistan, 

and Bangladesh were used in the training set to predict 80% of the lines in the 

corresponding environments in India, Pakistan, and Bangladesh. The highest 

correlations in each environment are in boldface. 

 

 

 

Environment 

Model without G×E 

Pedigree (A) Markers (G) Pedigree + Markers (H) 

DLP_FAS 0.2113 (0.0304) 0.1716 (0.0104) 0.1834 (0.0135) 

STN_FAS 0.1611 (0.0181) 0.1235 (0.0129) 0.1455 (0.0120) 

STN_JAM 0.2448 (0.0251) 0.1861 (0.0189) 0.1992 (0.0213) 

STN_JBL 0.2480 (0.0184) 0.1928 (0.0154) 0.2075 (0.0163) 

STN_LDH 0.2554 (0.0158) 0.2472 (0.0104) 0.2477 (0.0094) 

STN_PUS 0.2361 (0.0143) 0.1989 (0.0112) 0.2117 (0.0107) 

FAS=Faisalabad, Pakistan; JAM=Jamalpur, Bangladesh; JBL=Jabalpur, India; 

LDH=Ludhiana, India, OBR=Obregon, Mexico; PUS=Pusa, India. Standard 

management conditions (STN), and delayed planting conditions (DLP).  
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Table 6: Correlations between predicted and observed values obtained using 

the cross-validation where all the wheat lines from Cd. Obregon, Mexico, 

plus 20% of the wheat lines in sites in India, Pakistan, and Bangladesh were 

used in the training set to predict 80% of the lines in the corresponding sites 

in India, Pakistan, and Bangladesh. The highest correlations in each 

environment are in boldface. 

 

 

Environment 

G×E model 

Pedigree (A) Markers (G) Pedigree + Markers (H) 

DLP_FAS 0.2462 (0.0294) 0.2327 (0.0132) 0.2345 (0.0123) 

STN_FAS 0.2360 (0.0227) 0.2414 (0.0180) 0.2455 (0.0175) 

STN_JAM 0.2942 (0.0414) 0.2681 (0.0293) 0.2656 (0.0309) 

STN_JBL 0.2921 (0.0183) 0.2741 (0.0163) 0.2739 (0.0165) 

STN_LDH 0.3699 (0.0109) 0.3785 (0.0157) 0.3651 (0.0155) 

STN_PUS 0.2842 (0.0175) 0.2622 (0.0191) 0.2684 (0.0185) 

FAS=Faisalabad, Pakistan; JAM=Jamalpur, Bangladesh; JBL=Jabalpur, India; 

LDH=Ludhiana, India, OBR=Obregon, Mexico; PUS=Pusa, India. Standard 

management conditions (STN), and delayed planting conditions (DLP).  
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Table 7. Comparing the predictive ability of models with and without G×E.  

Environment 
% Change 

Pedigree (A) Markers (G) Pedigree + Markers (H) 

DLP_FAS 16.52 35.61 26.88 

STN_FAS 46.49 95.47 65.91 

STN_JAM 20.18 44.06 34.59 

STN_JBL 17.78 42.17 32.10 

STN_LDH 44.83 53.11 52.81 

STN_PUS 20.37 31.83 23.85 

 

% Change = (𝑟𝐺×𝐸 − 𝑟𝑛𝑜 𝐺×𝐸,𝐶)/𝑟𝑛𝑜 𝐺×𝐸 × 100, where 𝑟𝐺×𝐸 is the Pearson’s 

correlation for a model with the G×E term and 𝑟𝑛𝑜 𝐺×𝐸 is the Pearson’s correlation 

for a model without the G×E term. 

 

FAS=Faisalabad, Pakistan; JAM=Jamalpur, Bangladesh; JBL=Jabalpur, India; 

LDH=Ludhiana, India, OBR=Obregon, Mexico; PUS=Pusa, India. Standard 

management conditions (STN), and delayed planting conditions (DLP).  
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Table 8: Phenotypic correlations and numbers of lines in common between DLP_FAS 

and the rest of the environments in Mexico and South Asia. 

j 

 Env. in South Asia 

k 

 Other environments 

𝑟𝑗𝑘 

 

𝑛𝑗𝑘 

 

𝑛𝑗𝑘/𝑛𝑗  
 

𝑛𝑗𝑘/𝑛𝑗  𝑟𝑗𝑘 

 

1 DLP_FAS 1 B5I_OBR 0.154 1537 0.099 0.015 

1 DLP_FAS 2 B2I_OBR 0.094 1515 0.098 0.009 

1 DLP_FAS 3 DRB_OBR 0.111 1535 0.099 0.011 

1 DLP_FAS 4 EHT_OBR 0.131 1062 0.069 0.009 

1 DLP_FAS 5 LHT_OBR 0.067 1537 0.099 0.006 

1 DLP_FAS 6 MEL_OBR 0.174 1537 0.099 0.017 

1 DLP_FAS 7 STN_FAS 0.338 1547 0.100 0.033 

1 DLP_FAS 8 STN_JAM 0.170 537 0.035 0.005 

1 DLP_FAS 9 STN_JBL 0.235 1547 0.100 0.023 

1 DLP_FAS 10 STN_LDH 0.206 1547 0.100 0.020 

1 DLP_FAS 11 STN_PUS 0.280 1547 0.100 0.028 

    

𝑛1 = 15448 

 
𝑟1 = 0.18 
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APPENDIX 

R script to obtain and store relationship matrix A 

This script computes relationship matrix A. 

Inputs: 

1) A text file with pedigree information for the individuals that we are interested in. The 

file should have 3 columns separated by tabs, ID (Id of the individual), Sire and Dam. 

2) A text file with the individuals that we are interested in. 

Output: The relationship matrix. 

To speed up the computations, we used dense partitioned matrixes and linked R against 

OpenBLAS (http://www.openblas.net). At the end of the process, the relationship matrix was 

also stored as a partitioned matrix on the hard disk in binary R format (RData). Below we detail 

the steps used to build the matrix. 

Step 1: Read the data and compute the relationship matrix from the pedigree information 

#Clean workspace 

rm(list=ls()) 

 

#Load 

library(pedigreemm) 

 

#Read the pedigree file 

a=read.csv("pedigree/RAVI_58K_GIDS_PROGEN.csv",header=TRUE) 

a=a[,c(1:3)] 

a=a[a[,1]!=0 & a[,2]!=0,] 

 

colnames(a)=c("SIRE","DAM","ID") 

a=a[!duplicated(a),] 

 

cat("nrow=",nrow(a),"\n") 

cat("selfing=",sum(a[,1]==a[,2]),"\n") 

 

#Read the ids of individuals with phenotypic records 

ids=scan("GIDsForUSAIDprediction_20160406.csv") 
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ids=as.character(ids) 

 

pede=editPed(sire=a$SIRE,dam=a$DAM,label=a$ID,verbose=TRUE) 

ped=with(pede, pedigree(label=label, sire=sire, dam=dam)) 

 

Now use the relfactor function for the pedigree, that is 

𝑨𝒇𝒖𝒍𝒍 = 𝑿𝒇𝒖𝒍𝒍′𝑿𝒇𝒖𝒍𝒍 

where 𝑿𝒇𝒖𝒍𝒍 is an upper triangular, sparse (right) Cholesky factor of the relationship matrix. In 

this case, 𝑿𝒇𝒖𝒍𝒍 is a matrix with n=177,376 rows and the same number of columns. The code for 

obtaining the relfactor is given below. 

 

Xfull=relfactor(ped) 

 

We do not need 𝑨𝒇𝒖𝒍𝒍; we just need a subset of this matrix with the 58,798 individuals so we can 

take a subset of 58,798 columns from 𝑿𝒇𝒖𝒍𝒍. The columns correspond to the individuals that we 

are interested in. Let X be the resulting matrix; then 

𝑨 = 𝑿′𝑿 

where X has n=177,376 rows and p=58,798 columns. The R code for obtaining this matrix is 

shown below. 

 

index=ped@label%in%ids 

X=Xfull[,index] 

 

 

Step 2: Partition the relationship factor 

Since X is a huge matrix, it is very difficult to obtain 𝑨 directly; furthermore, since X is sparse, 

the product cannot be parallelized easily. So we partitioned X into several sub-matrices and 

saved the sub-matrices as binary files that can later be retrieved in order to perform the product. 

 

For example: 
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𝑿 =

(

 
 

𝑿11 𝑿12
𝑿21 𝑿22
𝑿31 𝑿32
𝑿41 𝑿42
𝑿51 𝑿52)

 
 
;  𝑿′ = (

𝑿11
′ 𝑿21

′ 𝑿31
′ 𝑿41

′ 𝑿51
′

𝑿12
′ 𝑿22

′ 𝑿32
′ 𝑿42

′ 𝑿52
′ ) 

 

where 𝑿𝑖𝑗 is a sub-matrix obtained from 𝑿. 

The R code below was used to partition matrix X into 5 sub-matrices and save the results to 

binary files. 

 

n_submatrix=5 

n=nrow(X) 

p=ncol(X) 

 

to_row=0; 

delta=as.integer(n/n_submatrix); 

 

for(i in 1:n_submatrix) 

{ 

      from_row=to_row+1; 

      to_row=delta*i; 

      if(i==n_submatrix) to_row=n; 

 

      #Another slice for X 

      for(j in 1:2) 

      { 

         if(j==1) 

         { 

            from_column=1 

            to_column=29401 

         }else{ 

            from_column=29402 

            to_column=p 

         } 

        cat("***********************\n") 

        cat("Submatrix: ",i," ",j,"\n"); 

        cat("from_row: ",from_row,"\n"); 
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        cat("to_row: ",to_row,"\n"); 

        cat("from_column: ",from_column,"\n"); 

 

        #Conventional matrix object so that we can use  

        #optimized dense matrix products 

        Xij=as.matrix(X[from_row:to_row,from_column:to_column]) 

        save(Xij,file=paste("X_",i,j,".RData",sep="")) 

 

      } 

} 

 

Step 3: Compute the relationship matrix using the partitioned matrices from step 2 

Given the partition of the relationship factor, we can compute the A matrix as follows: 

𝑨 = 𝑿′𝑿 = (
𝑨11 𝑨12
𝑨21 𝑨22

) 

where 

𝑨11 = 𝑿11
′ 𝑿11 + 𝑿21

′ 𝑿21 + 𝑿31
′ 𝑿31 + 𝑿41

′ 𝑿41 + 𝑿51
′ 𝑿51 

𝑨22 = 𝑿12
′ 𝑿12 + 𝑿22

′ 𝑿22 + 𝑿32
′ 𝑿32 + 𝑿42

′ 𝑿42 + 𝑿52
′ 𝑿52 

𝑨12 = 𝑿11
′ 𝑿12 + 𝑿21

′ 𝑿22 + 𝑿31
′ 𝑿32 + 𝑿41

′ 𝑿42 + 𝑿51
′ 𝑿52 

𝑨21 = 𝑿12
′ 𝑿11 + 𝑿22

′ 𝑿21 + 𝑿32
′ 𝑿31 + 𝑿42

′ 𝑿41 + 𝑿52
′ 𝑿51 

Note that now we need to perform several products of matrices. There are optimized libraries for 

that. For example, in R we can recompile the program so that we can use OpenBLAS. Details are 

given at the following links: 

 

http://www.openblas.net/ 

http://www.rochester.edu/college/psc/thestarlab/help/moreclus/BLAS.pdf 

 

We recompiled R-3.2.3 (http://r-project.org) in order to use OpenBLAS so it can perform matrix 

operations in parallel. The next fragment of code obtains the matrix 𝑨11 using the partitioned 

matrices. 

rm(list=ls()) 

n_submatrix=5 

A11=matrix(0,nrow=25000,ncol=25000) 
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for(i in 1:n_submatrix) 

{ 

   cat("i=",i,"\n") 

   load(paste("X_",i,"1.RData",sep="")) 

   A11=A11+crossprod(Xij); 

} 

save(A11,file="A11.RData") 

 

The rest of the matrices can be similarly obtained. With this approach and using 8 cores for the 

matrix product, we obtained the 58, 798 × 58, 798 matrix A in less than 3 hours in the 

CIMMYT-BSU server (which has 12 Intel (R) Xeon Cores @ 3.47 GHz and ~ 48 Gb of RAM). 

 

R script to obtain the H matrix 

The script presented below computes a relationship matrix H including full pedigree and 

genomic information (see equation 4 in Legarra et al., 2009). It adjusts the elements of 

genomic relationship matrix G, so that the entries of relationship matrix A share the same 

scale (Christensen et al., 2012). 

Inputs: 

1) A and G matrices. The row and column names of both matrices include the IDs of the 

individuals. 

Output: 

1) H matrix. 

#Clean workspace 

rm(list=ls()) 

 

#Load A 

load("../output/A11.RData") 

load("../output/A12.RData") 

load("../output/A21.RData") 

load("../output/A22.RData") 
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A=rbind(cbind(A11,A12), 

        cbind(A21,A22)) 

 

rm(A11,A12,A21,A22) 

 

# read G and construct matrix of pedigree relationships of 

# genotyped individuals, Agg (called A22 in Legarra et al., 2009 and A11 in OF Christensen notation) 

 

#Read the genotypes (markers) 

load("G80_42706_29489_correctedgid.RData") 

 

#Center and scale the markers 

X=scale(X,center=TRUE,scale=TRUE) 

 

#Compute the genomic relationship matrix (López-Cruz et al., 2015) 

G=tcrossprod(X)/ncol(X) 

 

#Ids of genotyped individuals 

genotyped=colnames(G) 

cat("genotyped: ",length(genotyped),"\n") 

 

#Ids of individuals with pedigree 

inpedigree=colnames(A) 

cat("inpedigree: ",length(inpedigree),"\n") 

 

#Ids of individuals not genotyped 

nongenotyped=setdiff(inpedigree,genotyped) 

cat("in pedigree nongenotyped: ",length(nongenotyped),"\n") 

 

genotypednotinpedigree=setdiff(genotyped,inpedigree) 

cat("genotyped not in pedigree",length(genotypednotinpedigree),"\n") 

 

genotypedinpedigree=intersect(genotyped,inpedigree) 

cat("genotyped in pedigree",length(genotypedinpedigree),"\n") 

 

# we have individuals with genotype that are NOT in matrix A 

# we get rid of these individuals 

G=G[genotypedinpedigree,genotypedinpedigree] 

genotyped=genotypedinpedigree 

 

#extract submatrix of A concerning genotyped individuals 

Agg=matrix(NA,ncol(G),nrow(G)) 

Agg=A[genotyped,genotyped] 

 

# now we need to make both matrices compatible. Use here Christensen et al. 2012 to make 

# average inbreeding and average relationships compatible 

# so that G <- a+bG 

# O. F. Christensen, P. Madsen, B. Nielsen, T. Ostersen and G. Su (2012). Singlestep methods  

# for genomic evaluation in pigs. animal,6, pp 15651571 doi:10.1017/S1751731112000742 

 

meanG=mean(G) 

meandiagG=mean(diag(G)) 

meanAgg=mean(Agg) 

meandiagAgg=mean(diag(Agg)) 

cat(meanG,meandiagG,meanAgg,meandiagAgg,"\n") 

b=(meandiagAgg-meanAgg)/(meandiagG-meanG) 
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a=meandiagAgg-meandiagG*b 

cat(a,b,"\n") 

 

# a should be positive !!! 

# modification to make G compatible 

G=a+b*G 

 

# invert Agg as we need it 

Aggi=solve(Agg) 

 

# a problem here is to divide A neatly between genotyped and not genotyped individuals.  

# Usually we use sparse operators and this is easier.  

# here I use the colnames and should be efficient 

 

# --------------------------------------- # 

# option 1 to construct H not its inverse  

# --------------------------------------- # 

# use expression (4) in Legarra-Aguilar-Misztal 2009 

H=matrix(NA,ncol(A),nrow(A)) 

colnames(H)=colnames(A) 

rownames(H)=rownames(A) 

H[genotyped,genotyped]=G 

H[nongenotyped,genotyped]=A[nongenotyped,genotyped]%*%(Aggi%*%G) 

#H[genotyped,nongenotyped]=G%*%Aggi%*%A[genotyped,nongenotyped] 

H[genotyped,nongenotyped]=t(H[nongenotyped,genotyped]) 

H[nongenotyped,nongenotyped]=A[nongenotyped,nongenotyped] + 

                             A[nongenotyped,genotyped]%*%(Aggi%*%(G-

Agg)%*%Aggi)%*%A[genotyped,nongenotyped]  

cat(mean(diag(H)),mean(H),"\n") 

 

# in principle H is (SEMI-)positive definite but can be quite bad conditioned,  

# e.g. if there are pedigree errors or label switching 

save(H,file="H.Rdata") 
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Figure 1
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Figure 1: Boxplot of grain yield (t/ha) by environment (condition-location combination). 

OBR=Obregon, Mexico, FAS=Faisalabad, Pakistan; JAM=Jamalpur, Bangladesh; 

JBL=Jabalpur, India; LDH=Ludhiana, India; PUS=Pusa, India. Standard management conditions 

(STN); Delayed planting (DLP); Bed planting and 5 irrigations (B5I); Bed planting and 2 

irrigations (B2I); Zero till, bed planting and 5 irrigations (Z5I); Zero till, bed planting and 2 

irrigations (Z2I); Melgas flat planting (MEL); Drip irrigation to impose drought in flat (DRM); 

drip irrigation to impose drought, beds (DRB); Early heat (EHT); Late heat (LHT).  
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Figure 2
a)

A i

F
re

q
u
e
n
c
y

1.0 1.2 1.4 1.6 1.8

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

b)

G ii

F
re

q
u
e
n
c
y

0.5 1.0 1.5 2.0

0
1
0
0
0

3
0
0
0

5
0
0
0

c)

H ii

F
re

q
u
e
n
c
y

0.5 1.0 1.5 2.0 2.5 3.0

0
5
0
0
0
1
0
0
0
0

1
5
0
0
0

i

 

 

Figure 2: Distribution of the diagonal entries of a) the additive relationship matrix derived from 

pedigree (A); b) the genomic relationship matrix (G); and c) the H matrix. 
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Figure 3b
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Figure 3c
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Figure 3: Plots of the predictive correlations for each of 20 cross-validations and 6 environments 

in South Asia for grain yield. (a) When the best linear model is based on G matrix, this is 

represented by black squared; when the best model is based on the H matrix, this is represented 

by a white squared; (b) When the best model is based on the G matrix this is represented by a 

black squared; when the best linear model is based on the A matrix, this is represented by a white 

squared, (c) When the best model is based on H, this is represented by a black squared; when the 

best linear model is based on the A matrix, this is represented by an white squared. The 

histograms depict the distribution of the correlations in the testing set obtained from the 

partitions for different models. The horizontal (vertical) dashed line represents the average of the 

correlations for the testing set in the partitions for the model shown on the Y (X) axis. The solid 

line represents Y = X; i.e., both models have the same prediction ability. 
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Figure 4
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Figure 4: Barplot of correlations for each predicted environment in South Asia. Gray bars 

represent the means of the correlations between observed and predicted values obtained from 

cross-validation in Table 6 using the H matrix. Black bars represent a weighted mean of the 

phenotypic correlation of a given environment and the rest of environments in Table 4; for 

example, for DPL_FAS, the weighted correlation can be obtained using data shown in Table 8. 

FAS=Faisalabad, Pakistán; JAM=Jamalpur, Bangladesh; JBL=Jabalpur, India; LDH=Ludhiana, 

India, OBR=Obregon, Mexico; PUS=Pusa, India. Standard management conditions (STN), and 

delayed planting conditions (DLP).  
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