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Abstract

Background

Many asthmatic patients exhibit uncontrolled asthma despite high-dose inhaled corticoste-

roids (ICS). Airway epithelial cells (AEC) have distinct activation profiles that can influence

ICS response.

Objectives

A pilot study to identify gene expression markers of AEC dysfunction and markers of cortico-

steroid sensitivity in asthmatic and non-asthmatic control children, for comparison with pub-

lished reports in adults.

Methods

AEC were obtained by nasal brushings and primary submerged cultures, and incubated in

control conditions or in the presence of 10 ng/ml TNFalpha, 10-8M dexamethasone, or both.

RT-PCR-based expression of FKBP51 (a steroid hormone receptor signalling regulator),

NF-kB, IL-6, LIF (an IL-6 family neurotrophic cytokine), serpinB2 (which inhibits plasmino-

gen activation and promotes fibrin deposition) and porin (a marker of mitochondrial mass)

were determined.

Results

6 patients without asthma (median age 11yr; min-max: 7–13), 8 with controlled asthma

(11yr, 7–13; median daily fluticasone dose = 100 μg), and 4 with uncontrolled asthma (12yr,

7–14; 1000 μg fluticasone daily) were included. Baseline expression of LIF mRNA was sig-

nificantly increased in uncontrolled vs controlled asthmatic children. TNFalpha significantly

increased LIF expression in uncontrolled asthma. A similar trend was observed regarding

IL-6. Dexamethasone significantly upregulated FKBP51 expression in all groups but the
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response was blunted in asthmatic children. No significant upregulation was identified

regarding NF-kB, serpinB2 and porin.

Conclusion

LIF and FKBP51 expression in epithelial cells were the most interesting markers of AEC

dysfunction/response to corticosteroid treatment.

Introduction

Asthma is characterized by inflammation of the airways, reversible airflow obstruction and

bronchial hyperresponsiveness. In many children, asthma is difficult to manage and remains

poorly controlled, despite treatment with high-dose inhaled corticosteroids (ICS) (� 800 μg/d

budesonide)[1–3]. Adverse home environments, poor treatment supervision, alternative diag-

noses and unresponsiveness to corticosteroids (CS) are thought to be the most important

influencing factors in difficult asthma [3]. The overall response to CS at a group level is he-

terogeneous and depends on the outcomes being studied [4]. Although rare cases of poor

glucocorticoid receptor function have been described in children [2], the concept of variable

corticoresponsiveness is more interesting to investigate than complete corticoresistance,

which is rare [4]. Phenotyping patients according to underlying molecular characteristics may

help in determining the prognosis and personalizing treatment regimens [5].

Resident lung cells, including airway epithelial cells (AEC) and smooth muscle cells, play an

important role in effecting or perpetuating the airway response to T helper type 2 cytokines [6,

7]. AEC are now recognized as playing an important role in the inflammatory response to

inhaled exposures in addition to the barrier effect which prevents the entry of inhaled matter

into the lung parenchyma [7]. Recent evidence has shown that AEC from children with mild

asthma are intrinsically different both biochemically and functionally compared with epithelial

cells from children without asthma [8]. AEC from patients with asthma spontaneously pro-

duce significantly greater amounts of interleukin-6 (IL-6), prostaglandin E2 and epidermal

growth factor, but significantly lower amounts of transforming growth factor 1 [8]. These

abnormalities are evident early in the disease progression and correlate with disease severity.

CS may have direct effects on the epithelial cells themselves. In a genome-wide profiling

study evaluating treatment response of adult asthmatic human AEC to CS, high baseline

expression of CLCA1 (chloride channel, calcium-activated, family member 1), periostin, and

serpinB2 (serine peptidase inhibitor, clade B (ovalbumin) member 2, a protease which inhibits

plasminogen activation and promotes fibrin formation and deposition) were associated with a

good clinical response to CS, whereas high expression of FKBP51 (FK506-binding protein 51,

a regulator of steroid hormone receptor signalling) was associated with a poor response [6].

There is a lack of such studies in children. We hypothesized that asthmatic AEC molecular

characteristics vary in an age-wise manner. Thus, similarly to a study in adults (6), our main

aim was to identify gene expression markers of AEC dysfunction and markers of corticosteroid

sensitivity in children. Based on Woodruff et al.’s study (6) and previous studies from our lab

[9, 10], we decided to measure serpinB2 and FKBP51 as well as NF-kB, IL-6 [8], LIF (leukae-

mia inhibitory factor, an IL-6 family neurotrophic cytokine [9, 11]) and porin gene expression

(a marker of mitochondrial mass [10, 12]) in AEC from children with no, controlled or uncon-

trolled asthma. The inflammatory and CS responses of these cells in each group of patients
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were studied by the addition of an inflammatory cytokine (TNFalpha) and/or dexamethasone

[13].

To explore AEC dysfunction in childhood asthma and its association with the actions of

CS, we collected epithelial cells from upper airways by using nasal brushings and examined

expression profiles by RT-PCR.

Material and methods

The present prospective pilot study was conducted at Bordeaux University Hospital, France,

from May 2008 to December 2008. It was approved by Bordeaux’s Institutional Review Board

on Human Research. All of the volunteers and their parents gave written informed consent.

Patients

Nasal brushings were obtained from male and female asthmatic children aged< 18 years.

Asthma was defined as physician-diagnosed asthma according to GINA criteria (http://www.

ginasthma.org/). Controlled asthmatic patients had daytime asthma symptoms, night waking

due to asthma, and required a reliever for symptoms less than twice per week, with no activity

limitation due to asthma. Symptom control (GINA) had been obtained for at least 3 months

prior to the study. The uncontrolled group presented with� 3 of the above criteria, and

most patients met modified ATS criteria (i.e.� 800 μg/d equivalent dose of budesonide) [14].

Matched (age ± 1 yr, sex) control patients consisted of children undergoing elective surgery

for non-respiratory conditions, without any history of asthma or allergy or recent upper air-

way infection, i.e. less than 1 month prior to inclusion. No patient had received topical nasal

steroids 15 days prior to inclusion.

The following data were collected: age, sex, age upon diagnosis of asthma, atopic status as

determined by a positive skin prick test (wheal diameter� 3 mm) and/or RAST (>0.1 kUI/L)

to common allergens, asthma control, lung function parameters and current treatment.

Nasal brushings

Nasal brushings were performed either in the outpatient department, without topical anaesthe-

sia, or under general anaesthesia in the operating theatre. The following brushes were used:

1-mm bronchoscope cytology brush, (Cook1 Ireland Ltd.) or 3-mm urethral brush (Scri-

net1, Laboratoire CCD, Paris—France). Nasal epithelial cells were harvested by gently brush-

ing the inferior nasal turbinate [15].

Cell isolation

Primary cultures of nasal AEC were grown according to the submerged culture model in Petri

dishes coated with collagen as previously described [16] using dedicated epithelial culture

medium [13] from Clonetics/Lonza1 (Basel, Switzerland). All experiments were performed

on phenotypically confirmed AEC between passages 1 and 2. In order to rule out any possible

effect linked to the presence of hydrocortisone in the epithelial culture medium, AEC were

placed in DMEM medium (Sigma, glucose 1g/L + antibiotics (penicillin, 100 000 units/L and

streptomycin 100 mg/L) plus an anti-fungal agent (amphotericin 250μg/L) for 48 hours and

then studied in control unstimulated conditions or in the presence of 10 ng/ml TNFalpha (4

hours) [17], 10-8M dexamethasone, or both [13, 18] (initial titration assays were performed

using 10−7 and 10-8M dexamethasone; the latter was deemed a satisfactory concentration).

RNA was extracted 4 hours post-stimulation.
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RNA extraction

Total RNA was extracted using a kit (TRIzol reagent, Invitrogen, France) according to the manu-

facturer ‘s protocol. Briefly, cells were lysed in the TRIzol buffer which contains phenol and guani-

dine isothiocyanate. Chloroform was then added and after centrifugation RNA was recovered in

the aqueous phase and precipitated by addition of isopropyl alcohol. RNA was then resuspended

in RNAse-free H20 and RNA concentration was determined by spectrophotometry on a Nano-

Drop ND-1000 spectrophotometer (Labtech, France). RNA integrity was verified using the RNA-

6000 NanoLabChip kit combined with a 2100 Bioanalyser (Agilent Technologies).

Quantitative Polymerase Chain Reaction (RT-PCR)

First, total RNA (500 ng) was reverse-transcribed in cDNA with Superscript III (Invitrogen,

Cergy Pontoise, France) and random hexamers according to the manufacturer’s protocol.

Then 5 μl of the cDNA solution diluted 1:20 was added to 10μl of 2X concentrated buffer con-

taining the Taq polymerase (LC480 SYBER-GREEN I Master solution, ROCHE) and 5μl of the

target gene primers mix (300nM concentration) in a total volume of 20 μl. This mix was loaded

onto a LightCycler1 480II system (Roche) for PCR amplification of target genes. The PCR

program consisted of 40 cycles of 95˚C for 10s, 62˚C for 6s and 72˚C for 10s.

To avoid genomic DNA amplification, primer pairs were designed in two different exons (thus

spanning an intron) using the Primer Express software (PE APPLIED Biosystems, Courtaboeuf,

France). Sequences of primers used are provided in Table 1. The specificity of the PCR reaction

was validated according to MIQE (Minimum Information for publication of Quantitative real

time PCR Experiments) guidelines [19]. The mRNA levels of target genes were normalized using

18S RNA expression for each sample (cDNA diluted 1:2000). The 18S expression varied neither

between stimulated and non-stimulated conditions nor among patients of the whole cohort. The

quantification of target mRNA levels was calculated with the LightCycler480 Relative Quantifica-

tion software (version 1.5). The expression values used in Figs 1–6 were calculated using the [del-

taCt] corresponding to the equation: deltaCt = 2-(target gene Ct–Reference gene Ct). PCR efficiency was

checked to be at 100% for each pair of primers (Table 1).

Statistical analysis

All values are median (min, max) or mean ± standard error of the mean (SEM). Statistical

analysis was performed using the software package, NCSS 6.0.21, Kaysville, Utah, USA. Data

Table 1. Sequences of primers used for Quantitative Polymerase Chain Reaction.

Protein Primer

IL6-F2 GGTACATCCTCGACGGCATC

IL6-R3 GCCTCTTTGCTGCTTTCACAC

LIF-F2 GAACCAGATCAGGAGCCAACTG

LIF-R3 CCACATAGCTTGTCCAGGTTGTT

SERPINB2-F4 GTTATCCTGATGCGATTTTGCA

SERPINB2-R5 AGAGCGGAAGGATGAATGGA

Porin-F4 CAGAGAAATGGAATACCGACAATACA

Porin-R4-5 TCCACGTGCAAGCTGATCTT

NF-KB-F16 AAGTCACATCTGGTTTGATTTCTGAT

NF-KB-R16-17 AAGTGCAAGGGCGTCTGGTA

IL6: interleukin 6; LIF: leukaemia Inhibitory factor; SERPIN: serine peptidase inhibitor, clade B (ovalbumin) member 2; NF-KP: nuclear factor-kappa B.

https://doi.org/10.1371/journal.pone.0177051.t001
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were analysed for statistical significance using, as appropriate, the unpaired Student t-test, the

Mann and Whitney U-test or a one-way analysis of variance (ANOVA). A p value < 0.05 was

considered significant.

Results

Demographic data

Subject demographic data are provided in Table 2. The study population consisted in 6 control

patients without asthma or lung disease (median age 11 yr, min-max: 7–13), 8 with controlled

asthma (11 yr, 7–13), daily ICS dose (mean ± SD) 140 ±167 μg fluticasone (beclomethasone

(eq.) dose (μg/day) 100 (0–400)) and 4 patients with uncontrolled asthma (12 yr, 7–14), daily

ICS dose 560 ± 630 μg fluticasone (beclomethasone (eq.) dose (μg/day) 1000 (500–2000)).

Epithelial cell gene expression according to asthma control (S1 Table)

FK506-binding protein 51 (FKBP51). Compared to medium alone, dexamethasone

significantly upregulated FKBP51 expression in AEC from all groups of patients (deltaCt

(mean ± SEM) 0.56 ± 0.16, 0.26 ± 0.11, 0.26 ± 0.11 in non- asthmatic, controlled and uncon-

trolled asthmatics patients, respectively; p< 0.05) (Fig 1). In terms of absolute value, there was

a trend towards greater dexamethasone-induced FKBP51 expression in non-asthmatic patients

than in controlled and uncontrolled asthmatics. TNFalpha alone did not induce any significant

effect.

SerpinB2 (Serine peptidase inhibitor, clade B (ovalbumin), member 2). No significant

difference in the expression of serpin was noted, irrespective of group or cell culture condi-

tions (Fig 2). A high deltaCt (23.80) outlier value was found in 1 patient with uncontrolled

Fig 1. Expression of FK506-binding protein 51 (FKBP51) mRNA in control and asthmatic children in

unstimulated and stimulated (TNFalpha + Dexamethasone) airway epithelial cells. Control patients,

n = 8; controlled asthma, n = 6; uncontrolled asthma, n = 4. Results are means ± SEM. * p < 0.05.

https://doi.org/10.1371/journal.pone.0177051.g001

Fig 2. Expression of serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) mRNA in

control and asthmatic children in unstimulated and stimulated (TNFalpha ± dexamethasone) airway

epithelial cells. See Fig 1 for legends.

https://doi.org/10.1371/journal.pone.0177051.g002
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asthma after stimulation by TNFalpha compared to the three other patients (4.13, 0.81 and

0.58). All four patients were included in the present analysis.

Leukaemia inhibitory factor (LIF). The baseline expression of LIF was significantly

higher in cells from severe uncontrolled vs controlled asthmatics (deltaCt: 0.163 ± 0.04 vs

0.06 ± 0.02, respectively; p = 0.027) (Fig 3). The difference in LIF expression between uncon-

trolled (deltaCt: 0.21 ± 0.06) and controlled asthmatics (0.09 ± 0.03); p = 0.04) remained sig-

nificant with TNFalpha stimulation of the cell cultures. In both groups, the decrease in LIF

expression by dexamethasone in the presence of TNFalpha did not reach statistical significance

(deltaCt, 0.12 ± 0.03 (uncontrolled) vs 0.07 ± 0.02 (controlled); NS). Overall, LIF levels in

uncontrolled asthma were not different to those in controls owing to the presence of one out-

lier in the control group. Exclusion of this outlier led to a significant difference between the

TNFalpha uncontrolled and non-asthmatic groups (deltaCt: 0.21 ± 0.06 (uncontrolled) vs
0.05 ± 0.02 (no-asthma); p = 0.033). This outlier may be due to variability in the control

patients.

Interleukin 6 (IL-6). Overall, the expression of IL-6 was similar to what was observed for

LIF expression (Fig 4). There was a trend towards a higher baseline level of IL-6 in the uncon-

trolled asthmatic group in comparison to the non-asthmatic and non-asthmatic groups. How-

ever, no statistically significant difference was noted, irrespective of the group or cell culture

conditions.

Porin. Porin gene expression appeared to be greater in non-asthmatic than in asthmatic

patients (Fig 5). This result reached statistical significance in baseline conditions in AEC from

patients with controlled asthma vs non-asthmatic patients only (deltaCt: 0.18 ± 0.04 vs 0.55 ±
0.18, respectively, p = 0.04).

Nuclear factor-kappa B, NF-kB. No significant difference was noted in NF-kB expres-

sion, irrespective of group or cell culture conditions (Fig 6).

Fig 3. Expression of LIF mRNA in control and asthmatic children in unstimulated and stimulated

(TNFalpha ±Dexamethasone) airway epithelial cells. See Fig 1 for legends.

https://doi.org/10.1371/journal.pone.0177051.g003

Fig 4. Expression of IL-6 mRNA in control and asthmatic children in unstimulated and stimulated

(TNFalpha ±Dexamethasone) airway epithelial cells. See Fig 1 for legends.

https://doi.org/10.1371/journal.pone.0177051.g004
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Discussion

The two main results of the present study involving cultured AEC from children are as follows.

Firstly baseline and TNFalpha stimulation significantly increased the expression of LIF mRNA

in children with uncontrolled asthma. Secondly, dexamethasone significantly upregulated

FKBP51 expression but this response was blunted in children with uncontrolled asthma (i.e.

with increased disease severity and inhaled steroid dose).

Study rationale

Bronchial AECs remain the gold standard for asthma research [7, 17]. However, nasal AECs

may be a suitable surrogate for the study of certain aspects of bronchial AEC function. For

instance, in one study, a 90.2% overlap in expressed genes and a strong correlation in gene

expression (ρ = 0.87) was found between the nasal and bronchial transcriptomes [20]. Simi-

larly, within-subject correlation between nasal and bronchial production of transforming

growth factor (TGF)-beta2 (r = 0.64, p = 0.001) and vascular endothelial growth factor

(r = 0.73, P < 0.001) was good [21], although the release of IL-6, IL-8, and granulocyte colony-

stimulating factor was reported to be significantly greater in nasal than in bronchial AEC [17].

A defective epithelial layer results in the exposure of the submucosa to a variety of environ-

mental stimuli (allergens, microbes, pollutants), inducing sustained activation of the epithelial

mesenchymal trophic unit [22]. Impaired barrier integrity and delayed repair [23, 24] and

lower levels of TGF-beta1 [25] may be strongly linked to bronchial hyperresponsiveness. It is

thus of utmost importance to understand fully the factors influencing AEC function and

response to therapy.

The important role of atopy on the airway epithelium has already been shown in several

studies [15, 20, 26, 27]. Allergic asthma and rhinitis remain complex diseases and more than

20 epithelium-derived biomarkers are currently available [26, 27]. In the future, these may be

Fig 5. Expression of porin mRNA in control and asthmatic children in unstimulated and stimulated

(TNFalpha ± dexamethasone) airway epithelial cells. See Fig 1 for legends.

https://doi.org/10.1371/journal.pone.0177051.g005

Fig 6. Expression of NF-kB mRNA in control and asthmatic children in unstimulated and stimulated

(TNFalpha ± dexamethasone) airway epithelial cells. See Fig 1 for legends.

https://doi.org/10.1371/journal.pone.0177051.g006
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used alone or in combination as prognostic genes at different stages of the disease. In vitro,

nasal AEC gene expression in children with house dust mite allergic rhinitis indicated a

Th2-driven mechanism, highlighting the influence of epithelially-expressed molecules on

asthma control, in association with altered responses to viruses [15, 24]. Similarly, nasal

expression profiling has been proposed for identifying individuals with IL13-driven asthma

and a Th2-skewed systemic immune response [20]. In some studies, however, atopy was not

deemed to be an essential component in the disease process, and no differences in mediator

release were noted between children with atopic asthma and those with virus-induced wheeze

or between non-atopic and atopic controls [28].

The rationale of the present study was based on the hypothesis that age may have a marked

influence on epithelial gene expression, given the age-related variations in asthma clinical phe-

notypes [29], inflammatory cascades in bronchial epithelial [30] and smooth muscle cells func-

tion [31]. The choice of the target genes and stimulating agents was based on data obtained

from the literature (serpinB2 [6], FKBP51 [6] and from our own laboratory. First, the mecha-

nisms leading to steroid-resistant asthma may involve enhanced expression of NF-kB and/or

activator protein-1 [5]. Excessive active NF-kB, a critical transcription factor for the produc-

tion of inflammatory cytokines, may reduce the anti-inflammatory properties of CS [32]. Sec-

ond, LIF and the neurokinin receptor NK-1R are largely co-expressed in lung tissue in a rat

asthma model [33]. LIF plays an important role as regulator of neurogenic inflammation [34],

acting either as a pro- or anti-inflammatory cytokine, during an acute inflammatory insult and

its resolution [11, 35]. In immature ASMC, LIF secretion enhances airway reactivity and [Ca2

+]i signalling [9]. Increased LIF expression in airway epithelia of asthmatic rats is down-regu-

lated by dexamethasone. Third, in vitro, the mass of asthmatic ASM mitochondria, as assessed

by porin content, is increased as compared to that of non-asthmatics. Moreover, within the

adult asthmatic population, both the duration of the disease and the FEV1/FVC ratio are cor-

related with porin content [10]. Fourth, TNFalpha is a pro-inflammatory cytokine that has

been implicated in many aspects of the airway pathology in asthma and has previously been

used to stimulate AEC [28]. Treatment of AEC with TNFalpha and IL-1βL-1 increased secre-

tion of IL-6, IL-8, GSF, RANTES, MCP-1, VEGF, MMP-9, and TIMP-1[17]. Evidence suggests

that it may play an important role in severe, refractory airway disease [36].

Table 2. Demographic characteristics of patients.

No Asthma Controlled Asthma Uncontrolled Asthma

n 6 8 4

Age (yr) 11 (7–13) 11 (7–13) 12 (7–14)

Male/Female (n/n) 4/2 6/2 2/2

Age at diagnosis of asthma (mo) 27 (3–108) 15 (11–24)

Asthma severity @ inclusion (GINA) 2 (1–2) 4 (4–4)

Atopy (n/N) 7/8 3/4

Passive smoking (n/N) 1/8 3/4

Beclomethasone (eq.) dose (μg/day) 100 (0–400) 1000 (500–2000)

LABA (n/N) 0/8 4/4

LRTA (n/N) 1/8 2/4

Omalizumab (n/N) 0 1/4

Baseline FEV1 (% predicted) 81 (68–117) 86 (70–100)

Baseline FEF25-75 (% predicted) 60 (43–112) 75 (42–98)

Median (min-max), FEV1: Forced expiratory volume in 1 second; LABA: Long-Acting Beta-Agonists; FEF25-75: forced expiratory flow at 25–75% of forced

vital capacity; LRTA: Leukotriene-Receptor Antagonists

https://doi.org/10.1371/journal.pone.0177051.t002
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Genes differentially expressed in paediatric asthmatic AEC

By using gene expression microarrays in adult asthmatic AEC, it was shown that serpinB2 is

upregulated (3.5-fold in asthma vs controls) [6], unlike in the present study in children. In

school-aged children, the allergic rhinitis /healthy nasal AEC serpinB2 log2 ratio was 1.64 [15].

In other studies, serpinB2 expression in bronchial AEC was modestly increased (1.491- and

1.871-fold change in asthmatic and atopic adolescents vs controls, respectively) [20].

In the present study, LIF, and to a lesser degree IL-6, expression was increased in asthmatic

vs non-asthmatic children, with a further increase in uncontrolled asthma vs controlled

asthma. The response was enhanced in the presence of TNFalpha, and LIF levels in uncon-

trolled asthma were also different to those of non-asthmatic patients when one outlier was

omitted in the control group. This is similar to adults, in whom LIF is constitutively expressed

in epithelial cells and is increased in the serum in mild asthmatics [11].

Adult AEC also produces an excess of inflammatory and pro-remodelling cytokines such

as IL-6 [37]. In genome-wide association studies (GWAS) in adult asthmatics and controls,

asthma risk significance was reached (OR 1�09, combined p = 2�4×10–8) for the IL-6 receptor

gene [38]. The IL-6R coding SNP rs2228145 (Asp358Ala) is a potential modifier of lung func-

tion in subjects with asthma and may identify subjects at risk for more severe asthma [39].

However, there are inconsistencies between studies regarding AEC IL-6 release, which is not

increased in many children with asthma vs controls [7].

The decrease in porin expression in children was unexpected given recent data indicating

increased mitochondrial biogenesis and dysfunction [40] in asthmatic rat AEC [12], adult

asthmatic AEC [41] and human ASM in culture [10, 42]. In asthmatic rat AEC, mitochondria

are altered and swollen [43], with decreased mitochondrial basement membrane density and

cristae [12]. Mitochondrial dysfunction and excessive production of reactive oxygen species

promote allergic asthma and inhibition of Ca2+/calmodulin-dependent protein kinase II tar-

geted to AEC mitochondria abrogates asthma [44].

Cellular response to corticosteroids

The beneficial effects of corticosteroids in asthma could relate to their ability to decrease AEC

activation by inflammatory cells and cytokines [6]. FKBP51 is considered to be a molecular

marker of glucocorticosteroid response [45]. Long-term ICS in asthmatic adults markedly

unregulated AEC FKBP51 and a higher expression of this molecule was associated with a poor

response to ICS [6], in particular in the central airways [45]. Indeed, baseline FKBP51 expres-

sion correlated inversely with FEV1 response to fluticasone (at 8 weeks (r = -0.63, p = 0.009)).

In our study in children, although dexamethasone increased FKBP51 expression, the absolute

response was blunted in the presence of asthma. Differences compared to adults may be re-

lated to the epigenetic upregulation of the FKBP5 gene with increasing age, with environmen-

tal factors and airway inflammation acting as the epigenetic milieu [46]. Resistance to CS in

patients with severe asthma may be an acquired process [47], possibly due to altered autoregu-

latory mechanisms.

In a clinical setting, long-term ICS also down-regulated the serpinB2 gene in adults [6]. In

the present in vitro study in children, dexamethasone produced a similar non-significant

down-regulating trend regarding serpinB2, LIF and IL-6 expression vs TNFalpha alone.

Limitations of study

The findings of this pilot study are limited by the small number of patients included. In addi-

tion, asthmatic children were undergoing ICS therapy. However, the use of nasal brushings

allows patients with severe asthma phenotypes to be investigated without discontinuing their
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long-term therapy, since nasal deposition is negligible with mouth-breathing devices used in

older children [15]. Data interpretation is also difficult owing to the fact that only gene expres-

sion was explored and not protein expression.

Conclusion

Nasal epithelial activation and steroid sensitivity profiles differ in paediatric asthma compared

to adult asthma. In children, LIF proved to be the most interesting marker in uncontrolled

asthma in terms of AEC mRNA expression. Response to corticosteroid treatment was also dif-

ferent since although dexamethasone increased FKBP51 expression in all groups, the absolute

response was blunted in the presence of asthma.
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