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Abstract We address the issue of recovering the structure
of large sparse directed acyclic graphs from noisy observa-
tions of the system. We propose a novel procedure based
on a specific formulation of the �1-norm regularized maxi-
mum likelihood,whichdecomposes the graph estimation into
two optimization sub-problems: topological structure and
node order learning. We provide convergence inequalities
for the graph estimator, as well as an algorithm to solve the
induced optimization problem, in the form of a convex pro-
gram embedded in a genetic algorithm.We apply our method
to various data sets (including data from the DREAM4 chal-
lenge) and show that it compares favorably to state-of-the-art
methods. This algorithm is available onCRANas theR pack-
age GADAG.

Keywords Directed acyclic graphs · Lasso · Convex
program · Optimization

1 Introduction

Revealing the true structure of a complex system is paramount
inmanyfields to identify system regulators, predict its behav-
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ior or decide where interventions are needed to disentangle
direct relationships (Newman 2003; Souma et al. 2006;
Verma et al. 2014). This problem can often be seen as a graph
inference problem. Given observational data, we aim at pre-
dicting the presence (or absence) of edges between elements
of the system,which form the vertices of a graph. Edges spec-
ify the relational structure of the system depicted as a graph
or network. As a motivating problem, the reconstruction of
Gene Regulatory Networks (GRN), which model activation
and inhibition relationships between genes, is one of themain
challenges in modern computational biology (Barabási and
Oltvai 2004).

A popular approach consists in assuming that the data
are generated by a Directed Acyclic Graph (DAG) (Pearl
2009). DAGs are made of a collection of vertices, which
stand for variables, and directed edges to model the depen-
dency structure among the variables, avoiding self-loops and
cycles. However, inferring a DAG is a rather challenging
problem. Firstly, the number of nodes p of the graph may
be so large that exploring relevant DAG topologies is simply
infeasible, since the number of possible DAG structures is
super-exponential in p (Robinson 1973; Koivisto and Sood
2004; Tsamardinos et al. 2006; Grzegorczyk and Husmeier
2008). Another dimension flaw occurs when p, even being
reasonable, is larger than the number of observations, and
parameter estimation is jeopardized. High-dimensional sta-
tistical techniques are then needed to overcome this issue
(Bühlmann and van de Geer 2011; Giraud 2015). Secondly,
even if the ratio between p and the sample size n is not
impeding model estimation, the nature of the data can be an
additional obstacle (Ellis andWong 2008; Guyon et al. 2010;
Fu and Zhou 2013). The available observational data are in
general not sufficient to identify the true underlying DAG,
and can only determine an equivalence class ofDAGs (Verma
and Pearl 1991). This approach relies on the assumption that
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the joint distribution is Markov and faithful with respect to
the true graph (Spirtes et al. 2000).

A large number of methods have been proposed for esti-
mating DAGs, including for instance score-based methods
(Bayesian score, Friedman and Koller 2003 or Bayesian
Information Criterion, Schwarz 1978), complex space sam-
pling (Zhou 2011) or the PC-algorithm (Spirtes et al. 2000).
The latter has been proved to be uniformly consistant in the
high-dimensional case, but requires a test of conditional inde-
pendences that quickly becomes computationally intractable
(Kalisch and Bühlmann 2007). Recent works stress the lim-
itations of the absence of cycles in DAGs in the study
of complex systems (De Smet and Marchal 2010). Wright
(1921) alreadydescribedmoregeneral directeddependencies
between variables when introducing genetic path analysis,
but the data were then very limited. Structural Equation
Modeling later introduced the notion of noise measurement
(Hoyle 1995) and Pearl (2009) extended them beyond lin-
earity. Moreover, the directed cyclic graph (Spirtes 1995)
framework received little attention as compared to its acyclic
counterpart. Finally, the actual discovery of causal cycles
requires temporal data, e.g., in the context of dynamic
Bayesian networks (Perrin et al. 2003; Dondelinger et al.
2013), data which are difficult and very expensive to collect
despite efforts in this direction (Sachs et al. 2009).

In this work, we focus on Gaussian structural equa-
tion models associated with maximum likelihood estimators
(MLE). In the last years, the �0-regularization of the MLE
drew the attention of a large number of works since it leads
to infer sparse graphs. In DAGs, a not necessarily topolog-
ical ordering of the nodes can always be defined according
to edge distribution (Kahn 1962). Identifying this ordering is
known to be a challenging problem (Cook 1985). Additional
data, like gene knock-out data or more general perturba-
tions data (Maathuis et al. 2010; Shojaie et al. 2014) can
give information in that way.More generally, biological prior
knowledge, retrieved from specific data bases, can be used to
assist the network reconstruction algorithm (Husmeier and
Werhli 2007), or a partial knowledge of the network can
inform the inference process efficiently, e.g., in the semi-
supervised framework of Mordelet and Vert (2008). For a
known order among the variables in the graph, Shojaie and
Michailidis (2010) present results for the estimation of high-
dimensional graphs based on independent linear regressions
using an adaptive Lasso scheme. When the order of the vari-
ables is unknown, van de Geer and Bühlmann (2013) studied
the convergence of the �0-penalized likelihood. However, the
�0-regularized approaches (Silander and Myllymäki 2006;
Hauser and Bühlmann 2012) remain impractical for esti-
mating graphs with more than 20 vertices, either due to
an exhaustive exploration of the set of DAGs or overfitting
(Chen and Chen 2008). Quite recently, Aragam et al. (2015)
explored a penalized least-squares estimator for a variety of

concave penalization terms. They obtain theoretical guar-
antees of sparsity bounds and consistency results in model
selection. Their theoretical results would greatly benefit an
implementation of the methods and an empirical study to
demonstrate the effectiveness of the approach. The unifying
framework for pseudolikelihood-based graphical modeling
of Kahre et al. (2015) extends classical regularization meth-
ods. The authors obtain theoretical convergence results and
offer an algorithm with an associated implementation. Their
simulation results are quite promising, in particular in terms
of computational time.

Our objective consists in overcoming this drastic dimen-
sional limitation, and find inference strategies for graphswith
up to several hundred nodes. Such strategies must ensure
a high level of sparsity, be supported by computationally
affordable algorithms, while preserving sound theoretical
bases. Here, we propose to use the �1-regularization, sim-
ilarly to Fu and Zhou (2013) and Shojaie and Michailidis
(2010), to penalize the MLE. From a computational point
of view, this regularization makes the criterion to maximize
partially convex while ensuring sparse estimates. Our contri-
bution is twofold: firstly,weprovide convergence inequalities
that guarantee good theoretical performances of our proposed
estimator in the sparse high-dimensional setting. Secondly,
we provide an efficient algorithm to infer the true unknown
DAG, in the form of a convex program embedded in a genetic
algorithm.

The next section covers the model definition and the
associated penalizedMLEproblem.Section 3details the con-
vergence inequalities, and Sect. 4 our inference algorithm.
Section 5 reports numerical experiments both on toy prob-
lems and realistic data sets.

2 The �1-penalized likelihood for estimating DAGs

2.1 DAG’s modeling and estimation

This work considers the framework of an unknown DAG
G0 = (V, E), consisting of vertices V = {1, . . . , p} and a
set of edges E ⊆ V × V . The p nodes are associated to
random variables X1, . . . , X p. A natural approach, devel-
oped by Meinshausen and Bühlmann (2006) to solve the
network inference problem is to consider that each variable
Xi (1 ≤ i ≤ p) of the DAG can be represented as a lin-
ear function of all other variables X j ( j �= i) through the
Gaussian Structural Equation Model:

∀ j ∈ �1, p�, X j =
p∑

i=1

(G0)
j
i X

i + ε j , (1)

with ε j ∼ N (0, σ 2
j ) (σ

2
j known) a Gaussian residual error

term. The set of edges E , which is assumed to be of size s
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(s ≤ p(p − 1)/2), corresponds to the nonzero coefficients
of G0, i.e., (G0)

j
i encodes the relationship from variable Xi

to variable X j .
Assume that we observe an n-sample consisting of n i.i.d.

realizations (X1, . . . , X p) of Eq. (1), distributed according
to a N (0,Σ) law where Σ is non-singular. We denote by
X := (X1, . . . , X p) the n × p data matrix. The relations
between the variables can then be represented in its matrix
form:

X = XG0 + ε, (2)

where G0 = ((G0)
j
i )1≤i, j≤p is the p× p matrix compatible

with the graph G0 and ε := (ε1, . . . , ε p) is the n × p matrix
of noise vectors.

The negative log-likelihood of themodel is then (Rau et al.
2013):

�(G) = np

2
log(2π) + n

p∑

j=1

log σ j

+
n∑

k=1

p∑

j=1

1

σ 2
j

(
Xk(I − G) j

)2
, (3)

where I denotes the p × p identity matrix and Xk the vec-
tor of length p corresponding to the k-th observation of
X1, . . . , X p .

To recover the structure of the DAG G0 and make the
estimated graph sparse enough,we focus on a penalizedmax-
imum likelihood procedure (Bickel and Li 2006):

Ĝ = argmin
G∈GDAG

{�(G) + λ pen(G)}, (4)

where �(.) is the negative log-likelihood of Eq. (3), pen(.) is
a penalization function, λ is a trade-off parameter between
penalization and fit to the data, and GDAG is the set of p × p
matrices compatible with a DAG over p nodes.

In the setting of Gaussian structural equation models with
equal noise variance, Peters et al. (2011, 2014) showed that
the true DAG was identifiable for respectively discrete and
continuous data. In a nutshell, it implies that the true DAG
could be inferred, not just theMarkov equivalence class of the
underlying DAG - a partially directed graph exactly encod-
ing the conditional dependency structure. Using an �0-norm
regularization in Eq. (4) is an attractive option to infer sparse
graphs. From a computational point of view, the main diffi-
culty when solving the optimization problem in Eq. (4) lies in
exploring the set ofDAGsGDAG. (Chickering 1996) showed it
to be an NP-hard problem: an �0-regularization does not set a
favorable framework for this task. To avoid the whole explo-
ration of GDAG, a dynamic programming method has been

proposed in Silander andMyllymäki (2006), using a particu-
lar decomposition of the �0-penalized maximum likelihood.
The greedy equivalent search algorithmofChickering (2002)
is a hill climbing alternative method. Hauser and Bühlmann
(2012) rather restricted the search space to the smaller space
of equivalence classes, and they provide an efficient algo-
rithm without enumerating all the equivalent DAGs. They
showed that they are asymptotically optimal under a faith-
fulness assumption (i.e., independences in the distribution are
those read from G0). However, none of the approaches above
can be used on high-dimensional data to estimate graphswith
a large number of nodes. In this context, we focus on the
�1-norm convex regularization instead of �0 for its sparse,
high-dimensional and computational properties.

The �1-regularization clearly improves the computation of
(4). It allows us to write a convex formulation of the problem
(see Sect. 2.2). Given Eq. (3) and omitting constant terms, the
�1-penalized likelihood estimator we consider is:

Ĝ = argmin
G∈GDAG

{
1

n
‖X (I − G)‖2F + λ ‖G‖1

}
, (5)

where for any matrix M := (M j
i )1≤i, j≤p, we denote by

‖M‖F = ∑
i, j (M

j
i )2 the Frobenius norm and by ‖M‖1 =

∑
i, j |M j

i | the �1-norm.

2.2 A new formulation for the estimator

Wepropose here a new formulation of theminimization prob-
lem of Eq. (5). It naturally decouples the initial problem into
two steps of the minimization procedure: node ordering and
graph topology search. A key property is that any DAG leads
to a topological ordering of its vertices, denoted ≤, where
a directed path from node Xi to node X j is equivalent to
X j ≤ Xi (Kahn 1962; Cormen et al. 2001) (see Example 1
below for more explanations). This ordering is not unique
in general. Proposition 1 from Bühlmann (2013) then gives
an equivalent condition for a matrix to be compatible with a
DAG.

Proposition 1 (Bühlmann 2013) A matrix G is compatible
with a DAG G if and only if there exists a permutation matrix
P and a strictly lower triangular matrix T such that:

G = PT PT .

Graphically, the permutationmatrix sets an ordering of the
nodes of the graph and is associated to a complete graph. The
strictly lower triangularmatrix T sets the graph structure, i.e.,
the nonzero entries of G, as illustrated in Example 1.

Example 1 Consider the DAG G given in Fig. 1 (top). The
corresponding matrix G can then be written as the strictly
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Fig. 1 An example of DAG G (top) and the action of P and T on
G: P is associated to a complete graph that orders the nodes of the
graph (bottom) and T sets the weights on the edges. The dashed edges
correspond to null weight edges (a zero entry in T )

lower triangular matrix T by permutation of its rows and
columns using P:

G =

⎛

⎜⎜⎜⎜⎝

0 0 0 7 5
2 0 1 6 4
0 0 0 0 0
0 0 0 0 3
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
= PT PT ,

with T =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
3 0 0 0 0
5 0 7 0 0
4 1 6 2 0

⎞

⎟⎟⎟⎟⎠
and P=

⎛

⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
.

Looking at the nonzero values of P column by column, P
defines a node hierarchy X5 ≤ X3 ≤ X4 ≤ X1 ≤ X2

compatible with the topological orderings of G. Graphically,
P is associated to the complete graph represented in Fig. 1
(bottom). The dashed edges then correspond to the lower zero
entries of T . Note that since X3 is not connected with X1, X4

and X5, four topological ordering are possible (X5 ≤ X4 ≤
X1 ≤ X3, X5 ≤ X4 ≤ X3 ≤ X1, X5 ≤ X3 ≤ X4 ≤ X1

and X3 ≤ X5 ≤ X4 ≤ X1).

Using Proposition 1, the estimator in (5) leads to the fol-
lowing equivalent optimization problem:

(P̂, T̂ ) = argmin
(P,T ) ∈C

{
1

n

∥∥∥X (I − PT PT )

∥∥∥
2

F
+ λ ‖T ‖1

}
,

(6)

where the optimization space of constraints C is defined
as C = Pp(R) × Tp(R), with Pp(R) the set of permuta-
tion matrices and Tp(R) the set of strictly lower triangu-
lar matrices. Note that a similar formulation has already
been proposed by van de Geer and Bühlmann (2013) to
ensure good theoretical properties for the �0-penalized log-
likelihood estimation. However, it has never been exploited
froma computational point of view to recover the graph struc-
ture optimizing problem (5). In the following two sections,
we propose a theoretical analysis of the proposed estimator
(Sect. 3) and a computationally effficient algorithm to solve
Problem (6) (Sect. 4).

3 Convergence inequalities for the DAG estimation

The main result of this section deals with convergence rates:
in Theorem 1, we provide upper bound for error associated
with the �1-penalized maximum likelihood estimator con-
sidered in Eq. (6), both in prediction (Eq. 7) and estimation
(Eq.8). Following the works of van de Geer and Bühlmann
(2013) on the �0-penalized maximum likelihood estimator
and of Bickel et al. (2009) on the Lasso and the Dantzig
Selector, we obtain two convergence results under somemild
sparsity assumptions, when the number of variables is large
but upper bounded by a function ϕ(n) of the sample size n.

3.1 Estimating the true order of variables

For a known ordering among the variables of the graph
(Shojaie and Michailidis 2010), an unrealistic assumption in
many applications, the DAG inference problem can be cast
in a convex optimization problem. To provide convergence
inequalities of the proposed estimator in the most general
case of an unknown order we consider here, we first focus
on the problem of estimating the true variable order. Let us
denote byΠ0 the set of permutationmatrices compatiblewith
the true DAG G0:

Π0 =
{
P ∈ Pp(R), PT G0P ∈ Tp(R)

}
.

Π0 contains one or more permutation matrice(s) (see Exam-
ple 1). We will have to make a decision as to whether the
estimated order of variables P̂ given by Eq. (6) is in Π0 or
not.
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To answer this question, we investigate the effect of learn-
ing an erroneous order of variables P /∈ Π0.We introduce the
following additional notations: for any permutation matrix
P ∈ Pp(R), we denote by G0(P) the matrix defined as:

G0(P) = PT0P
T ,

with T0 = PT
0 G0P0 a lower triangular decomposition of

G0. From a graphical point of view, while P /∈ Π0, the graph
G0(P) associated toG0(P) is obtained fromG0 by permuting
some of its nodes (see Example 2), otherwise, if P ∈ Π0,
G0(P) = G0. We also denote by ε(P) := X − XG0(P) the
associated residual term.We denote byΩ(P) the covariance
matrix of ε(P) and ω j (P) := Var(ε j (P)) the associated
noise variances of each node.

With these notations and checking that the assumptions
presented in Sect. 3.2 hold, we ensure that, with large proba-
bility, we choose a right order of variables and the estimated
graph converges to the true graph when n and p grow to
infinity (see Sect. 3.3).

Example 2 Let

P =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

⎞

⎟⎟⎟⎟⎠
/∈ Π0

a wrong permutation.

In Fig. 2, we represent the permuted graph G0(P) (bot-
tom) associated to the graph G0 (top). The latter is obtained
from G0 after permutation of its nodes using PPT

0 , where P0
(corresponding to the matrix P in Example 1) defines a right
order of variables.

3.2 Assumptions on the model

For a square matrix M ∈ Mp×p(R) and a subset S of
�1, p�2, we denote by MS ∈ Mp×p(R) the matrix that has
the same elements asM onS and zero on the complementary
set SC of S. We now introduce the assumptions we used to
obtain statistical properties of our estimator.

Hypotheses

H1 There exists σ 2 > 0 such that

∀ j ∈ �1, p�,Var(ε j ) = σ 2.

H2 There exists σ 2
0 , independent of p and n, such that

max
1≤ j≤p

Var(X j ) ≤ σ 2
0 .

X1

X2

X3

X4

X5

7

1

4

6

5
3

2

X4

X1

X2

X5

X3

7

1

4

6

5
3

2

Fig. 2 Graph G0 (top) and the permuted graph G0(P) (bottom) asso-
ciated to the permutation P

H3 There exists λ∗ > 0 such that the minimal eigenvalue of
the covariance matrix Σ of X satisfies

λmin ≥ λ∗ > 0.

H4 There exists gmax < ∞ such that the maximal weight
of the DAG G0 is bounded

max
1≤i, j≤p

∣∣∣(G0)
j
i

∣∣∣ ≤ gmax .

H5 The number of nodes p satisfies

p log p = O(n).

H6 There exists κ(t) > 0 with 1 ≤ t ≤ p2 such that:

min

{ ‖XM‖F√
n ‖MS‖F

}
≥ κ(t),

where the minimum is taken over the set of p× p matri-
ces satisfying

∥∥MSC

∥∥
1 ≤ 3 ‖MS‖1, with S ⊂ �1, p�2

and |S| ≤ t .
H7 There exists 0 < η ≤ C n

p log p × 1√
s
such that, for all

permutations P /∈ Π0,
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1

p

p∑

j=1

(∣∣ω j (P)
∣∣2 − 1

)2
>

1

η
.

Assumption H1 states that the noise variances are the same
among all variables. This assumption is clearly hard to test in
practice but makes the problem identifiable and ensures that
we can recover the true DAG. Otherwise, minimizing (5)
only leads to the identification of one element of the Markov
equivalence class of the true DAG (partially directed graph).
To simplify the theoretical results and proofs, until the end
of this work, we assume that the noise variances σ 2 are equal
to one. Our results are still valid even if σ 2 �= 1, by small
modifications in the constant terms as long as they are all
equal.

Assumption H5 deserves a special attention since it
bounds the high-dimensional setting. The considered prob-
lem is obviously non-trivial and requires a sufficient amount
of information. A more detailled discussion about assump-
tions H3 and H5 is proposed in Sect. 3.4.

Assumption H6 is a natural extension of the Restricted
Eigenvalue condition of Bickel et al. (2009) to our multi-
task setting. More precisely, denoting

X̃ =
⎛

⎜⎝
X 0

0 X

⎞

⎟⎠

p2

n × p,

H6 is equivalent to assuming that the Gram matrix X̃ X̃ T

n is
non-degenerate on a restricted cone (Lounici et al. 2009;
Bühlmann and van de Geer 2011). Notice that this condi-
tion is very classical in the literature. It yields good practical
performance even for small sample sizes, and some recent
works discuss an accurate population eigenvalue estimation
even in a large dimension setting (Mestre 2008; El Karoui
2008; Liu et al. 2014; Ledoit and Wolf 2015).

The last assumption H7 is an identifiability condition
needed to ensure that the estimated permutation P̂ is in
Π0. This assumption was introduced by van de Geer and
Bühlmann (2013) as the “omega-min” condition. In a sense,
it separates the set of compatible permutations from its com-
plement in a finite sample scenario.

3.3 Main result

The result we establish in this section is double-edged: (a)
with large probability,we ensure that the estimated P̂ belongs
to Π0, and (b) we provide convergence inequalities both in
prediction and estimation for the graph estimated from the
minimization problem (6). This result clearly states the desir-
able theoretical properties of the derived estimator, assuming

reasonable conditions on the complex system embedding the
data.

Theorem 1 Assume thatH1−7 are satisfied,with s ⊂ �1, p2�
in H6 such that

∑
i, j 1(G0)

j
i �=0

≤ s (G0 is s-sparse). Let

λ = 2C
√
s1/2 log p

n . Then, with probability greater than 1 −
5/p, any solution Ĝ = P̂ T̂ P̂T of the minimization problem
(6) satisfies that P̂ ∈ Π0. Moreover, with at least the same
probability, the following inequalities hold:

1

n

∥∥∥XĜ − XG0

∥∥∥
2

F
≤ 16C2

κ2(s)
s3/2

log p

n
. (7)

∥∥∥Ĝ − G0

∥∥∥
1

≤ 16C

κ2(s)

√
s5/2

log p

n
. (8)

The proof of this result is deferred in Section C of the
Supplementary Materials.

Theorem 1 states that with probability at least 1 − 5/p,
we choose a compatible order of variables over the set of
permutations. Inequalities (7) and (8) give non-asymptotic
upper bounds on the loss under conditions depending on s,
p and n (see Sect. 3.4). They also ensure that the estimated
T̂ is close to the true T0 with large probability.

3.4 Discussion on the high-dimensional scenario

Sparsity of the graph Assumption H7 and Theorem 1 natu-
rally require a trade-off between signal sparsity, dimension-
ality and sample size. In the ultra sparse regime (where the
sparsity s of the true graph is bounded by s∗ > 0), Theorem
1 provides convergence inequalities for Ĝ choosing η ≤ α√

s∗
with p log(p) = αn in Assumption H7.

In the standard sparsity scenario, if s is at least of the
order of p, then η should be of the order of α/

√
p, which is

unrealistic as p → +∞. This case thus requires a stronger
dimensional assumption H5. Taking at least p2 log(p) =
O(n) ensures a good estimation of the graph.

Note, however, that universal conditions cannot be over-
come and the ultra-high dimension settings (e.g.,Wainwright
(2009); Verzelen (2012)) is an insurmountable limit.

Minimal eigenvalue condition Assumption H3 ensures that
the minimal eigenvalue of the covariance matrix Σ of X is
not too small. In the high-dimensional scenario, this could be
hard to verify, λmin decreasing while n, p growing to infinity
(Hogben 2007). A natural bound for λmin is:

λmin ≥ 1

pmax
(
1, g2max

)
(1 + √

s)
, (9)

with gmax and s as in H4 and Theorem 1.
Assumption H3 can thus be relaxed by allowing λmin to

decrease with 1/p
√
s. The price to pay for this relaxation is
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a data dimensionality reduction p3 log(p) = O(n), which
automatically implies:

3λmin

4
− 2

√
log(p)

n
− 3σ0

√
2p log(p)

n
> 0,

with Eq. (9) (for more details, see Section A of the Supple-
mentary Material Proof details).

4 Inference algorithm

4.1 Global algorithm overview

In this section, we present GADAG (Genetic Algorithm for
learning Directed Acyclic Graphs), a computational proce-
dure devoted to solve Eq. (6) and available as a R package
on CRAN at https://cran.r-project.org/package=GADAG.
Although decomposing the original problem made it more
natural to handle, this problem is still a very challenging
task from an optimization point of view, due to the different
nature of the variables P and T , the non-convexity of the cost
function and the high dimension of the search space.

An intuitive approach consists in using an alternating
scheme: one of the variables P or T is fixed and the other
one is sought so as to optimize the score function, then the
roles of P and T are reversed and the procedure is repeated
iteratively until convergence for some criterion (Csiszár and
Tusnády 1984). However, the structure of our problem does
not allow us to use such a scheme: looking for an optimal T
given a fixed P makes sense, but changing P for a fixed T
does not.

In our inference algorithm GADAG, an outer loop is used
to perform the global search among the DAGs space, which
is driven by the choice of P , while a nested loop is used
to find an optimal T for each given fixed P (see Fig. 3). As
we show in the following, population-based meta-heuristics
algorithms are a natural and efficient choice for exploring the
space of permutation matrices (Sect. 4.3). The nested opti-
mization problem can be resolved using a steepest descent
approach (Sect. 4.2).

4.2 Graph structure learning when the variable order is
fixed

Assume first that the variable ordering P ∈ Pp(R) is fixed.
The problemof inferring a graph is then reduced to estimating
the graph structure, which can be solved by finding a solution
of:

min
T∈Tp(R)

{
1

n

∥∥∥X (I − PT PT )

∥∥∥
2

F
+ λ ‖T ‖1

}
. (10)

Choice of P

Search of an optimal T

Evaluate the likelihood

Problem solved?

END

YES

NO

∗

Fig. 3 Overview of our hybrid algorithm GADAG

The minimization problem given by Eq. (10) looks like
a well-studied problem in machine learning, as it is closely
related to the �1-constrained quadratic program, known as
the Lasso in the statistics literature (Tibshirani 1996). Indeed,
the �1-regularization leads to variable selection and convex
constraints that make the optimization problem solvable. We
note here that this allows us to always provide a locally opti-
mal solution, i.e., optimal weight estimates given a hierarchy
between the nodes.

A large number of efficient algorithms are available for
computing the entire path of solutions as λ is varied, e.g., the
LARS algorithm of Efron et al. (2004) and its alternatives.
For example, in the context of the estimation of sparse undi-
rected graphical models,Meinshausen and Bühlmann (2006)
fit a Lasso model to each variable, using the others as pre-
dictors, and define some rules for model symmetrization as
they do not work on DAGs. The graphical Lasso (or glasso,
Friedman et al. 2007) algorithm directly relies on the estima-
tion of the inverse of a structure covariance matrix assumed
to be sparse. Improvements were proposed for example by
Duchi et al. (2008) (improved stopping criterion) andWitten
et al. (2011) (estimation of a block-diagonal matrix). Other
authors propose to solve the optimization problem using an
adaptation of classical optimization methods, such as inte-
rior point (Yuan and Lin 2007) or block coordinate descent
methods (Banerjee et al. 2008; Friedman et al. 2007).

We propose here an original convex optimization algo-
rithm to find the solution in Eq. (10) in a form similar to a
steepest descent algorithm. Our proposed algorithm is much
quicker than a glasso approach, a desirable feature as it will
run at each iteration of the global algorithm (see the “Search
of an optimal T ∗” box in Fig. 3 and the “Evaluate the new
individuals” item in Algorithm 2). Moreover, its mechanistic
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Algorithm 1: Graph structure learning - minimization
of Eq. (10)

Input: λ, L , ε > 0.
Initialization: T0 the null squared p × p matrix, k = 0 and
e = +∞.

while e > ε do

Compute Uk = Tk − ∇
(
1
n

∥∥X (I−PTk PT )
∥∥2
F

)

L with Eq. (13);
Using Eq. (11), compute the current matrix

Tk+1 =
(
(Tk+1)

j
i

)

i, j
;

Project Tk+1 on Tp(R) with Eq. (12):
Tk+1 ← ProjTp(R)(Tk+1);

Compute e = ‖Tk+1 − Tk‖F ;
Increase k: k ← k + 1;

end
Output: Tk ∈ Tp(R) the unique solution of (10).

components (see Section B of the Supplementary Material
Proof details) allowed us to derive the theoretical results of
Theorem 1. The proposed scheme can be seen as an adapta-
tion of the LARS algorithm with matrix arguments.

Let (Tk)k≥0 the sequence of matrices defined for all i, j ∈
�1, p�2 as:

(Tk+1)
j
i = sign

(
(Uk)

j
i

)
max

(
0,

∣∣∣(Uk)
j
i

∣∣∣ − λ

L

)
, (11)

where for all k ≥ 0,Uk = Tk − ∇
(
1
n

∥∥X (I−PTk PT )
∥∥2
F

)

L , L
is the Lipschitz constant of the gradient function

∇
(
1
n

∥∥X (I − PTk PT )
∥∥2
F

)
and sign() is the sign of any

element. Then, a solution of (10) is given by performing
Algorithm 1, where:

– the projection ProjTp(R)(T ) of any p × p real-valued

matrix T = ((Tk)
j
i )i, j on the set Tp(R) is given by

(
ProjTp(R)(Tk)

) j

i
=

{
0 if i < j,

(Tk)
j
i otherwise.

(12)

– the gradient of 1
n

∥∥X (I − PTk PT )
∥∥2
F is

∇
(
1

n

∥∥∥X (I − PTk P
T )

∥∥∥
2

F

)

= −2

n
(X P)T (X − X PTk P

T )P. (13)

The detailed calculations are deferred to Section B of the
Supplementary Material Proof details.

4.3 A genetic algorithm for a global exploration of the
permutation matrices space incorporating network
topologies

As the optimal T can be calculated for any P usingAlgorithm
1 and with a very good approximation accuracy accord-
ing to Theorem 1, the optimization task (6) comes down
to exploring the Pp(R) space of permutation matrices in
dimension p and to evaluating the quality of permutation
candidates P ∈ Pp(R). We first note that the number of
permutation matrices is p!, which rules out any exact enu-
meration method, even for relatively small p. We propose
instead to use a meta-heuristic approach, which has proven
to be successful formany discrete optimization problems like
wire-routing, transportation problems or traveling salesman
problem (Michalewicz 1994; Dréo et al. 2006).

Among the different meta-heuristics (Simulated anneal-
ing, Tabu search, Ant Colony,…) we focused on Genetic
Algorithms (GA) because, despite limited convergence
results (Cerf 1998; Michalewicz 1994), they were found
much more efficient in problems related to ours than alter-
natives with more established convergence proofs (e.g.,
Granville et al. (1994) for simulated annealing), while allow-
ing the use of parallel computation.

GAs mimic the process of natural evolution, and use a
vocabulary derived from natural genetics: populations (a set
of potential solutions of the optimization problem), indi-
viduals (a particular solution) and genes (the components
of a potential solution). Each generation/iteration of the
algorithmwill improve the constituting elements of the popu-
lation. In short, a populationmade of N potential solutions of
the optimization problem samples the search space. This pop-
ulation is sequentially modified, with the aim of achieving a
balance between exploiting the best solutions and explor-
ing the search space, until some termination condition is
met.

We use here a classical Genetic Algorithm, as described
in Michalewicz (1994) for instance, which is based on three
main operators at each iteration: selection, crossover and
mutation. The population is reduced by selection; selec-
tion shrinks the population diversity based on the individual
fitness values. The crossover allows themixing of good prop-
erties of the population to create new composite individuals.
Mutations change one (or a few in more general GAs) com-
ponents of the individuals to allow random space exploration.
The complete sketch of algorithm GADAG is given in Algo-
rithm 2. A discussion on parameters to set in Algorithm 2 is
found in Sect. 5.1. The details of the different operators are
given in the following.

As we show in Example 3, any P ∈ Pp(R) is uniquely
defined by a permutation vector of �1, p�. Hence, we use as a
the search spaceSp the set of permutations of �1, p�, which
is a well-suited formulation for GAs.
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Algorithm 2: GADAG overview

Input: pxo, pm , εH > 0, εJ > 0, kmax > 0, imax > 0, λ, L .
Initialization: Generate the initial population P0 with N
permutations of �1, p�, k = 0 and eJ = +∞.
while H > εH & eJ > εJ& k ≤ kmax do

Generate Pk+1 as a random selection of N individuals from
Pk ;
Pick an even subset Pxo of Pk+1 (each individual of Pk+1
selected with probability pxo);
Perform crossover on Pxo by randomly pairing the
individuals;
Mutate each obtained individual with probability pm ;
Evaluate the new individuals Pm by running Algorithm 1;
Replace Pxo by Pm in Pk+1;
Compute the Shannon entropy H and the difference in the
average fitness eJ = max0≤i≤imax

(
J̄ (Pk+1) − J̄ (Pk−i )

)
;

Increase k: k ← k + 1;
end

Example 3 Consider the permutation matrix (p = 5):

P =

⎛

⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
.

Then, P is represented by the 5 3 4 1 2 vector, looking
at the ranks of non-null values of P column by column. The
nodes are ranked according to their topological ordering.

Note that our problem closely resembles the classical
Traveling Salesman Problem (TSP), which has been succes-
fully addressed bymeans of genetic algorithms (Grefenstette
et al. 1985; Davis 1991). Identically to the TSP, we opti-
mize over the space of permutations, which induces specific
constraints for defining the crossover and mutation opera-
tors. However, unlike the TSP, the problem is not circular (in
the TSP, the last city is connected to the first one), and the
permutation here defines a hierarchy between nodes rather
than a path, which makes the use of TSP-designed operators
a potentially poor solution. As we show in the following,
we carefully chose these operators in order to respect the
nature of the problem at hand. In particular, we emphasize
two of their desirable features: their efficiency in exploring
the search space and the interpretable aspect they offer in
terms of modifications on a given network or the blend of
two different networks (crossover).

Fitness function Given a potential solution pi ∈ Sp, the
fitness function is defined as:

Ji = J (pi ) = 1

n

∥∥∥X (I − Pi T
∗
i PT

i )

∥∥∥
2

F
+ λ

∥∥T ∗
i

∥∥
1 , (14)

with Pi constructed from pi as in Example 3 and T ∗
i the

solution of Eq. (10) with P = Pi . As mentioned earlier, at
each step of the proposed GA, the evaluation of the fitness
function thus requires running the nested loop of our global
algorithm GADAG.

Selection operator The selection operator (or survival step)
consists in generating a population of N individuals from the
N existing individuals by random sampling (with replace-
ment, hence some individuals are duplicated and others are
deleted). It aims at improving the average quality of the pop-
ulation by giving to the best potential solutions a higher
probability to be copied in the intermediate population. We
have chosen to use the classical proportional selection ofHol-
land (1975): each individuals is selected with a probability
inversely proportional to its fitness value of Eq. (14).

Crossover operator A crossover operator generates a new
set of potential solutions (children) from existing solutions
(parents). Crossover aims at achieving at the same time (i) a
good exploration of the search space by mixing the charac-
teristics of the parents to create potentially new ones while
(ii) preserving some of the desirable characteristics of the
parents. By desirable features, we mean features of the net-
work which lead to good fitness values, and which in turn
are favored by selection over the generations. The crossover
population (set of parents) is obtained by selecting each indi-
vidual of the population with a probability pxo; the parents
are then paired randomly.

We have chosen the order-based crossover, originally pro-
posed for the TSP (Michalewicz 1994, Chapter 10), which is
defined as follows. Given two parents p1 and p2, a random
set of crossover points are selected, which we denote Ω . It
consists in a permutation of k elements taken from �1, p�,
with k uniformly drawn between 0 and p. A first child C1

between p1 and p2 is then generated by:

1. fixing the crossover points of p1,
2. completingC1 with themissing numbers in the order they

appear in p2.

Example 4 Consider the two following parents:

p1 4 3 10 7 5 9 1 2 6 8

p2 6 1 9 4 10 2 8 3 7 5

Assume that the crossover points randomly chosen are 4, 9,
2 and 8 (in bold red above). Then, the child C1 is defined by
inheriting those points from p1 and filling the other points in
the order they appear in p2:
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Fig. 4 Graphical representation of crossover between two 10-node graphs. The two parental graphs are represented on the left. The third graph,
on the right, is obtained by combining the blue and red part of its parents using the crossover operator

C1 4 * * * * 9 * 2 * 8

p2 6 1 9 4 10 2 8 3 7 5/ / / /

⇓

4 6 1 10 3 9 7 2 5 8

From a graphical point of view, a crossover between p1
and p2, which encode two complete graphs GP1 and GP2 ,
constructs two new graphs. One of them, GC1 is composed of
the sub-graph of GP1 induced by the set of crossover points
Ω and the sub-graph of GP1 induced by the complementary
set ΩC of Ω in �1, p� (see Fig. 4). The second child graph
GC2 is obtained in an identical manner by reversing the roles
played by the two parental graphs.

Mutation operator Mutation operators usually correspond
to the smallest possible change in an individual (unary oper-
ator). We thus define it as an alteration of two neighboring
genes (see Example 5). Graphically, a mutation consists in
switching the arrowhead of an edge between two nodes.
Mutation is applied to each child with probability pm .

Example 5 Apossiblemutation for the first child of Example
4 is to swap the genes “1” and “10” (in bold red below):

M1 4 6 1 10 3 9 7 2 5 8

Stopping criterion Two quantities are monitored along the
iterations: the heterogeneity of the population and the value
of the objective function.

For the first indicator, we use the Shannon entropy, defined
for each rank position j ∈ �1, p� as:

Hj = −
p∑

i=1

Ni, j

N
log

(
Ni, j

N

)
,

where Ni, j is the number of times when i appears in posi-
tion j . Hj = 0 if all the individuals “agree” on the position
of a node and the population is perfectly homogeneous at
this node. On the contrary, it is maximum when we observe
a uniform distribution of the different nodes at a given
position and the population is in this case at a maximum
of heterogeneity or disorder for this position. The algo-
rithm stops if the population entropy value H = ∑N

j=1 Hj

drops below a threshold since H = 0 if all the individu-
als are identical. A second criterion can terminate GADAG
if difference in the average fitness (denoted J̄ thereafter)
of the population between a given number of consecu-
tive iterations, does not change by more than a predefined
threshold.

5 Numerical experiments

This section is dedicated to experimental studies to assess
practical performances of our method through two kinds of
datasets. In a first phase, the aim of these applications is
to show that GADAG has a sound behavior on simulated toy
data with a variety of different settings. In a second phase, we
demonstrate the ability of our algorithm to analyze datasets
that mimic the activity of a complex biological system, and
we compare it to other state-of-the-art methods. The com-
peting methods are presented in Sect. 5.4.1. In Sect. 5.1, we
present the calibration of the Genetic Algorithm parameters.
Section 5.2 introduces the measures we used to assess the
merits of the methods. Experimental results are then detailed
in Sect. 5.3 for the simulated high-dimensional toy datasets
and in Sect. 5.4.2 for the dataset with features encountered
in real situations.

All experiments have been performed on R (R Core
Team 2017) using the package GADAG (Champion et al.
2017). The computational times reported in Sect. 5.3 cor-
respond to a Windows 7 laptop computer with 8 threads
on a 4-core hyperthreaded 2.50GHz processor, with 4GB of
RAM.
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Table 1 Algorithm parameter settings

Parameter Value

pxo 0.25

pm 0.5

N 5 × p

L 2
n

∥∥XT X
∥∥
F

Max. nb. of eval. 104

εH 10−6

εJ 10−4

5.1 Algorithm parameters

Running the procedure of Algorithm 2 requires to define
parameters of the outer loop, which generates our popula-
tion of P’s, and of the nested loop to find the optimal T ∗.
The evaluation of the Lipschitz gradient constant L , used
to find the optimal graph structure T ∗, is known as a hard
established problem in optimization. Some authors propose
to choose an estimate of L from a set of possible values
(Jones et al. 1993; Sergeyev and Kvasov 2006), to estimate
local Lipschitz constants (Sergeyev 1995), or to set it a priori
to a fixed value (Evtushenko et al. 2009; Horst and Pardalos
1995). Here, observing Eq. (13), a major bound for L is given
by:

L ≤ 2

n

∥∥∥XT X
∥∥∥
F

.

We found that setting L to this bound worked well in practice
in all our scenarios.

Five parameters need to be tuned to run the Genetic Algo-
rithm: the crossover rate pxo, the mutation rate pm , the
constant of the stopping criteria εH and εJ and the size of the
population N . For the first four parameters, we observed that
their value had a limited effect on the efficiency, hence we
chose commonly used values in the literature (see Table 1).
The size of the population has a more complex effect and has
been investigated in several prospective papers (e.g., Schaf-
fer et al. 1989; Alander 1992; Piszcz and Soule 2006; Ridge
2007) but without providing a definitive answer to the prob-
lem. In our simulation study, we chose as a rule-of thumb
N = 5p, which was found as a good compromise between
computational cost and space exploration on several experi-
ments.

The complete parameter settings used in our experiments
are reported in Table 1.

5.2 Performance metrics

A classical performance measure for graph inference meth-
ods consists in comparing predicted interactions with the

knownedges in the true graphG0 using precision versus recall
(P/R) curves. We denote by TP, FP, FN and TN, the true pos-
itive (correctly predicted) edges, the false positive (inferred
by mistake) edges, the false negative (missed) edges, and
the true negative (correctly non-predicted) edges. The recall,
defined as T P

T P+FN , measures the power (or sensitivity) of
reconstruction of nonzero elements of the true matrix G (or
equivalently of the true network) for one method, whereas
the precision, equal to T P

T P+FP , measures the accuracy of the
reconstruction. The closer to one the precision and the recall
the better.

P/R curves represent the evolution of those quantities
when varying the sparsity of the methods. GADAG is based
on penalized optimization: it seeks linear dependencies
between the variables with a controlled level of parsimony
(λ in Eq. (5)). For λ varying from 0 (complete graph) to
+∞ (empty graph), it thus produces a list of edges succes-
sively introduced in the model. This list of edges defines the
precision versus recall curve. As a summary performance
measurement, we also computed the classical area under the
P/R curve (AUPR).

5.3 Exploratory analysis on toy datasets

We first considered simulated data from randomly generated
networks with different characteristics in order to assess the
capabilities and limits of our algorithm. Given a number of
nodes p, a random set of s edges were generated, and the
nonzero parameters of the matrix G0 associated to the cor-
responding DAG were uniformly sampled between 0 and 1.
Using this graph, we generated N observations following the
hypotheses of Gaussian, homoscedastic and centred error.
We then ran GADAG on this dataset to recover the graph.
Note that other assumptions presented in Sect. 3.2 may not
be fulfilled here, but we aimed at evaluating the robustness
of GADAG for recovering DAGs in such scenario.

In our experiments, we varied the number of nodes p, of
edges s and of available observations n. We chose four dif-
ferent settings p = 50, 100, 500 and 1000 with n/p varying
from 100% to 10% and s/p from 100% to 400%. Unless oth-
erwise stated, all experiments were replicated 50 times each
and results were averaged over these replicates. Averaged
computational times correspond to one iteration of GADAG,
for a fixed parameter of penalization λ.

Results, in terms of area under the P/R curves and compu-
tational time are summarized in Table 2. We can first remark
a crude decrease in performance results when the number
of samples is very small (p = 50 and 100, n/p = 10%,
so respectively 5 and 10 samples). In that case, GADAG is
incapable of recovering any signal (AUPR < 10%). When
the sample size is of the order of p (n/p = 100%, first row
of Table 2 a), GADAG works well, although it is clearly
a favorable case, far from the high-dimensional one. With
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Table 2 Performance results of GADAG on a toy dataset with different characteristics (number of nodes p, number of edges s and sample size n)
in terms of area under the precision versus recall curve (a) and computational time, in seconds (b)

p = 50 p = 100 p = 500 p = 1000a

s/p 100% 200% 400% 100% 200% 400% 100% 200% 400% 100% 200% 400%

(a) n/p

100% 0.72 0.65 0.65 0.69 0.63 0.64 0.79 0.79 0.70 0.86 0.80 0.65

50% 0.53 0.46 0.49 0.56 0.53 0.53 0.75 0.76 0.66 0.82 0.75 0.63

10% 0.02 0.03 0.05 0.04 0.06 0.09 0.51 0.53 0.41 0.65 0.60 0.49

(b) n/p

100% 0.55 0.43 0.41 8.69 9.87 7.51 253 258 214 1640 1500 1230

50% 0.48 0.48 0.41 8.63 8.90 6.62 250 258 172 1,520 1590 1270

10% 0.31 0.30 0.36 6.52 5.81 5.41 183 183 165 1590 1550 1290

All results are averaged over 50 replicates (a5 replicates only as the running time was 1 day per network)

half of the samples (n/p = 50%), performance remains sat-
isfactory (AUPR around 50%, or more), which is critical
since this situation corresponds to realistic biological studies,
where subsets of genes (i.e., nodes) are preselected before-
hand. Interestingly, p = 500 and 1, 000 work better than
smaller values of p since the number of samples is larger
to estimate the graph that generated the data. Indeed, for a
given number of samples, e.g., n = 50, performance results
slightly decrease from 65% (p = 50) and 55% (p = 100) to
50% (p = 500). GADAG is thus not considerably affected
by a relative increase in dimensionality. For large graphs
(p = 500 and 1, 000), even if n/p ≤ 10%, it succeeds
in recovering them, which makes it a competitive algorithm
with regard to other state-of-the-art approaches.

An interesting remark is that the number of edges s does
not significantly change numerical results (see each row of
Table 2 a), although GADAG succeeds slightly better in esti-
mating sparser graphs. This may be due to the particular
structure of our algorithm, which looks for topological order-
ing between nodes (genetic algorithm) and then makes the
inferred graph sparse.

Concerning computational time, we can finally note that
growing the dimension p clearly makes the problem harder
to solve : each call to GADAG requires more than 300 s for
hundred of nodes and 1500 s for thousand of nodes.

5.4 DREAM data analysis

The second type of datasets we used mimic activations
and regulations that occur in gene regulatory networks. It
is provided by the DREAM4 challenge on “In Silico Net-
work Challenge”. Note that although plausibly simulated,
DREAM4data sets are not real biological data sets. However,
the used network structures (five in total) were extracted from
E. coli and S. cerevisae—two biological model organisms—
transcriptional networks. These networks contain cycles, but

self-loops were discarded. The gene expression observations
were not simulated by an equal noise Gaussian multivariate
model, stochastic differential equations were used to mimic
the kinetic laws of intricate and intertwined gene regula-
tions. In addition to the biological noise simulated from the
stochastic differential equations, technical noises were added
to reproduce actual gene measurement noise. All data sets
were generated by the GNW software (Marbach et al. 2009).

Workingwith simulated networks, we are able to quantita-
tively and objectively assess the merit of competing methods
in terms of true predictions (true positive TP and true nega-
tive TN) versus incorrect predictions (false positive FP and
false negative FN) edges. While the analysis of a real data set
is certainly the final goal of a methodology motivated by a
real problem like ours, there are only imprecise ways of val-
idating a method when analyzing a real data set. Well known
systems are often small and even if knowledge has accu-
mulated on them, these can be noisy and difficult to gather
to obtain a fair picture of what can adequately be consid-
ered as sets of true positive and true negative sets of edges.
Even if the data generation process of the DREAM4 In Sil-
icoNetworkChallenge is completely understood, no existing
method is able to predict all regulatory relationships, but at
the price of including many false positive predictions. The
DREAM4 datasets we considered have p = 100 nodes and
only n = 100 observationsmaking it a very challenging task.

5.4.1 Comparison to state-of-the-art

We compare GADAG to five state-of-the-art inference meth-
ods. Among them, the Genie3 method (Huynh-Thu et al.
2010), based on random forests, was the best performer
of one of the DREAM4 sub-challenges, while the Boot-
Lasso (Allouche et al. 2013) was one of the key components
of the best performing approach of one of the DREAM5
sub-challenges (Allouche et al. 2013). The two methods
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decompose the prediction of the network into p feature selec-
tion sub-problems. In each of the p sub-problems, one of the
node is predicted from the other ones using random forests
(Breiman 2001) for Genie3 or a bootstrapped version of the
Lasso (Bach 2008) for BootLasso. For the random forest
approach, parents of each node were detected as most signif-
icant explanatory variables according to a variance reduction
criterion in a regression tree framework. The process was
repeated on a randomized set of trees, which made up the
so-called random forest. This method allowed us to derive a
ranking of the importance of all variables for the target by
averaging the scores over all the trees.Weused theR-package
randomforest (Liaw and Wiener 2002) for our results.
The Lasso is a �1-norm penalization technique for solving
linear regression. Following the works of Bach (2008), Boot-
Lasso uses bootstrapped estimates of the active regression
set based on a Lasso penalty: only those variables that are
selected in every bootstrap are kept in the model. In both
cases, actual coefficient values are estimated from a straight-
forward least square procedure. Note that we slightly relax
the condition for a variable to be included in the model, a
variable was selected at a given penalty level if more than
80% of bootstrapped samples led to selecting it in the model
(Allouche et al. 2013).

We also compare our algorithm to three classical methods
for Bayesian Networks (BNs) modeling. BNs are graphical
models (Pearl 2009) defined by a DAG and parameters that
set quantitative relationships between variables. Algorithms
devoted to structure and parameter learning in BNs either
aim at maximizing a score that reflects the fit of the data
to the learnt structure, or test for independencies between
variables. They are often used as references in a gene regu-
latory network inference context (Tsamardinos et al. 2006),
although mainly for moderate size networks. The first com-
pared algorithm we used is the PC-algorithm (Spirtes et al.
2000), a popular constraint-based method that drastically
reduces the number of conditional independence tests. It
first builds the skeleton of the graph by removing edges
from a complete undirected graph before determining the
orientation of the edges, when possible. A large number of
implementations of the PC-algorithm exists. The numerical
results presented here were obtained using the pcAlg func-
tion of the R-package pcalg, based on standard correlation
estimates for conditional independence testing. We also ran
ARACNE (Margolin et al. 2006), an improved version of
minimum-weight spanning tree that uses the information
inequality to eliminate the majority of indirect relation-
ships between variables. We used the ARACNE function of
the R-package bnlearn. We finally compare GADAG to
the Greedy Equivalence Search (GSE) algorithm (Chicker-
ing 2002), implemented in the R-package pacalg, which
heuristically searches in the space of equivalent classes the
model with the highest Bayesian score.

To compare our algorithmwith these competing methods,
we used the P/R curves presented in Sect. 5.2. As GADAG,
BootLasso leads to a sparse inferred graph while controlling
the level of parsimony, which builds the P/R curve. Genie3
produces as an output a ranked list of regulatory interactions,
which corresponds to the edges of the inferred graph. Edges
are the successively introduced with decreasing confidence
scores to produce the random forest P/R curve. For thePCand
the GSE algorithms, inherent parameters regulating the spar-
sity of the produced graphs helped us to define such curves.
Note that the implementation we used for running ARACNE
was only able to produce a final network prediction (interac-
tion ranking is not available).

5.4.2 Numerical results

The P/R curves for the five DREAM problems are shown in
Fig. 5. Each curve corresponds to one of the five networks
used in the challenge. In general, for all the problems the five
methods are able to achieve a precision equal to one (that is,
to include only true edges), but these correspond to overly
sparse graphs (very small recall). Conversely, a recall equal
to 1 can only be reached by adding a large number of FP
edges, whatever the method we consider, even if some fail
earlier than others. The main differences between the meth-
ods appear on the leftmost part of the P/R curves, especially
those of Fig. 5 B, C and D: while the precision of BootLasso,
Genie3, PCalg and GSE drops rapidly with a slow increases
in recall above 20% recall, it remains higher for GADAG.
Hence, its first predicted edges are at least as accurate than
those of the four other methods and it produces a larger set
of reliable edges. For graphs of lesser sparsity, none of the
five methods is really able to identify clearly reliable edges.
Large number of FP edges are produced to achieve a recall
higher than 60%.

For Networks 1 and to a lesser extent 5 (Fig. 5 A and E),
GADAG recovers with more difficulty the first true edges
than other methods, with a high level of FP edges at the
beginning of the curve (low precision and low recall). How-
ever, as soon as the recall exceeds the 10%, resp. 15%, for
graph A, resp. for graph E, GADAG performance is again
superior to that other methods.

Table 3gives the areas under theP/Rcurves for allmethods
and networks. For this indicator, GA significantly outper-
forms the state-of-the-art methods for all networks.

6 Conclusion and discussion

In this paper, we proposed a hybrid genetic/convex algorithm
for inferring large graphs based on a particular decomposi-
tion of the �1-penalized maximum likelihood criterion. We
obtained two convergence inequalities that ensure that the
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Fig. 5 P/R curves for the five dream networks and the five compared methods

Table 3 Area under the precision versus recall curve for all networks
and methods (except ARACNE)

Method Net 1 Net 2 Net 3 Net 4 Net 5

GADAG 0.182 0.236 0.348 0.317 0.267

Genie3 0.154 0.155 0.231 0.208 0.197

BootLasso 0.118 0.061 0.171 0.147 0.169

PCalg 0.116 0.089 0.171 0.149 0.130

GSE 0.101 0.089 0.170 0.153 0.133

graph estimator converges to the true graph under assump-
tions that mainly control the model structure: graph size
(balance between sparsity, number of nodes and maximal
degree) and signal-to-noise ratio. From an algorithmic point
of view, the estimation task is split into two sub-problems:
node ordering estimation and graph structure learning. The
first one is a non-trivial problem since we optimize over a
discrete non-convex large dimensional set. It led us to use
a heuristic approach we specifically tailored to achieve the
optimization task. The second one is a more common prob-
lem, related to the Lasso one, for which we proposed a sound
procedure with theoretical guarantees. The potential of such
an approach clearly appeared in the numerical experiments,
for which the behavior of our algorithm seemed to be very
competitive when compared to the state-of-the-art.

Nevertheless, we see many opportunities for further
improvements. First, convergence proof for the algorithm,

although a challenging task, is worth investigating, for
instance using the works of Cerf (1998) on genetic algo-
rithms. An alternative would be to consider other optimiza-
tion schemes for the node ordering with more established
convergence proofs (e.g., simulated annealing (Granville
et al. 1994)).

Second, other potential extensions involve algorithmic
considerations in order to improve the calculation time,
including a finer calibration of the algorithm parameters,
an initialization step for the gradient descent, and, in gen-
eral, improving the interactions between the nested and outer
loops. Tackling very large datasets from several thousands of
nodes may also require a particular treatment, for instance by
adding local search operators to GADAG.

Finally, wewould like to emphasize the graph identifiabil-
ity problem: in our settings, we assume the noise variances
of all graph nodes to be equal to ensure graph identifiability
(that is no equivalence class of graphs). Such a hypothe-
sis is of course restrictive and likely to be violated for real
datasets. In order to infer networks for any noise variances,
one solution consists in incorporating interventional data on
the model. These data are obtained from perturbations of the
biological system (e.g., gene knockouts or over-expressions)
and make the equivalence class of graphs smaller (Hauser
and Bühlmann 2012). The use of additional data, informa-
tive yet very costly interventional data could be combined
with observational on the MLE estimator. It was recently
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proposed by Hauser and Bühlmann (2015) for a BIC-score
penalizedMLE, or by Rau et al. (2013) for learning Gaussian
Bayesian networks in the case of GRN inference. A modi-
fication of our hybrid algorithm GADAG could then lead to
a more accurate identification of the true graph. Lastly, the
cyclic structure framework could also be considered by using
aMarkov equivalence characterization (Richardson 1997) to
relax the strictly triangular assumption on our matrix T using
Equation of Proposition 1. It would pave the way for totally
new theoretical developments, and a more realistic modeling
of a complex system.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
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