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Abstract

Aims : Water scarcity, associated with climate change, is a particular threat to the sustainability of viticulture in present areas of
cultivation, usually prone to drought. Breeding grapevine for reduced water use, better water extraction and maintained
production (i. e., high water use efficiency) is therefore of major interest.

Methods and results: This requires a comprehensive knowledge of the physiological impacts of drought on yield and quality.
Attention should be paid to those mechanisms involved in the regulation of water status in plant tissues, as it is the primary
parameter affected by drought. Transpiration rate, which has a major influence on plant water status, should therefore receive
special attention in breeding programs. Beyond scions, the role of rootstocks, which have been largely introduced in vineyards,
should be investigated further as it determines water extraction capacity and could modify water balance in grafted plants.

Conclusion : Here we review recent advances in the characterization of genetic variability in the control of water use and water
status, whether induced by rootstock or scion.

Significance and impact of the study: This review should help scientists in choosing the relevant physiological targets in
their research on grapevine tolerance to drought, whether for breeding prospects or new management practices.
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Introduction

Vineyards are predominantly located in drought
prone areas. They commonly experience moderate
soil water deficit, which is favorable to wine quality
provided that it remains moderate (Becker and
Zimmerman, 1984). Excess of water, by contrast, can
reduce color intensity and sugar content of berries
and produce unbalanced, flat wine (Matthews et al.,
1990; Medrano et al., 2003). Thus, moderate soil
water deficit is the best compromise to promote the
expression of high enological potential without
altering yield. This is usually achieved in most
vineyards but global change seriously threatens this
fragile equilibrium. Specifically, under the combined
influence of high evaporative demand (dry, warm air)
and soil water deficit, plant tissues start dehydrating
with detrimental impacts on production and berry
quality (Jones et al., 2005 ; Deluc et al., 2009).

To face transient drought or longer-lasting dry
climates, irrigation is developing in production areas.
However, pressure on agricultural use of water
resources is rising. Irrigation of the vineyard often
results as very competitive or impossible. To prepare
for the future, viticulture should adapt by limiting
water use while maintaining yield. Vineyard
establishment and management practices, such as
lower plantation density, control of water balance
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through soil surface management, and thinning, can
be considered as valuable short-term solutions
(Garcia de Cortazar Atauri, 2006; Duchéne et al.,
2010 ; Ripoche ef al., 2010). However, these
techniques might not always be sufficient to cope
with increasingly dryer conditions (Garcia de
Cortazar Atauri, 2006). Additional strategies are
needed, including the use of suitable plant material.
This requires a comprehensive knowledge of the
physiological impacts of drought on yield and quality.

In the following, we review the primary
consequences of water deficit on grapevine.
Specifically, genetic variability in the mechanisms
involved in the control of plant water status is
examined.

Physiological responses to water deficit

1. Drop in plant water potential as a primary
consequence of water deficit

Water potential characterizes water availability from
a thermodynamic point of view. Denoted ¥, it is at
the basis of water movements from the soil to the
plant organs and ultimately to the atmosphere.
Conventionally, free water at sea level has a potential
of zero, corresponding to the maximal water
availability in a saturated soil. Soil drying results in a
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Figure 1. Physiological responses associated with a drop in plant water potential. Simplified representation adapted
from Chaves et al. (2010) and Marguerit (2010).

The left diagram illustrates the drop of water potential occurring at different intensities depending on the soil water potential
(dryer from right to left) and of the evaporative demand (higher from right to left). During the night, water potential
equilibrates (vertical line). In the daytime, under high evaporative demand, plant water potentials become more negative
(dashed lines) and further decline in dry soil (dotted line). Arrows indicate the influence of the physiological adaptations
(limitation of water losses, maintenance of hydraulic conductance and enhanced water uptake) on water potentials, highlighting
the favorable (filled, black arrows) and the unfavorable situations (dotted, grey arrows). The right diagram outlines the main
physiological adaptations favoring the maintenance of plant water status. The negative consequences of a decrease in leaf water
potential on carbon assimilation are also highlighted.
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decrease of soil water potential (¥ becomes more
negative as water binds to soil particles and
concentrating solutes). Under non transpiring
conditions, water potentials in plants equilibrate with
the most humid layer explored by the root system
(Améglio et al., 1999). As transpiration rate increases
in the daytime, plant water potential decreases. This
drop in water potential is more severe when hydraulic
conductance is limiting water transport on the path
from the soil through the plant to the leaves
(Figure 1). Because excessive drops in water
potential may be disastrous for plants, they have
developed diverse adaptations to prevent them.

2. Cavitation threatens hydraulic integrity
of xylem conduits

In a transpiring plant, sap water ascends towards the
leaves using the non-living, heavily thickened and
lignified xylem vessels and tracheids. Water flow
follows a gradient of increasingly negative pressure
within a continuous water column. Any break in this
column would disrupt the whole water flow.

When soil drying combines with high evaporative
demand, high tensile strength develops in the xylem,
thereby favoring cavitation, which is the apparition of
gaseous bubbles (caveats) in the xylem sap due to
water evaporation, aggregation of dissolved gases or
air entry through pit membranes. Once initiated the
bubble then rapidly expands to overrun the vessel
(Brodersen et al., 2013). This gaseous embolism may
result in the rupture of the water column in the xylem,
being a major threat for the plant.

Vessel embolism decreases stem hydraulic
conductance, which in turn decreases leaf water
potential itself, favoring further embolism. In the
absence of stomatal closure or reduction in leaf area,
this cycle can result in functionality loss of all the
conducting tissue. This results in dramatically
amplified effects of water deficit on the drop in leaf
water potential along the water path (Brodribb and
Cochard, 2009 ; Zufferey et al., 2011) with
catastrophic consequences on plant dehydration and
even death (McDowell et al., 2008). Vessel size
partly determines plant vulnerability to cavitation,
small-diameter conduits being less vulnerable (Tyree,
2003) but less efficient to transport water. Thus, plant
adaptation to dry environments depends on a trade-
off between efficient conduits and low vulnerability
to cavitation. In grapevine, which displays long
vessels (a common feature among liana species),
vessel sizes are dependent on the cultivar (Chouzouri
and Schultz, 2005 ; Tramontini ef al., 2013a), leaving
room for genetic variation in drought response.
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Threshold water potential for cavitation also varies
with species, cultivars and growth conditions. As
compared to other species, grapevine has commonly
been described as vulnerable to cavitation occurring
at high (less negative) water potential threshold
(Schultz and Matthews, 1988 ; McElrone et al.,
2012). Up to 70% loss of conductivity has been
reported with moderate tensions in stems around
-0.75 MPa (Tibbetts & Ewers, 2000). Nevertheless,
an efficient control of water losses through stomata
often protects grapevine from cavitation (Zufferey et
al.,2011).

Recent studies report that transport capacity could be
largely restored by the end of the day or during the
night, when transpiration rate decreases. This has
been assigned to water refilling of embolized xylem
vessels. Although mechanistically debated,
restoration of water transport capacity has been
observed in a number of species, whether in roots
(Domec et al., 2006; Lovisolo ef al., 2008a), shoots
(Zwieniecki and Holbrook, 1998) or leaves (Johnson
et al., 2009). Plant capacity to restore hydraulic
integrity over night under dry conditions would
largely depend on soil exploration by roots (Zufferey
et al., 2011). Carbohydrates stored in cells
neighboring the conducting vessels, together with
aquaporins (e.g. membrane channel proteins
facilitating water transport), also appear as possible,
important actors of this restoration (Salleo et al.,
2009).

3. Limitation of transpiration releases hydraulic
tension and saves water

One of the most obvious and immediate effects of
water deficit is a reduction in shoot growth (Chaves,
1991), with cell expansion being particularly
sensitive to water shortage (Hsiao, 1973). Branches
are more sensitive than first order axes (Lebon et al.,
2006), and observation of growth cessation at the
shoot apices is a powerful tool to early detect
incipient water deficit (Pellegrino et al., 2006).
Limited vigor under drought results in a decrease of
evaporative areas, thereby lowering transpiration and
releasing water tension in the xylem. Leaf folding or
wilting are other adaptations having similar, although
reversible, effects on water saving by increasing
boundary layer resistance and reducing intercepted
light, hence lowering surface temperature and
evaporative demand.

Additionally, plants dynamically modulate the
aperture of stomata, those micropores located at the
leaf surface that make possible water vapor and CO,
exchanges. A rapid stomatal closure is generally
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observed under water deficit (Damour et al., 2010),
which efficiently lowers water flow density.
However, this way of saving water has a heavy cost
for the plant because stomatal closure unavoidably
lowers CO, uptake and decreases photosynthesis,
although to variable extent depending on species and
varieties (Tardieu and Simonneau, 1998). Plants thus
face a dilemma, and adaptive strategies are necessary
to reach a trade-off ensuring CO, uptake while
limiting water losses.

Other adaptations may participate in minimizing
transpiration rate, including changes in thickness and
composition of the waxy cuticle that waterproofs the
leaf surface and forces water to leave the plant
through stomata. Relation between cuticle
components and their efficacy to limit water losses
remains to be understood (Riederer and Schreiber,
2001).

4. High root water extraction capacity postpones
the negative impact of water deficit

Root development is highly plastic, with typical
shifts in the allocation of plant’s resources
(carbohydrates) towards root growth at the expense
of the shoots in dry conditions. This allows the plant
to increase soil exploration for water uptake while
reducing transpiration (Sharp and Davies, 1985
Cramer et al., 2013). The maintenance of root growth
capacities during water deficit, together with some
plasticity in root hydraulic architecture under
fluctuating conditions, depend on the species and, in
grapevine, is variable among rootstocks (Bauerle et
al., 2008).

5. Osmotic adjustment helps maintaining water
into the cells

Plants evolved in different ways to maintain
physiological activity while water potential declines.
A major response is osmotic adjustment, which
allows the cells to maintain their water content and
turgor even when water potential decreases in their
vicinity. Osmotic adjustment in a cell consists of
trapping or generating solutes to increase their
concentration, leading to interactions of water with
solutes inside the cell. This decreases the osmotic
potential, a component of the total water potential,
while turgor, the other component in cells, can be
maintained even when a given drop in total water
potential is transmitted to the cell from its
environment.

This widespread response to water stress occurs in
leaves, roots and reproductive organs of many
species (Turner and Jones, 1980; Morgan, 1984) and
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is under genetic control (e.g. Teulat et al., 2001). In
grapevine, osmotic adjustment has been evidenced
under water deficit in leaves (Rodrigues et al., 1993)
and roots (During and Dry, 1995). It might be a
major strategy to avoid tissue dehydration and
maintain grapevine production in dry conditions
(Hare et al., 1998 ; Patakas and Noitsakis, 1999). The
most interesting solutes are those that, besides their
role in osmotic adjustment, play a role in nutrient or
energy storage, membrane protection or detoxifying
activities (Szabados et al., 2011).

6. Primary traits for a drought tolerant grapevine
ideotype

Plant responses to drought are plural and involve a
range of morphological and physiological
adaptations of both aerial and underground organs.
The primary features of interest for grapevine
encompass a tight control of water losses through
stomatal regulation, osmoregulation, together with
photosynthesis maintenance to the benefit of berry
development and root growth. The tight coupling
between photosynthesis and transpiration, which are
both controlled by stomata and leaf area, does not
make trivial to decrease transpiration without altering
photosynthesis. However, the ratio of photosynthesis
to transpiration rates varies to some extent with
environmental conditions and genotypes (Tomas et
al., 2014 ; Medrano et al., 2015). An adequate control
of stomatal aperture allows the plant to take
advantage of the environmental conditions by
lowering the water cost of gas exchange.

Physiological control of leaf water potential
in a drying soil

1. The stomatal control of transpiration

Transpirational water losses, which, in combination
with soil drying, are responsible for drawing down
water potential in plants, mainly occur through the
stomata. Stomata form microscopic pores mainly
located on the abaxial (inferior) epidermis of the
leaves in grapevine, a species therefore qualified as
hypostomatous. A pair of adjacent guard cells
controls the pore aperture through rapid modification
in cell volume associated with turgor changes.
Changes in turgor result either from variations in
total water potential driven by soil or air drying
(hydraulic response), or from active changes in
osmotic potential caused by solute movements (into
or out of the guard cells), themselves generated by
chemical signals that modify ion transporter activity
(biochemical response). Moreover, stomatal density
displays a high inter-specific and intra-specific
variability, as exemplified for grapevine (Boso et al.,



2011). However, variability in stomatal density was
not found to explain much of the differences in
transpiration rate (Hopper et al., 2014).

Stomatal closure in response to water deficit is
controlled by abscisic acid (ABA), a plant hormone
having long been recognized as a key player in plant
abiotic stress responses (Loveys, 1984 ; Wilkinson
and Davies, 2002 ; Yamaguchi-Shinozaki and
Shinozaki, 2006). ABA biosynthesis, metabolism,
and transfer towards guard cells modulate stomatal
sensitivity to water deficit (Stoll et al., 2000; Cramer
et al., 2007). ABA synthesis in roots was first
proposed as the pivot of plant response to drought.
Soil drying is sensed by the roots as their water
potential decreases, resulting in an increased ABA
biosynthesis by this compartment (Simonneau et al.,
1998). ABA is then conveyed to the leaves through
the xylem vessels (Tardieu and Simonneau, 1998).
ABA biosynthesis also occurs in the leaves
(Holbrook et al., 2002 ; Christmann et al., 2005;
Christmann et al., 2007 ; Ikegami et al., 2009) where
hydraulic and chemical signals trigger foliar ABA
synthesis in response to water deficit (Christmann et
al., 2013; Mittler & Blumwald, 2015), although the
precise signal transduction still remains to be
deciphered. Several key enzymes of the ABA
biosynthetic pathway, namely ABA2, AAO3, and
NCED3, are expressed in specific areas of vascular
tissues in response to water deficit (Endo et al.,
2008). Importantly, V'wNCEDI coding for 9-cis-
epoxycarotenoid dioxygenase NCED, an enzyme
catalyzing the first committed step in ABA
biosynthesis, has been identified as decisive for ABA
accumulation under water shortage in grapevine
(Speirs et al., 2013 ; Rossdeutsch et al., 2016).
Variations of pH between tissues, together with the
action of glucosidases or glucosyl esterases, modify
the concentration of free ABA reaching the stomata
(Nambara and Marion-Poll, 2005). Depletion of ABA
may also participate in the regulation of ABA
balance. A specific group of enzymes, including the
ABA 8’-hydroxylases, regulates ABA degradation to
inactive compounds (Speirs et al., 2013). A strong
allelic diversity for genes involved in either ABA
biosynthesis or degradation could explain genetic
variations in ABA accumulation under water deficit
(Nambara and Marion-Poll, 2005 ; Riahi et al., 2013).
In grapevine, variability in ABA accumulation has
been observed among rootstocks (Peccoux, 2011) as
well as scions (Soar et al., 2004).

Additionally to ABA accumulation, stomatal
sensitivity to the hormone is also highly variable
(Tardieu and Simonneau, 1998 ; Rossdeutsch et al.,
2016). It depends on numerous molecular steps at the
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guard cell level. Perception of ABA corresponds to
binding to the PYR/PYL/RCAR proteins (Brandt et
al., 2012). This leads to conformational change in the
receptor enabling ABA interaction with PP2Cs
phosphatase, which in turn releases SnRK2s kinases.
SnRK2s activate transcription factors, ABA-
responsive element Binding Factors (ABFs), which
results in ABA-responsive gene expression (Klingler
et al., 2010; Boneh et al., 2012). This cascade
modulates the activity of ion channels in the guard
cells, which translates in osmotic and turgor changes,
and ultimately regulates stomatal closure (Joshi-Saha
et al., 2011). Many other actors involved in those
responses have been identified, including variations
in internal Ca®" concentration and accumulation of
nitrous oxide in guard cells.

How chemical control of stomatal aperture interacts
with hydraulics is still a matter of debate. It has
recently been proposed that ABA might affect leaf
hydraulic conductance through a decrease in water
permeability within leaf vascular tissues. ABA would
thus promote stomatal closure in a dual way via
effects on hydraulics upstream stomata and a direct
biochemical effect on the guard cells (Pantin et al.,
2013). Variability in the role of ABA on hydraulic
conductance remains to be explored as a possible
cause of the large diversity of stomatal sensitivities to
ABA observed among species and within grapevine
cultivars.

2. Isohydric genotypes are able to maintain leaf
water potential in drying soils

Soil drying inevitably results in a decrease of water
potential in plants including leaves. However,
contrasting controls of leaf water potential have been
observed across species when submitted to similar
soil water deficit conditions (Tardieu and Simonneau,
1998). So-called isohydric species, such as maize,
efficiently maintain high leaf water potential in the
daytime (V) when the soil dries, whereas
anisohydric species, such as sunflower, exhibit
substantial decrease of Wy (Tardieu et al., 1996). In
several species including the overall, roughly
isohydric grapevine (Prieto et al., 2010), a variable
efficacy to maintain high Wy has been observed
across genotypes. Two widespread cultivars, namely
Grenache and Syrah, have been consistently
described with different responses to soil water
deficit. Grenache was shown to be near-isohydric,
compared with Syrah, which exhibited more
anisohydric behavior (Schultz, 2003 ; Soar et al.,
2006b).
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The classical view relates the contrasted
(an)isohydric behaviors to the more or less efficient
control of transpiration rate by stomatal closure
(Buckley, 2005). Stomatal conductance was shown to
decrease earlier during the course of a soil drying
episode in isohydric species, thus reducing the drop
of leaf water potential in the daytime as compared to
anisohydric species (Tardieu and Simonneau, 1998).
The anisohydric behavior would thus favor
photosynthesis maintenance under water deficit. This
has been confirmed in grapevine (Lovisolo et al.,
2010) where anisohydric cultivars also exhibit higher
vigor in conditions of water deficit (Pou ef al., 2012),
as long as soil drying does not induce any serious
decrease of plant water potential. Anisohydric plants
might also be more resistant to cavitation than
isohydric ones (Schultz, 2003 ; Alsina et al., 2007)
and might easily recover from partial cavitation
events, thus exhibiting a higher tolerance to moderate
water deficit events. However, beyond a certain
threshold in soil drying, the anisohydric behavior
might not remain favorable because high levels of
dehydration lead to serious damages. This has been
exemplified for grapevine cultivars such as Syrah and
Chardonnay (Alsina et al., 2007). By contrast, the
isohydric cultivar Cabernet-Sauvignon displays a
reduced photosynthesis but is preserved against
damages such as photoinhibition, which is the
alteration of photosynthesis due to high light intensity
(Hochberg et al., 2013). Hence, one of these
behaviors can be more interesting depending on the
water deficit scenario (duration, intensity,
combination with evaporative demand). While
anisohydric cultivars may be recommended in the
case of short periods of moderate water deficit
because they sustain production, the isohydric ones
appear as more suitable to face long lasting periods
of severe drought. Specificities of the climatic
scenarios should be considered to define the more
advantageous type of cultivar from an agronomic
point of view.

3. Reconsidering the origin of the variation
in (an)isohydric behaviors

The classical view of (an)isohydry was recently
questioned in several studies. It was proposed that
changes in hydraulic conductance may contribute,
concurrently with stomatal regulation, to the control
of Wy, under adverse conditions (Franks et al., 2007 ;
Pantin et al., 2013). Additionally, (an)isohydry would
not be a genotype-constitutive feature (Lovisolo et
al., 2010) but could vary in a same plant following
season and development (Poni ef al., 1993 ; Chaves et
al., 2010). Some studies concluded to variable
ranking of (an)isohydric behaviors between
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grapevine cultivars, notably Grenache and Syrah
(Pou et al., 2012). The genetic origin of (an)isohydry
was thus challenged.

Genetic variation in (an)isohydry was extensively
studied in grapevine using a mapping population
obtained from a cross between Syrah and Grenache
(Coupel-Ledru et al., 2014). Significant genetic
control of ¥y, under moderate drought was observed
under controlled conditions using potted plants in a
phenotyping platform. Several genomic regions
(QTLs) were identified as underlying the genetic
variation of Wy Further, the maintenance of Wy,
under water deficit conditions was not simply
controlled by transpiration response to soil drought.
Some of the QTLs detected for genetic variation in
P\ response to moderate water deficit collocated
with QTLs for transpiration response, but others
collocated with QTLs detected for plant hydraulic
conductance (Coupel-Ledru et al., 2014). Overall,
genetic variation of ¥y, under water deficit conditions
correlated with variation in plant hydraulic
conductance (Coupel-Ledru, 2015). It was thus
proposed that whole plant hydraulic conductance
under water deficit might combine with stomatal
control of transpiration to determine (an)isohydry.
Specifically, variation in (an)isohydry may result
from slight deviation in the balance between
transpiration rate and hydraulic conductance.

The genetic analysis of the Syrah x Grenache
offspring (Coupel-Ledru ef al., 2014) also evidenced
that transpiration rate and soil-to-leaf hydraulic
conductance mostly correlated. This may explain
why grapevine can be considered as roughly
isohydric by contrast with other species like
sunflower where more severe drops in Wy rapidly
occur as the soil dries (Tardieu et al., 1996). In
grapevine, this balance may be the result of multiple
coordination between stomatal response and variation
in specific hydraulic conductance in leaves (Pou et
al., 2012), petioles (Schultz, 2003) and roots where
correlation with expressions of water channel
proteins in roots has been evidenced (Vandeleur et
al., 2009). Identification of genes specifically
associated with QTLs detected for hydraulic
conductance and control of ¥y but not for
transpiration response (and vice versa) would be of
particular interest to look for origins of possible
imbalance between transpiration and water transport
capacity and to progress on the determinism of
(an)isohydry.



Rootstocks : the hidden half

While the choice of scion varieties is often regulated
by their performance in specific climatic conditions
or marketing purposes (van Leeuwen and Seguin,
2006), rootstocks offer more flexible solutions for
adapting the grafted plant to drought. A large
variability in rootstock response to water deficit has
been reported by several authors (Carbonneau, 1985;
Ollat et al., 2016; Zhang et al., 2016), although
underlying mechanisms still need to be enlightened.
Rootstocks participate in the regulation of plant water
balance through their own uptake capacities
associated with root growth and water transport
(Carbonneau, 1985; Bauerle et al., 2008 ; Alsina et
al., 2011; Peccoux, 2011; Zhang et al., 2016) or via
their effects on stomatal regulation (Lovisolo et al.,
2010 ; Marguerit et al., 2012) and above ground
development (Jones, 2012). Water extraction
capacities by roots are reported to be variable
between rootstocks and genetically controlled
(Carbonneau, 1985; Soar et al., 2006a; Marguerit et
al., 2012), even though the physiological mechanisms
underlying this trait are still unknown. In addition,
rootstocks are known to affect scion phenology,
vegetative growth, yield and fruit quality (Tandonnet
etal.,2010).

1. Root development
to better explore soil water resources

A deep and dense root system favors water uptake to
compensate for water losses by transpiration.
Grapevine is known for its ability to grow deep roots.
Root distribution and root system architecture are
more affected by soil type and training system than
by rootstock genotype (Smart ef al., 2006). In
addition, interactions with scion genotypes have a
strong effect on root system development (Tandonnet
et al., 2010). By contrast, rootstock genotype has
more impact on root density expressed as biomass -
or root number by volume of soil - (Southey and
Archer, 1988; Peccoux, 2011), or on the ratio of fine
roots to total roots (Van Zyl, 1988). In the vineyard,
some highly drought tolerant rootstocks such as
140Ru are more able to grow roots in deep soil layers
(Southey and Archer, 1988). Furthermore, the
maintenance of root growth under dry conditions as
well as the root system plasticity with soil water
status may differentiate rootstock genotypes (Bauerle
et al., 2008) according to their strategy to cope with
drought (Comas et al., 2010). Further investigations
of root growth properties for different rootstocks
would be profitable for the future.
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2. The control of water transport to shoot

The root system contributes in a non-negligible way
to the whole plant resistance to water flow (Steudle,
2000). There is a large variability among rootstocks
in root vascular anatomy (vessel diameter and length,
percentage of conducting tissues; Pongracz &
Beukman, 1970; Alsina et al., 2011 ; Peccoux, 2011).
These differences can affect root ability to convey
water to the canopy (i. e. hydraulic conductance), and
root vulnerability to cavitation. Differences between
rootstocks for root hydraulic conductance have been
reported (de Herralde et al., 2006; Peccoux, 2011;
Tramontini et al., 2013b), but may be more related to
whole root system size than individual root
properties (Alsina ef al., 2011). In addition, drought
effect on root hydraulic conductivity may differ
between rootstocks. Barrios-Masias et al. (2015)
observed a lower decrease of root conductivity for
the drought tolerant rootstock 110R, in comparison to
the drought sensitive 101-14MGt. Differences are
related to the development of suberized apoplastic
barriers in the root tips at the beginning of the
maturation zone. In grapevine, roots together with
leaves are more sensitive to embolism than the other
plant compartments (Tramontini & Lovisolo, 2016).
Besides, it was recently shown that wild Vitis species
stems differ for their sensitivity to cavitation under
water stress and their ability to repair after
rehydration, paralleling contrasting responses of root
pressure to re-watering associated to osmotic
regulation (Knipfer et al., 2015).

Without any doubt, these facts have specific,
molecular origins in the context of grafted plants.
Transcriptomic analyses in the root tissues of various
rootstock-scion combinations submitted to long term
water deficit support the involvement of cell wall and
osmotic metabolisms in the variability of responses
among rootstocks (Peccoux, 2011).

3. Aquaporins as key actors in transmembrane
water transport

The ability to drive water from root tips to stomata
does not only depend on vascular pathways. Water
also follows inter- and intracellular pathways that are
under the control of water channel proteins
embedded in cell membranes, named aquaporins
(Maurel et al., 2015). The genes encoding for such
proteins have been identified for grapevine (Fouquet
et al., 2008 ; Shelden et al., 2009). Their expression
has been reported in different plant compartments,
various genotypes and under drought conditions
(Galmes et al., 2007 ; Gambetta et al., 2012 ;
Rossdeutsch, 2015). Some of these genes are more
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expressed in root tips than in more mature suberized
zones of the roots where the radial hydraulic
conductivity is lower (Gambetta et al., 2013).
Differences have been reported among rootstock
genotypes for the expression of these genes under
well-watered and drought conditions, or for the
proportion of conductance under the control of
aquaporins (Lovisolo et al., 2008b; Gambetta et al.,
2012 ; Rossdeutsch, 2015). Although the expression
of some aquaporin genes like VvPIPI ;I in roots
appears to correlate with hydraulic conductance and
plant transpiration (Vandeleur et al., 2009), the
situation in a grafted plant is much more complex
and scion effects have to be considered as well
(Tramontini et al., 2013b; Rossdeutsch, 2015).
Rootstocks also present contrasting abilities to
produce ABA under drought conditions (Rossdeutsch
et al., 2016) and the interactions of chemical and
hydraulic signals of soil water status from rootstock
to scion should be taken into account. The role of
ABA in the control of the expression and activity of
aquaporins is now clearly established (Finkelstein,
2013; Grondin et al., 2015).

4. Genetic architecture for transpiration and
growth as controlled by rootstock

The genetic architecture for water deficit responses
induced by rootstock remains poorly studied
(Marguerit, 2010; Marguerit et al., 2012).
Specifically, it can be questioned to what extent
transpiration, growth and water use efficiency are
genetically controlled by the rootstock. This question
has been addressed in a 3-year experiment using a
pedigree population issued from the cross between V.
vinifera Cabernet Sauvignon x V. riparia Gloire de
Montpellier made up of 138 individuals.
Transpiration rate, 8'3C (a proxy for water use
efficiency), transpiration efficiency (ratio of biomass
produced to water transpired), water extraction
capacity and the response of transpiration to water
deficit were characterized. Broad sense heritability
was above 0.3 for most traits, although with
significant year effects highlighting the strong impact
of the environment. Few significant correlations were
found between traits. As mentioned above for scions,
traits related to genetic variability in rootstock
exhibited a polygenic control as revealed by the
detection of multiple QTLs. One QTL for water
extraction capacity was identified in the three years
on linkage group 3, confirming the hypothesis
proposed by Carbonneau (1985) and Soar et al.
(2006a) that this trait was genetically controlled at
the rootstock level. A genetic architecture of
transpiration plasticity to water deficit was evidenced
which was partially independent from the genetic
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architecture of transpiration rate, suggesting an
independent selection process for these two traits.
Riparia Gloire de Montpellier, reputed as sensitive to
water deficit, early reduced its scion transpiration as
the soil was drying. The genetic architectures of §'3C
and transpiration efficiency were partially
independent, underlining the complexity of selecting
plant material for water use efficiency (Condon et al.,
2004). Transpiration efficiency appeared to be less
influenced by climatic (year) effect and soil water
conditions, and could therefore be more easily used
for breeding. The QTLs detected in the offspring
included genes that have been characterized as
potentially involved in water deficit responses
(Marguerit ef al., 2012). Candidate genes related to
hormone (notably ABA) and hydraulic (aquaporins)
signaling between the rootstock and the scion are
particularly interesting as they play a major role in
water deficit responses (Soar et al., 2006a; Vandeleur
etal.,2009).

This review and other data collected on rootstocks
show that drought tolerance may probably be
acquired through different mechanisms (Serra et al.,
2014 ; Rossdeutsch et al., 2016). This diversity
should be taken into account to adapt plant material
to different situations and levels of water deficit.

Conclusions

Grapevine response to water limitation is complex
and involves many physiological mechanisms.
Genetic variability has been described for several
traits related to these mechanisms and many
associated genomic regions have already been
identified at the scion and rootstock levels. Better
knowledge on the role of favorable alleles in these
regions will help designing adequate plant material to
deal with the increased risk of drought events in the
context of climate change.
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