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ARTICLE INFO ABSTRACT
Article history: Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migra-
Received 2 October 2015 tion in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)
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P3 and PtdIns(3,4)P, preferentially accumulate near to the leading edge of migrating cells
and are thought to act as an important cue organizing molecular and morphological po-
larization. We have investigated the distribution and accumulation of these lipids inde-
pendently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM).

I;g‘évordS: We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling,
Neutrophil as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local

stimulation with fMLP as well as spontaneously and randomly in response to uniform

stimulation. EM studies revealed these events occurred at the plasma membrane, were

dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P,, and were dependent

on PI3Ky and its upstream activation by both Ras and Gys.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations: PI3K, Phosphoinositide 3-kinase; eGFP, enhanced Green Fluorescent Protein; PH, Pleckstrin homology; EM, Electron Microscopy; fMLP,
formylated-Met-Leu-Phe; GPCR, G-Protein Coupled Receptor; PKB, Protein Kinase B (also called Akt); TAPP-1, TAndem PH domain containing Protein-1.
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1. Introduction

Neutrophils are key players in the innate anti-bacterial and fungal defence mechanisms of mammals. They are
capable of exiting the circulation in the proximity of local infections or tissue damage and chemotaxing towards the
epicentre of the inflammatory response. These processes ready the neutrophils to phagocytose and destroy pathogens
or dead cells and hence contribute to the resolution of the problem. Conversely, a number of inflammatory diseases are,
in part, driven by excessive, inappropriate neutrophil infiltration (Cowburn et al., 2008; Lee et al., 2003 {Cowburn et al.,
2008 #776).

Many further cell types can chemotax and the process is of very wide biological importance. Neutrophil chemotaxis to-
wards inflammatory ligands for GPCRs, such as fMLP, can be studied in vitro and is amongst the most efficient in terms of cell
speed and directionality and as a result has been subject to intense investigation aimed at defining the underlying molecular
mechanisms and principles. This work has identified a large number of intracellular signals and/or proteins upon which
neutrophil chemotaxis can depend. Amongst these phosphoinositide 3-kinases (PI3Ks) (Hirsch et al., 2000; Li et al., 2000;
Sasaki et al., 2000) and Rac-family GTPases (Roberts et al., 1999; Servant et al., 2000; Weiner et al., 2002) have been impli-
cated repeatedly but other key regulators include Ca®* (Evans and Falke, 2007) and p38 MAPKs (Heit et al., 2002). Although
PtdIns5P has been implicated in cell migration (Viaud et al., 2014 #3612) there is no evidence establishing that it has a role in
neutrophil chemokinesis (Bulley et al., 2015).

Many reports have contributed to a picture of chemotaxis in which Class I PI3K signalling takes a central role (Meili
etal., 1999; Parent et al., 1998; Servant et al., 2000). Class I PI3Ks, activated in response to fMLP and drive accumulation of
PtdIns(3,4,5)P3 and PtdIns(3,4)P, at the cell surface (Stephens et al., 1991; Traynor-Kaplan et al., 1988). This has funda-
mental event has been described using a variety of approaches to measure phosphoinositides, including relatively
recently evolved mass-spec-based methods that can resolve different molecular species of PtdIns(3,4,5)P3 (Kielkowska
et al,, 2014). The increase in PtdIns(3,4,5)P; and PtdIns(3,4)P; in the peripheral membrane drives translocation and
activation of PI3K effectors including PKB (AKT) and important modulators of the cytoskeleton, such as ARAP3 and
DOCK2 (Krugmann et al., 2002; Kunisaki et al., 2006). Crucially, this process can polarise spontaneously, in the presence
of uniform fMLP, to generate a leading-edge enriched in PtdIns(3,4)P,/(3,4,5)P3 (Servant et al., 2000) and a range of other
signalling molecules (some targeted by PI3K activity directly) and of characteristic, dynamic morphology. This polari-
zation is important for the neutrophils to move efficiently and hence for chemotaxis, and it is substantially, but not
entirely, dependent on Class I PI3K signalling (Ferguson et al., 2007; Niggli and Keller, 1997; Nishio et al., 2007).
Remarkably, by-passing receptor activation by direct, uniform shuttling of heterologous PtdIns(3,4,5)P3 (Derman et al.,
1997; Niggli, 2000; Weiner et al., 2002) or homogenous “chemical” activation of a Class I PI3K construct in
neutrophil-like cells (Inoue and Meyer, 2008) leads to spontaneous polarization of both their morphology and endog-
enous PtdIns(3,4)P»/(3,4,5)P3, suggesting that PI3K signalling is a core player in an auto-catalytic symmetry-breaking
circuit. It has been argued this is a keystone, ubiquitous principle in Eukaryotic chemotaxis. Several issues remain unclear.
Firstly, what happens to PtdIns(3,4)P; dynamics? Does PtdIns(3,4)P, simply “follow” PtdIns(3,4,5)P3 signals in living
neutrophils or does it show evidence of independent regulation and hence function. Secondly, what is the precise cellular
location of the pools of PtdIns(3,4,5)P; and/or PtdIns(3,4)P,? Are these lipids in the plasma membrane or peripheral
endo-membranes? Given the morphological characteristics of neutrophils, with very thin layers of cytoplasm unevenly
spread around large lobed nuclei, this has remained unclear.

In this work we have addressed the identity and EM-level localization of the lipid products of PI3K activity accumulated in
migrating mouse neutrophils.

2. Methods and materials
2.1. Materials

All materials used were of the lowest endotoxin level available and were purchased from Sigma-Aldrich unless stated
otherwise. PI3K inhibitors have been previously described (Condliffe et al., 2005) (Condliffe et al., 2005).
2.2. Mouse strains

The eGFP-PH-PKB mouse strain has been previously described (Nishio et al., 2007) and was bred against p110y~/~ (Hirsch
et al,, 2000); p101~/~ (Suire et al., 2006) and p110yPASAADASAA (Syire et al., 2006) mice. Animals were housed in high health
status isolators.
2.3. Mouse neutrophil isolation

Wias essentially as described (Ferguson et al., 2007). Neutrophil purity was assessed by cytospin.
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3. Chemotaxis assays
3.1. Micropipette chemotaxis assay

Were conducted as described (Ferguson et al., 2007), micropipettes contained 10 uM fMLP. Wortmannin (250 nM) was
applied for 10 min while neutrophils settled on the coverslip, prior to stimulation.

3.2. Bath application fMLP- chemokinesis assay

Neutrophils (1.5 ml, 1.25 x 10°/ml) were settled onto a glass coverslip (22 mm, thickness no 1.5, VWR) held in an imaging
ring at 37 °C for 5 min fMLP or peroxy-vanadate (final concentrations 1 pM or 12 mM) were added directly onto cells.

3.3. Assessing eGFP-PH-PKB reporter distribution

Polar plots were derived from movies of eGFP-PH-PKB neutrophil chemotaxis (Anagraph, Simon Andrews). QuimP soft-
ware ((Dormann et al., 2002), Garching Innovation) was used to determine the ratio of membrane intensity to mean cyto-
plasmic intensity in every frame of the movie at 100 sites around the periphery of the neutrophil. The ratios from individual
cells were translated onto a common pseudo-coloured scale where red indicates a high ratio and hence reporter concen-
tration. Each individual cells intensity measurements for one frame were mapped onto a circle and sequential frames were
then combined concentrically, with the first frame at the centre. Plots were aligned so that the fMLP containing micropipette
(originally 20 pm from the cell) was positioned vertically below.

Production of Retrovirus, harvesting of foetal liver Cells, transduction of foetal liver cells and the injection of foetal liver
cells into recipient mice.

3.3.1. Harvesting foetal liver cells

Following timed matings pregnant mice were sacrificed at day 14.5 and foetal liver cells were harvested in Stempro-34
serum-free medium (Invitrogen) (supplemented with provided StemPro-nutrient supplement and 1% penicillin/strepto-
mycin/amphotericin B). Cells were collected, resuspended at 1.7 x 107/ml in FBS +10% DMSO and slowly frozen to —80 °C.

3.3.2. Transfection of Plat-E cells to produce retrovirus

Plat-E cells were cultured in DMEM high glucose with 1-glutamine and pyruvate (Gibco) (supplemented with 10% FBS and
1% penicillin/streptomycin) at 37 °C with 5% CO,. Plat-E cells were transfected using Lipofectamine 2000 (Invitrogen, as per
manufacturer's instructions). Briefly, retroviral transfer DNA (16.8 pg) and Lipofectamine 2000 (50.4 ul) were incubated in
4.2 ml of Optimem-I with Glutamax (Invitrogen) for 30 min at RT. After incubation Plat-E cells were resuspended at 1.19 x 10°
in 14 ml of DMEM high glucose with r-glutamine and pyruvate (supplemented with 10% FBS) and mixed with the Lip-
ofectamine 2000/DNA mix. Cells were plated into a 14 cm tissue culture dish and incubated at 37 °C with 5% CO,. After 24 h
media was replaced with 9 ml of complete Stempro-34 media and incubated for a further 24 h. Viral supernatant was har-
vested, centrifuged (3000x g, 5 min) and 0.45 um filtered (Millipore). Supernatant was then slowly frozen on dry ice before
being stored at —80 °C.

3.3.3. Reconstitution using foetal liver

Foetal liver cells were rapidly thawed and resuspended at 5 x 10°/ml in complete Stempro-34 serum-free medium
(Invitrogen) containing a cocktail of cytokines (mSCF final concentration 100 ng/ml; TPO 100 ng/ml; hIL-6 1 ng/ml; mIL3 6 ug/
ml; and FIt3L 20 ng/ml) (Peprotech). Cells were cultured for 24 h at 37 °C with 6% CO, in untreated tissue culture plates before
being harvested, resuspended at 5 x 10°/ml in viral supernatant supplemented with cytokines (see above) and incubated
(3 ml/well) in Retronectin (Takara Bio Inc) coated plates (12.5 pug/ml overnight at 4 °C, unbound sites were blocked with 2%
BSA for 30 min at RT) for 17 h at 37 °C with 6% CO,.

Cells were harvested (adherent cells were harvested using 0.25 ml of PBS-based cell dissociation buffer, Gibco, Invitrogen),
pooled, washed in PBS and resuspended at 5 x 10%/ml in PBS with 10% FBS. The cell suspension (300 pl) was then injected into
the tail vein of a BI-6 mouse 24 h post-irradiation (2 x 500 rad (5Gy) separated over 3 h). To minimize infection mice were
housed under IVC conditions and kept on 80 mg/ml neomycin for 4 weeks post irradiation. Four weeks after injection blood
was collected via tail bleeds and reconstitution was assessed using FACS.

3.3.4. eGFP-PH-PKB neutrophil sample preparation for electron microscopy (EM)
Cells were fixed with 8% paraformaldehyde/0.2% gluteraldehyde in 0.2 M PIPES pH 7.2, incubated and pelleted.
Neutrophils were pre-incubated with wortmannin (100 nM) or vehicle control (DMSO, 0.1%) for 5 min at 37 °C then
stimulated with fMLP (10 uM). Cells were then gently vortexed and fixed with an equal volume of 8% paraformaldehyde/0.2%
gluteraldehyde in 0.2 M PIPES pH 7.2. Cells were incubated at RT for 5 min, micro-centrifuged at 15,000x g for 10 min at 4 °C
and then incubated at RT for 45 min, fixative was aspirated and cell pellets washed twice with PBS and stored at 4 °C.
Neutrophil samples were embedded in pig skin gelatine (PSG) by aspirating PBS from the pellets, adding 500 pl PSG,
incubating for 1 h at 37 °C and then cooling on ice for 20 min, all following steps were carried out at 4 °C. Pellets were
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removed from the Eppendorf tube, cut into smaller pieces and transferred to an Eppendorf containing 2.1 M sucrose/PBS and
incubated overnight. The following day cell blocks were prepared by cutting pellets into smaller fragments and mounting
onto iron panel pins (stored in acetone). Excess sucrose was removed and pyramid shaped blocks were formed with filter
paper before they were frozen and stored in N (1). Ultrathin cryosections (80 nm) were cut from frozen blocks on a Leica EM
FCS ultracut UCT microtome at —110 °C using a diamond knife. Cryosections were collected from the microtome on a frozen
droplet of 2.3 M sucrose/2% methylcellulose (1:1) on a wire loop and allowed to thaw before being transferred onto Pioloform
(polyvinyl butyral)/carbon-coated 100 mesh hexagonal support grids. The grids were transferred to 0.1 M NH4CI (in PBS) for
10 min before washing with PBS and blocking in 0.5% fish skin gelatine (FSG) in PBS for 10 min. After incubation with anti-GFP
for 1 h the cryosections were washed with PBS. Bound probe was detected by incubation with 10 ul of 10 nm-particle-
diameter Protein A-Gold (1:50 in FSG) for 20 min. Grids were washed in PBS and distilled H,O before being coated with 2%
methyl cellulose/3% uranyly acetate. Grids were dried overnight and sections viewed on a JEOL 1200EX electron microscope at
80 kV.

—r 34 . n=10
1.54 . 1.47
WT fMLP WT + wortmannin fMLP

local application local application

“n=9 ' n=38 .
WT unstimulated . 1.54 WT fMLP 1.12
local application uniform application

Fig. 1. Localising Class I PI3K activity in neutrophils with a PH-domain reporter. (A) An fMLP gradient was generated with a micropipette positioned about 20 um
from eGFP-PH-PKB-expressing neutrophils (all of the figures are orientated so that this was vertically below the cell or polar plot), confocal imaging revealed, as
described previously, accumulation of the reporter at the up-gradient leading edge. (B) Polar plots showed that, averaged across many movies (n = number of
independent movies) and all of their component frames, the reporter accumulated at the leading, up-gradient edge when the micropipette contained fMLP (i),
but not when the cells were pre-treated with wortmannin (ii, 250 nM), or the micropipette contained vehicle alone (iii). Uniform stimulation with fMLP resulted
in spatially random translocation of the reporter (iv).
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4. Results

We, and others, have reported that a transgenically-expressed eGFP-PH-PKB reporter preferentially accumulated at the
leading edge of mouse neutrophils migrating towards formylated bacterial peptides released from a micropipette (Ferguson
et al., 2007; Nishio et al., 2007). We used cell-tracking and software designed to estimate the extent and vector of trans-
location of the reporter to the periphery, averaged for many cells, in comparison to DilC16 membrane probes in the same cells.
It was clear that the PH domain reporter, and hence PtdIns(3,4)P,/(3,4,5)P3, was concentrated in membrane at the leading
edge, in a manner dependent on PI3Ky. In Fig. 1 we demonstrate that the sustained, gradient-biased accumulation of the
reporter at the leading edge is dependent on gradient-based stimulation and blocked by the PI3K-inhibitor wortmannin.

Expression of membrane-targeted-FP (fluorescent protein) constructs has indicated that membrane accumulation near to
the leading edge can contribute to the apparent polarization of PH domain reporters (Dewitt et al., 2009; Onsum et al., 2006).
We tested to what extent phenomenon impacted our observations by co-expressing of mCherry-CAAX with eGFP-PH-PKB in
mouse neutrophils and then analysing their distribution during chemotaxis towards formylated peptides (Fig. 2A). Consistent
with others work, the PH domain reporter was very significantly more polarized. Comparison of the distributions of the
DilC16 and mCherry-CAAX distributions indicated that the FP construct became more polarized. This could have been due to
DilC16 being excluded from, and/or mCherry-CAAX being concentrated at, the leading edge. As mCherry-CAAX is based upon
a “biologically meaningful” targeting motif we assumed it represented an upper limit for potential morphological artifacts.

We attempted to identify the phosphoinositides that had been detected by the eGFP-PH-PKB reporter. The PH domain of
PKB can bind with similar affinity to PtdIns(3,4)P, and PtdIns(3,4,5)P3 and could have been responding to either lipid. To
resolve this problem we made use of a PH-TAPP-1 construct demonstrated to be highly selective for PtdIns(3,4)P> (Dowler
et al, 2000; Watt et al, 2004). Co-expression of mCherry-PH-TAPP-1 with eGFP-PH-R212L-TAPP-1 (a lipid-binding
mutant) in peroxy-vanadate-stimulated mouse neutrophils (this treatment drives substantial accumulation of PtdIns(3,4)
P> but not PtdIns(3,4,5)P3 (Van der Kaay et al., 1999)) showed the wild-type reporter specifically detected PtdIns(3,4)P;

t=0s t=170 s

TAPP1

(R212L)

GFP-PH-TAPP1- mCherry-PH-

(@)

t=0s t=40s t=0s t=40s

eGFP-PH-PKB
mCherry-PH-
TAPP1

Fig. 2. The lipid signals and morphological factors underlying polarised accumulation of PH-PKB reporters. (A) An fMLP-containing micropipette was used to
stimulate neutrophils co-expressing eGFP-PH-PKB and mCherry-CAAX, polar plots were created for each reporter (eGFP-PH — upper). (B) Validation of a
PtdIns(3,4)P, reporter in neutrophils. Confocal images of neutrophils co-expressing mCherry-PH-TAPP-1 (upper) and eGFP-(R212L)PH-TAPP-1 (lower) stimulated
with peroxy-vanadate for 0 or 170 s (representative of 4, see Fig. 3 for more frames from this movie and further controls). (C) The eGFP-PH-PKB construct reported
changes in PtdIns(3,4,5)P3 during neutrophil chemotaxis. An fMLP-containing micropipette (position out of figure directly down) was used to stimulate neu-
trophils co-expressing eGFP-PH-PKB (left) and mCherry-PH-TAPP-1 (right) (representative of 3).
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accumulation (Fig. 2B). Co-expression of eGFP-PH-PKB and mCherry-PH-TAPP-1 in peroxy-vanadate-stimulated mouse
neutrophils showed that both reporters responded similarly, both in terms of kinetics and the extent of translocation to the
periphery; indicating that the dynamic sensitivity of the mCherry-PH-TAPP-1 reporter for PtdIns(3,4)P; is similar to that of
eGFP-PH-PKB for PtdIns(3,4,5)P3 (Fig. 3C). We found that fMLP-stimulation of cells co-expressing eGFP-PH-PKB and mCherry-
PH-TAPP-1 repeatedly resulted in clear translocation of the former, but not the latter, reporter to the leading edge (Fig. 2C). We
concluded that, despite the known role of SHIPI in mouse neutrophil chemotaxis (Nishio et al., 2007), the levels of PtdIns(3,4)
P, remain an order of magnitude lower than PtdIns(3,4,5)P3 at the leading edge and that our, and many other workers, results
with a eGFP-PH-PKB reporter reflect changes in PtdIns(3,4,5)P3 density at the cell surface. This is consistent with measure-
ments of these lipids by metabolic labelling with [>P]-Pi of fMLP-stimulated, non-adherent mouse neutrophils (Condliffe
et al.,, 2005).

The precision with which we could locate the eGFP-PH-PKB reporter, and hence the endogenous PtdIns(3,4,5)P3, was
limited by the resolving power of light microscopy and could only be stated to be peripheral. To advance this problem we used
EM techniques. To achieve this we rapidly fixed, froze and cryo-sectioned eGFP-probe-expressing neutrophils before applying

>

t=0s t= 300s

eGFP-PH-PKB

mCherry-CAAX

@

mCherry-
(TAPP1)PH

GFP-
(TAPP1)
(R212L)PH

(@]

300 se 400 sec

eGFP-PH-
PKB

mCherry-
(TAPP1)PH

Fig. 3. Factors underlying polarised accumulation of PH-PKB reporters. (A) An fMLP-containing micropipette was used to stimulate neutrophils co-expressing
eGFP-PH-PKB (upper) and mCherry-CAAX. A representative series of frames is shown from movies analysed to produce polar plots shown in Fig. 2A and 3B.
(B) Validation of a PtdIns(3,4)P, reporter in neutrophils. Confocal images of neutrophils co-expressing mCherry-PH-TAPP-1 (upper panels) and eGFP-(R212L)PH-
TAPP-1 (lower panels), a mutant unable to bind to PtdIns(3,4)P,, stimulated with peroxy-vanadate (representative of 4). (frames 1 and 2 of the series are shown in
Fig. 2B) (C) Comparison of the dynamic sensitivities of the TAPP-1 and PKB-derived reporters. Neutrophils co-expressing eGFP-PH-PKB (upper) and mCherry-PH-
PKB (lower) (representative of 3) were stimulated with peroxy-vanadate.
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Fig. 4. EM analysis of the localisation of eGFP-PH-PKB reporters in neutrophils. (A) Non-adherent eGFP-PH-PKB mouse neutrophils were stimulated with vehicle
alone (or in panel (B) with fMLP (10 uM)) for 1 min, fixed, labelled with anti-GFP and protein-A-colloidal gold before imaging by electron microscopy. Arrows
indicate the presence of gold particles and scale bars represents 200 nm (C) Non-adherent neutrophils were pretreated with wortmannin (yellow bars, 250 nM,
10 min) or vehicle (black and white bars) then stimulated with fMLP (white or yellow bars, 10 uM, 1 min) or vehicle alone (black bars), fixed, labelled with anti-
GFP and protein-A-colloidal gold and visualised by EM. The number of gold particles on sampling lines were counted and binned (as % of total) based on cell
morphology/organelle (PM = Plasma Membrane; ER = Endoplasmic Reticulum; CYT = Cytoplasm; Gol St = Golgi Structures; Gol Ves = Golgi Vesicles; Nuc
Env = Nuclear Envelope; Nuc = Nucleus; Mit Outer = Outer Mitochondrial membrane; Mit Inner = Inner Mitochondrial membrane; Un = unassigned). Means
(+range) from 2 experiments based on counting greater than 200 grids are presented. (D) Genetic loss of either Gpy-sensitivity of PI3Ky (p101~/~) or the
sensitivity of p110y to Ras (DASAA-mutant knock-in p110yPASAADASAAY plocks the fMLP-induced rise in eGFP-PH-PKB at the plasma membrane, assay and
replication as in (C). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

an anti-GFP antibody and gold-labelled secondary antibodies. The approach avoided the challenges associated with detection
of endogenous phosphoinositides by application of lipid-binding probes after fixation (Lindsay et al., 2006; Watt et al., 2004;
Watt et al., 2002). We found that upon fMLP-stimulation there was a reduction in the intensity of staining of the cytoplasmic
compartment (Fig. 4A and C) and a large increase in the density of decoration of the plasma membrane (Fig. 4B and C), but not
other membrane fractions (Fig. 4C), that was inhibited by wortmannin, genetic loss of p101, the major Gfy-sensitive p110y
adaptor in neutrophils, or knock-in of a Ras-insensitive version of p110y, p110yP444 (by creating the lines eGFP-PH-PKB x
p101~/~ and eGFP-PH-PKB x p110yPASAA/DASAA. Fio 4C and D). This is entirely consistent with the wortmannin-sensitivity of
PI3Ky and known roles of GBys and Ras in its regulation and further validates the veracity of this assay.

PI3Ky can be regulated by both GBys and GTP-Ras in mouse neutrophils (Suire et al., 2006). We sought to test the idea that
these inputs might contribute differentially to driving PtdIns(3,4,5)P3; accumulation at the leading edge using the mouse
strains described above; eGFP-PH-PKB x p101~/~ and eGFP-PH-PKB x p110yPASA4PASAA The distribution eGFP reporter was
analysed in live cells chemotaxing towards fMLP using a spinning disc confocal microscope. We found that loss of p101,
genetic blockade of Ras-regulation of PI3Ky and transient chemical inhibition of PI3Ky similarly and substantially inhibited
accumulation of PtdIns(3,4,5)P3 at the leading edge (Fig. 5). This suggests both GBys and GTP-Ras are driving PI3Ky in its roles
in the leading edge of migrating neutrophils.

5. Discussion

Our results are broadly in keeping with the literature. We have used EM techniques to localize an endogenously-expressed
eGFP-PH-PKB reporter. Our data indicated that in controls cells the reporter was in the cytoplasmic compartment. Following
stimulation with fMLP the reporter localized to the plasma membrane, and not other membranes. We found no evidence for
increased accumulation of the reporter in the nucleus following fMLP-stimulation of mouse neutrophils. Our results with
reporters capable of sensing PtdIns(3,4)P, and previous work measuring PtdIns(3,4)P2 accumulation both suggest that the
eGFP-PH-PKB construct is being localized by interactions with PtdIns(3,4,5)P3. These data indicate PtdIns(3,4,5)P3 accumu-
lates in the plasma membrane; they do not, however, demonstrate that PtdIns(3,4,5)P3 only rises in the plasma membrane.
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Fig. 5. Both GBy and Ras regulation of PI3Ky are crucial for accumulation of PtdIns(3,4,5)P3 at the leading, up-gradient edge. Polar plots of neutrophils,
responding to an fMLP-containing micropipette, which expressed eGFP-PH-PKB in different genetic backgrounds (x wild type (WT); x p110y~/~; x p110yPASAA
DASAA. % p1017/7) or pre-treated with a p110y inhibitor (AS252424; 10 uM, using x WT cells).

There is evidence that PH domains contain motifs that bind to specific types of cell membrane and that these interactions, in
addition to interactions between phosphoinositides and the PH domain, are required to allow membrane recruitment
(Hammond and Balla, 2015). As a result PtdIns(3,4,5)P3 could accumulate in membranes other than the plasma membrane but
would not be sensed by PtdIns(3,4,5)P3-binding PH domains. It is unclear if domains that bind PtdIns(3,4,5)P3 that are not PH
domains have the same properties.

The TAPP1 construct we used to sense PtdIns(3,4)P, was capable of reporting an increase in PtdIns(3,4)P, in peroxy-
vanadate-stimulated neutrophils. We could not find any evidence of fMLP-induced localization of the reporter to the lead-
ing edge. These results do not allow us to conclude there is no PtdIns(3,4)P, accumulation at the periphery of fMLP-stimulated
neutrophils, indeed much evidence shows PtdIns(3,4)P, does accumulate in stimulated neutrophils (Stephens et al., 1991;
Traynor-Kaplan et al., 1989), but rather the concentrations achieved are insufficient to relocate a significant proportion of
the reporter. As a result it is unclear if the distribution of that PtdIns(3,4)P, had merely followed PtdIns(3,4,5)P3 or not.

There is evidence that p84-PI3Ky drives accumulation of PtdIns(3,4,5)P; and/or PtdIns(3,4)P; in different near-plasma
membrane locations to p101-PI3Ky in mast cells (Bohnacker et al., 2009). We attempted to address this question in neu-
trophils. Neutrophils contain significant amounts of both p84 and p101-PI3Ky complexes. In the experiments reported here
we could find no evidence of PtdIns(3,4,5)P3 accumulation in the plasma membrane as detected by EM-analysis when
neutrophils only contain p84-PI3Ky (ie in p101~/~ neutrophils) or in cells in which PI3Ky could not be activated by Ras but
could be activated via p101 GBys (pllOyDASAA/DASAA). These results precluded an analysis of the above problem and are
surprising as experiments measuring the amount of PtdIns(3,4,5)P;3 in neutrophils of these genetic backgrounds indicated the
responses to fMLP were only partially reduced and not abolished. Perhaps the EM-based methodology leads to a highly non-
linear relationship between staining and PtdIns(3,4,5)P; content or, alternatively, that a significant amount of the
PtdIns(3,4,5)P3 we have measured is localized in a non-plasma membrane location that we cannot observe/recover. We also
compared the localization of an eGFP-PH-PKB reporter in living p101~/~ and p110yPASAADASAA ey hressing neutrophils. We
found no evidence that the reporter localized differently in these different genetic backgrounds although our result suggested
both had reduced accumulation of PtdIns(3,4,5)Ps at the leading edge compared to wild-type neutrophils. These experiments,
however, relied upon either light microscopy and hence had limited spatial resolution. Hence it remains possible that there
are spatiotemporal differences in the PtdIns(3,4,5)P3 accumulated following Gy v Ras-activation of PI3Ky but that we failed
to detect them through limitations in our methodologies.
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