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Data Descriptor: A global
experimental dataset for assessing
grain legume production
Charles Cernay1, Elise Pelzer1 & David Makowski1

Grain legume crops are a significant component of the human diet and animal feed and have an important
role in the environment, but the global diversity of agricultural legume species is currently underexploited.
Experimental assessments of grain legume performances are required, to identify potential species with
high yields. Here, we introduce a dataset including results of field experiments published in 173 articles. The
selected experiments were carried out over five continents on 39 grain legume species. The dataset includes
measurements of grain yield, aerial biomass, crop nitrogen content, residual soil nitrogen content and
water use. When available, yields for cereals and oilseeds grown after grain legumes in the crop sequence
are also included. The dataset is arranged into a relational database with nine structured tables and 198
standardized attributes. Tillage, fertilization, pest and irrigation management are systematically recorded
for each of the 8,581 crop*field site*growing season*treatment combinations. The dataset is freely
reusable and easy to update. We anticipate that it will provide valuable information for assessing grain
legume production worldwide.

Design Type(s) database creation objective • data integration objective

Measurement Type(s) crop production measures

Technology Type(s) data item extraction from journal article

Factor Type(s)

Sample Characteristic(s) Fabaceae
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Background & Summary
The 68th United Nations General Assembly has proclaimed 2016 as the International Year of Pulses. The
Food and Agriculture Organization of the United Nations defines ‘pulses’ as plant species from the
Fabaceae family cropped annually, and harvested only for dry grain (hereafter ‘grain legume’ for
unambiguous use1). As part of this initiative, grain legumes are being promoted for use as nutritional
protein-rich grains, and for their environmental and economic impacts2–7. Grain legumes can
complement cereals as an affordable source of protein for the human diet8–10 and for animal feed11–13.
Through atmospheric nitrogen fixation, grain legumes can significantly increase soil nitrogen supply and
the yields of following crops14–19. Grain legumes can therefore play a significant role in maintaining global
food security and ecosystem resilience.

Fabaceae is one of the largest families of plants worldwide, with 20,000 species growing across a wide
range of climatic conditions and soil types20,21. Grain legume crops play significant roles in the human
diet and animal feed and the environment, but only a fraction of the species in this diverse group of
plants is currently exploited in agriculture. From 1961 to 2014, 75 and 90% of the area under legumes was
allocated to soybean (Glycine max) in South America and North America, respectively22. Over the same
period, 70, 76 and 78% of the area under legumes was covered by only three species each in Europe,
Oceania and Africa: garden pea (Pisum sativum), soybean and beans (Phaseolus spp. and Vigna spp.) in
Europe; lupins (Lupinus spp.), chickpea (Cicer arietinum) and garden pea in Oceania, and groundnut
(Arachis hypogaea), cowpea (Vigna unguiculata) and beans in Africa22. In Asia, 76% of the area under
legumes was allocated to four species (i.e., soybean, beans, groundnut and chickpea)22.

Experimental comparisons of grain legumes can help researchers and decision-makers to identify
high-performance species with high yields. Over the last 50 years, many field experiments have assessed
the agronomic and environmental performances of grain legumes. These performances vary between field
sites and growing seasons, as a function of the climatic conditions and soil types. It would therefore be
misleading to draw general conclusions from individual experiments considered separately. A global
dataset would provide us with a unique opportunity to analyze variability in grain legume performances
across a large spectrum of environmental conditions, and to rank legume species of agricultural and
economic interest according to several criteria.

We introduce here a global dataset including the results of field experiments comparing 39 grain
legume species grown as sole crops. Most of grain legume species included in the database correspond to
species of significant agricultural and economic importance. We have selected only experiments
comparing at least two grain legume species grown at the same field site during the same growing season,
to prevent any confusion between species characteristics and environmental conditions. We excluded
experiments on single grain legume species because, in such experiments, differences between species can
be confounded with the effects of environmental factors. Experimental data were extracted from 173
published articles2–4,6,14–19,23–185. In total, measurements from 360 field sites were collected across 18
Köppen-Geiger climatic zones186 in 41 countries (Fig. 1) over five continents (Table 1). The dataset
contains 8,581 crop*field site*growing season*treatment combinations. Article references, field site
locations, climatic conditions, soil types, yields, crop nitrogen contents, residual soil nitrogen contents

Equatorial rainforest climate, fully humid
Equatorial monsoon climate
Equatorial savannah climate with dry summer
Equatorial savannah climate with dry winter
Hot steppe climate
Cold steppe climate
Hot desert climate
Warm temperate climate, fully humid with hot summer
Warm temperate climate, fully humid with warm summer
Warm temperate climate with dry and hot summer
Warm temperate climate with dry and warm summer
Warm temperate climate with dry winter and hot summer
Warm temperate climate with dry winter and warm summer
Snow climate, fully humid with hot summer
Snow climate, fully humid with warm summer
Snow climate, fully humid with cool summer and cold winter
Snow climate with dry and cool summer and cold winter
Snow climate with dry and cold winter and cool summer

Figure 1. Latitude and longitude coordinates of the field sites included in the database. The Köppen-Geiger

climatic classification186 was used to link each field site to a grid size with a resolution of 0.50 degrees of latitude

by 0.50 degrees of longitude. Eighteen Köppen-Geiger climatic zones are considered: equatorial climates (red),

arid climates (orange), warm temperate climates (green) and snow climates (blue). Within each main

Köppen-Geiger climatic zone, each Köppen-Geiger climatic subzone is indicated by a color gradient.
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and management practices are systematically recorded for each crop*field site*growing season*treatment
combination. When available, data on non-legume species grown at the same field site during the same
growing season than grain legume species, and data on non-legume species grown after grain legumes in
the crop sequence are also included. Most of these non-legume species correspond to cereals and oilseeds.
The data are organized into a relational database with nine structured tables and 198 standardized
attributes (Tables 2 and 3 (available online only)).

The dataset can be used for two types of quantitative analysis. First, the dataset can be used to compare
the crop production of a broad range of grain legume species, on the basis of experimental data with
diverse criteria (e.g., grain yield, aerial biomass and crop nitrogen content). Second, the dataset can be
used to assess the crop production of cereal and oilseed species following grain legume species cultivated
as preceding crops in the same crop sequences, based on a consideration of field data for various criteria.

Region Field site Field
site*growing

season

Field site*growing
season*treatment

Grain yield Aerial biomass Grain nitrogen
content

Aerial nitrogen
content

Aerial fixed
nitrogen content

Residual soil
nitrogen content

Water use

Oceania 131 (36.39) 183 (22.45) 2,372 (27.64) 2,324 (28.25) 727 (27.16) 191 (19.47) 107 (12.53) 28 (7.11) 216 (11.71) 142 (16.01)

North America 72 (20.00) 165 (20.25) 2,597 (30.26) 2,524 (30.68) 600 (22.41) 285 (29.05) 178 (20.84) 38 (9.64) 806 (43.69) 474 (53.44)

Asia 65 (18.06) 253 (31.04) 1,475 (17.19) 1,408 (17.11) 598 (22.34) 129 (13.15) 171 (20.02) 87 (22.08) 468 (25.37) 259 (29.20)

Africa 48 (13.33) 101 (12.39) 907 (10.57) 827 (10.05) 243 (9.08) 161 (16.41) 172 (20.14) 145 (36.80) 70 (3.79) 0 (0.00)

Europe 39 (10.83) 102 (12.52) 1,174 (13.68) 1,089 (13.24) 479 (17.89) 181 (18.45) 188 (22.01) 74 (18.78) 255 (13.82) 12 (1.35)

South America 5 (1.39) 11 (1.35) 56 (0.65) 56 (0.68) 30 (1.12) 34 (3.47) 38 (4.45) 22 (5.58) 30 (1.63) 0 (0.00)

Total number
(percentage) of
available data

360 (100.00) 815 (100.00) 8,581 (100.00) 8,228 (95.89) 2,677 (31.20) 981 (11.43) 854 (9.95) 394 (4.59) 1,845 (21.50) 887 (10.33)

Total number
(percentage) of
missing data

0 (0.00) 0 (0.00) 0 (0.00) 353 (4.11) 5,904 (68.80) 7,600 (88.57) 7,727 (90.05) 8,187 (95.41) 6,736 (78.50) 7,694 (89.66)

Total number
(percentage) of
data

360 (100.00) 815 (100.00) 8,581 (100.00) 8,581 (100.00) 8,581 (100.00) 8,581 (100.00) 8,581 (100.00) 8,581 (100.00) 8,581 (100.00) 8,581 (100.00)

Table 1. Number (percentage) of field sites, field site*growing season and field site*growing
season*treatment combinations, and data for grain yield, aerial biomass, grain nitrogen content, aerial
nitrogen content, fixed aerial nitrogen content, residual soil nitrogen content and water use, by main
world regions. Regions are ranked in descending order of field sites. Grain yield includes data from the
‘Crop_Yield_Grain’ attribute. Aerial biomass includes data from both ‘Crop_Biomass_Aerial’ and
‘Crop_Harvest_Index’ attributes. Grain nitrogen content includes data from both ‘Crop_N_Quantity_Grain’
and ‘Crop_N_Percentage_Grain’ attributes. Aerial nitrogen content includes data from the ‘Crop_N_
Quantity_Aerial’, ‘Crop_N_Percentage_Aerial’ and ‘Crop_N_Harvest_Index’ attributes. Fixed aerial nitrogen
content includes data from both ‘Crop_N_Fixed_Quantity_Aerial’ and ‘Crop_N_Fixed_Percentage_Aerial’
attributes. Residual soil nitrogen content includes data from both ‘Crop_N_Soil_Quantity_Percentage_Seeding’
and ‘Crop_N_Soil_Quantity_Percentage_Harvest’ attributes. Water use includes data from the ‘Crop_
Water_Use_Balance’, ‘Crop_Water_Use_Balance_Efficiency_Grain’ and ‘Crop_Water_Use_Balance_
Efficiency_Aerial’ attributes. The total number (percentage) of available data and the total number (percentage)
of missing data are calculated over all considered world regions.

Table Class attribute Numerical attribute Index attribute Binary attribute Date attribute Total

Literature_Search 1 0 1 0 0 2 (1.01)

Article 5 0 2 0 1 8 (4.04)

Site 11 12 2 0 4 29 (14.65)

Crop_Sequence_Trt 3 2 2 1 0 8 (4.04)

Crop 47 41 3 5 10 106 (53.54)

Tillage 7 6 2 4 0 19 (9.60)

Fertilization 4 1 2 0 0 7 (3.54)

Weed_Insect_Fungi 2 1 2 6 2 13 (6.57)

Irrigation 2 1 2 1 0 6 (3.03)

Total 82 (41.41) 64 (32.32) 18 (9.09) 17 (8.59) 17 (8.59) 198 (100.00)

Table 2. Number (percentage) of attribute types included in the nine tables of the database. Tables are
presented according to the cascade path of the database.
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The dataset is freely available to facilitate such analyses. It could easily be updated in the future, by adding
the results of new experiments not originally included in the dataset. It might also be interesting to
expand the dataset to include legumes grown for purposes other than grain production (e.g., forage
production) or legumes grown in intercropping systems. The global dataset should prove to be a useful
support for experimental assessments of the agronomic and environmental performances of a large
diversity of grain legumes.

Methods
Literature search
We carried out a systematic search of peer-reviewed journals for articles comparing grain legume yields.
We defined a grain legume species as a plant from the Fabaceae family, based on the United States
Department of Agriculture Plants Database (http://plants.usda.gov/java/), and cropped for grain
production. The literature search was completed on February 15, 2016. The equation search was: ‘crop*
AND (legum* OR pulse*) AND (yield* OR ‘dry matter’ OR biomass) AND (compar* OR assessment OR
product* OR performance*) AND (trial* OR factorial OR experiment* OR treatment* OR condition*)
NOT (intercrop* OR catch OR cover OR ‘green manure’ OR forage OR fodder)’. The search terms were
used to query the Institute for Scientific Information Web of Science (http://wokinfo.com/), with no
restrictions concerning the date and language of publication in the article title, abstract and author
keywords.

The initial literature search identified 8,386 articles as of potential interest (Fig. 2). Each article title
and article abstract were screened for eligibility according to six criteria: (1) article title and/or article
abstract reporting one or several annual grain legume species grown as sole crops, (2) article title and/or
article abstract reporting at least two grain legume species grown at the same field site during the same
growing season, (3) article title and/or article abstract reporting at least one experiment conducted during
one or several growing seasons, from the seeding stage to the harvest stage, (4) article title and article
abstract referring to an article published in a peer-reviewed journal, (5) article title or article abstract
written in English and (6) full-text article available. We selected 223 eligible full-text articles that met
these first six criteria (Fig. 2).

Eligible full-text articles were then examined according to three additional criteria: (7) full-text article
reporting raw data not duplicated in other articles or raw data that could be obtained by contacting
authors, (8) full-text article reporting individual grain yield for each species and (9) full-text article
reporting one or several experiments for which field site location or soil characteristics were precisely
stated. We selected 60 full-text articles that met all nine criteria. This search was supplemented by
screening the references cited in these 60 full-text articles. We also screened the references included in
one meta-analysis about drought effects on food legume production187 for eligibility. When reviewing the
full-text articles identified from references screening, all nine selection criteria defined above had to be
met for the new article to be considered eligible. Note that, according to the criterion (2), experiments
reporting data for single grain legume species were excluded. This selection criterion was used to ensure
the direct comparability of different grain legume species, and avoid confounding effects between species
characteristics and environmental factors. Experiments testing single species cannot be used to compare
several species due to the effects of field site and growing season characteristics (e.g., climate conditions,
soil types and plant diseases) on the growth and development of grain legumes.

We finally selected 173 full-text articles2–4,6,14–19,23–185 published between 1967 and 2016 that met all
nine selection criteria (Fig. 2).

Database structure
All data are recorded in a relational database (Data Citation 1). The Structured Query Language (SQL)
system is used to query and maintain the database. We used the open-access application Sequel Pro
version 1.0.2 (http://www.sequelpro.com/). The data collected are grouped into nine related tables
including 198 standardized attributes of five types: class, numerical, index, binary and date (Fig. 3 and
Table 2). Within the database, the tables are organized according to a cascade path: each ‘child’ table is
related to a ‘mother’ table. For instance, the ‘Article’ table is the ‘mother’ table for the ‘child’ ‘Site’ table
(Fig. 3). The cascade path from each ‘mother’ table to each ‘child’ table is structured by a ‘primary key’
and a ‘secondary key’ (Fig. 3). A ‘primary key’ assigns an index to each row of the table, whether the
table is a ‘mother’ table or a ‘child’ table. A ‘secondary key’ assigns the ‘primary key’ of a ‘mother’ table
to each row of a ‘child’ table. The cardinality from each ‘mother’ table to each ‘child’ table is based on
‘one-to-one’ and ‘one-to-many’ relationships (Fig. 3).

The database is structured into nine separate but related tables, stored as CSV-formatted files
(Data Citation 1). Tables are related to each other via primary and secondary keys, as explained in Fig. 3.
The names, types and definitions of attributes included in the nine tables are listed in Table 3 (available
online only).

The ‘Literature_Search’ table describes each step in the literature search at which each original article
was selected (e.g., selection from the initial literature search or from references screening). The
corresponding file is entitled ‘Literature_Search.csv’ (Data Citation 1), and includes 2 columns and 3 rows
(including the row header for the names of attributes).
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The ‘Article’ table describes the references of the 173 selected articles (e.g., the name of the first author
and the name of the journal). The corresponding file is entitled ‘Article.csv’ file (Data Citation 1), and
includes 8 columns and 174 rows (including the row header for the names of attributes).

The ‘Site’ table describes the characteristics of each field site considered in each article (e.g., latitude
and longitude coordinates, soil texture, precipitation and temperature). The corresponding file is entitled
‘Site.csv’ (Data Citation 1), and includes 29 columns and 361 rows (including the row header for the
names of attributes).

The ‘Crop_Sequence_Trt’ table describes each combination of crop sequences and management
practices into the treatments studied at each field site (e.g., names of the species and their order in each
crop sequence). The corresponding file is entitled ‘Crop_Sequence_Trt.csv’ (Data Citation 1),
and includes 8 columns and 4,560 rows (including the row header for the names of attributes).

The ‘Crop’ table provides information about each crop (e.g., names of the species, seeding and harvest
dates, number of replicates, grain yield, aerial biomass, crop nitrogen content, residual soil nitrogen
content, water use, error terms and error types). The main attributes included in this central table are
described below in the Data Records section. The corresponding file is entitled ‘Crop.csv’ (Data Citation 1),
and includes 106 columns and 8,582 rows (including the row header for the names of attributes).

The ‘Tillage’ table describes tillage management for each crop (e.g., tillage tools, incorporation of
preceding crop residues, seeding density and legume inoculation). The corresponding file is entitled
‘Tillage.csv’ (Data Citation 1), and includes 19 columns and 8,582 rows (including the row header for the
names of attributes).

The ‘Fertilization’ table describes nitrogen, phosphate and potassium fertilizer management for each
crop (e.g., names and doses of fertilizers). Only the total fertilizer dose is reported for each type of
nutrient. The corresponding file is entitled ‘Fertilization.csv’ (Data Citation 1), and includes 7 columns
and 25,744 rows (including the row header for the names of attributes).

The ‘Weed_Insect_Fungi’ table describes weeds, insects, and fungi management for each crop
(e.g., mechanical treatment, names and doses of pesticides). The corresponding file is entitled
‘Weed_Insect_Fungi.csv’ (Data Citation 1), and includes 13 columns and 45,002 rows (including the row
header for the names of attributes).

The ‘Irrigation’ table describes irrigation management for each crop (e.g., quantity of water applied
and irrigation method). The corresponding file is entitled ‘Irrigation.csv’ (Data Citation 1), and includes 6
columns and 8,582 rows (including the row header for the names of attributes).

In addition to the nine CSV-formatted files (tables), downloadable from Dryad Digital Repository
(Data Citation 1), the entire content of the database is also stored in a SQL-formatted file. The
corresponding file is entitled ‘Database.sql’, and is also downloadable from Dryad Digital Repository
(Data Citation 1). Examples of SQL queries for extracting data for each table are stored in a
TXT-formatted file. The corresponding file is entitled ‘Examples_SQL_Queries.txt’, and is also
downloadable from Dryad Digital Repository (Data Citation 1).

The names, types, and definitions of the 198 attributes included in the nine tables are reported in Table 3
(available online only).

The values (including error terms) and dates reported in graphics were digitized manually with the
open-access application WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/). The maximum error
was estimated at 5.0% for the digitization of low-resolution images, generally from articles published
before 1990. ‘NA’ indicates that data were ‘Not Available’ for the cell concerned. ‘NULL’ indicates a
logical absence of data for attributes included in the ‘Crop’, ‘Tillage’, ‘Fertilization’, ‘Weed_Insect_Fungi’,
and ‘Irrigation’ tables. For example, for the ‘Fertilization’ table, if no nitrogen fertilizer was applied to the
crop (i.e., ‘0.00’ was reported in the ‘Fertilization_NPK_Dose’ attribute), then ‘NULL’ was reported for
the ‘Fertilization_NPK_Dose_Product_Name’ attribute.

Data Records
We describe below the main attributes of the ‘Crop’ table because this table includes most of the
experimental data extracted from the 173 selected articles. Information on other attributes (e.g., articles,
field sites, combinations of crop sequences and management practices) is defined in Table 3 (available
online only).

In the ‘Crop’ table, grain yield is by far the attribute including the highest number of data. This high
reporting rate reflects the explicit requirement for presence of grain yield data during the article selection
process (i.e., criterion 8). Reporting rates are lower for aerial biomass, grain nitrogen content, aerial
nitrogen content, fixed aerial nitrogen content, residual soil nitrogen content and water use. Table 1
presents the total number (percentage) of available and missing data for these attributes over all
crop*field site*growing season*treatment combinations.

When data were not reported for some attributes (e.g., aerial biomass or water use) in the selected
articles, we systematically collected data for related attributes (e.g., harvest index or grain water use
efficiency) in order to retrieve the missing data. For examples, aerial biomass can be deduced from grain
yield and harvest index, and water use can be deduced from grain yield and grain water use efficiency.
When data were not available for any related attributes, we contacted the authors of the selected articles,
and we asked them to provide us with additional raw data when available.
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‘Crop_Sequence_Treatment_Name’ attribute
The name of each combination of crop sequences and management practices was based on the common
names of the species, such as for both ‘Crop_Sequence_Trt_Name’ and ‘Crop_Sequence_Trt_Species_
Order' attributes in the ‘Crop_Sequence_Trt’ table. For instance, the name of a legume-cereal sequence
without application of nitrogen fertilizer (0N) could be ‘Garden pea-Common wheat, 0N’ where ‘Garden
pea’ and ‘Common wheat’ are the common names listed in the United States Department of Agriculture
Plants Database (http://plants.usda.gov/java/) for Pisum sativum and Triticum aestivum, respectively.
Malik et al.105 and McEwen et al.108 described several crop sequences including grain legumes and crop
sequences including barrelclover (Medicago truncatula) or common oat (Avena sativa), both preceding
common wheat. For these two articles, we excluded the crop sequences including barrelclover and
common oat because these crops were grown for forage production.

‘Crop_Site_Growing_Season_ID’ attribute
This attribute is an index identifying each species grown at a given field site during one or several growing
seasons. Identical raw data were found to have been duplicated in two pairs of articles: Muchow et al.114

and Sinclair et al.153 on the one hand, and Heenan et al.71 and Armstrong et al.2 on the other. The
duplicated raw data from Sinclair et al.153 and Heenan et al.71 were excluded because the number of
crop*field site*growing season*treatment combinations was smaller in these two articles than in their
duplicates.

‘Crop_Species_Scientific_Name’ and ‘Crop_Species_Common_Name’ attributes
These attributes give the scientific and common names of the species. The scientific name of each species
was related to the common name listed in the United States Department of Agriculture Plants Database
(http://plants.usda.gov/java/), to avoid confusion due to the use of different common names for the same
species. In the absence of a common name for Brassica campestris, Lupinus atlanticus and Triticum
sativum, the scientific names of these species were used as common names. In the presence of fallow
period, it was not possible to give a scientific name and a common name, and ‘Fallow’ was reported.

‘Crop_Date_From_Seeding_To_Harvest_Day_Number’ attribute
We calculated the number of days from seeding date to harvest date, with the open-access application
Time and Date (http://www.timeanddate.com/). For data averaged across multiple growing seasons,
we calculated the number of days from seeding date to harvest date for each growing season and then
obtained the average by dividing by the total number of growing seasons.

Some articles approximated seeding date and harvest date by describing these events as occurring in
the ‘early’, ‘middle’ or ‘late’ part of the month. We defined ‘early’ as the first 15-day period of the month

Articles identified from
the literature search

(n0=8,386)      

Selection based on
article titles and abstracts

(Criteria 1 to 6)    

Articles excluded
(n1=8,163)  

Articles selected
(n2=223)  

n0=n1+n2

Articles identified from
references screening

(n3=314)   

Articles included
in the database

(n5=173)   

n2+n3=n4+n5

Selection based on
article full-texts
(Criteria 1 to 9)

Articles excluded
(n4=364)  

Figure 2. Flowchart of the steps in the literature search. Boxes with solid lines represent the articles identified

(orange), excluded (red) or included in the database (green). In these boxes, the number of articles (ni) is

indexed according to each step i of the literature search. Boxes with dashed edges represent the selection

process, and selection criteria are indexed in italic.
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(1st–15th), ‘middle’ as the 15th day of the month and ‘last’ as the second 15-day period of the month
(15th–30th or 15th–31st). In these cases, the number of days from seeding to harvest was calculated by
selecting the last day of the period concerned, i.e., the 15th day of the month for ‘early’ and ‘middle’ and
the 30th or 31st day of the month for ‘late’.

Some articles reported only the number of days from seeding to harvest, without indicating precise
dates or months. In these cases, we reported only the number of days from seeding to harvest. We used
the expression ‘NA NA NA’ (i.e., ‘Day Month Year’ formatted expression) for both seeding and
harvest dates.

‘Crop_Following_Number’ attribute
This attribute is used to distinguish preceding crops from following crops in the crop sequence. It takes
three values: ‘0’ (i.e., the main crop or the preceding crop, mostly grain legumes), ‘1’ (i.e., the following
crop, mostly cereals and oilseeds) and ‘2’ (i.e., the crop after the following crop, mostly cereals and
oilseeds).

‘Crop_Multiple_Following_For_Same_Preceding’ attribute
Some studies reported results for many different crops and management practices following the same
preceding crop. The binary ‘Crop_Multiple_Following_For_Same_Preceding’ attribute was used to
identify data associated with the same preceding crop.

‘Crop_Across_Treatment_Averaged_Value’ and ‘Crop_Across_Treatment_Averaged_Value_Type’
attributes
For species grown at the same field site during the same growing season, some articles reported only data
averaged over combinations of treatments (e.g., cultivar*seeding date*presence of irrigation). We
included these data provided that each type of individual treatment was precisely defined in the article. In
all cases, we systematically reported whether or not the data were averaged over combinations of
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treatments. When data were averaged over combinations of treatments, the total number of replicates was
calculated as the sum of the replicates for each of the treatments for which results were averaged.

For articles reporting data for several cultivars of the same species but without data averaging, the data
were reported separately for each cultivar. For articles reporting data averaged over several cultivars of the
same species, only the averaged data were included in the dataset. The total number of replicates was
calculated by multiplying the number of replicates of each cultivar by the total number of cultivars.

‘Crop_Across_Species_Same_Treatment_Value’ and ‘Crop_Across_Species_Same_
Treatment_Value_Type’ attributes
In some articles, different types of treatment were applied to species grown at the same site during the
same growing season. Each different type of treatment was reported in this case.

‘Crop_Replicate_Number’ attribute
As mentioned above, when averaged data were reported in the articles, the number of replicates was equal
to the sum of the replicates used to calculate each average.

‘Crop_Yield_Grain’ attribute
This attribute corresponds to grain yield data, with a few exceptions. For Brassica chinensis (pak choi),
Citrullus lanatus (watermelon), Gossypium hirsutum (upland cotton), Ipomoea batatas (sweet potato) and
Solanum lycopersicum (garden tomato), the yields reported are the economic yields. For Arachis hypogaea
(peanut), pods are included in grain yields. In all other situations, the yield data given correspond to grain
yields. Mutant non-nodulating legume cultivars, shading treatment and under-sowing treatment were
excluded from the database. When grain yield data of following crops were confounded between the
effect of preceding species and the effect of nitrogen fertilizer dose, these data were also excluded. Data
were reported in 96% of all crop*field site*growing season*treatment combinations. Grain yield varied
strongly both between grain legume species and between articles for a given species (Fig. 4a).
Median grain yield was lowest for Vigna subterranea (bambarra groundnut) and highest for Trigonella
foenum-graecum (sicklefruit fenugreek).

‘Crop_Biomass_Aerial’ attribute
This attribute corresponds to aerial biomass data. Data were reported in 27% of all crop*field
site*growing season*treatment combinations. Aerial biomass varied considerably both between grain
legume species and between articles for a given species (Fig. 4b). Median aerial biomass was lowest for
Vigna aconitifolia (moth bean) and highest for Trifolium repens (white clover).

‘Crop_Yield_Grain_DM_Percentage’ and ‘Crop_Biomass_Aerial_DM_Percentage’ attributes
These two attributes correspond to the percentage of dry matter to which grain yield and aerial biomass
correspond, respectively. When only the percentage of dry matter corresponding to aerial biomass was
available and grains were included in aerial biomass, we assumed that the grains accounted for the same
percentage of dry matter as the aerial biomass.

‘Crop_Harvest_Index’ attribute
This attribute was reported in the database to calculate aerial biomass at physiological maturity from
grain yield. Data were reported in 4% of all crop*field site*growing season*treatment combinations
(Fig. 4c). Median harvest index was lowest for Vicia villosa (winter vetch) and highest for Vicia faba
(fababean).

‘Crop_N_Quantity_Grain’ and ‘Crop_N_Quantity_Aerial’ attributes
These two attributes correspond to the quantity of nitrogen in grains and aerial components, respectively.
For the ‘Crop_N_Quantity_Grain’ attribute, data were reported in 10% of all crop*field site*growing
season*treatment combinations. For the ‘Crop_N_Quantity_Aerial’ attribute, data were reported in 10%
of all crop*field site*growing season*treatment combinations. As previous attributes, grain and aerial
nitrogen quantities varied both between grain legume species and between articles for a given species
(Fig. 5a,b). Median grain nitrogen quantity was lowest for Vigna subterranea (bambarra groundnut) and
highest for Lupinus albus (white lupine). Median aerial nitrogen quantity was lowest for Vicia
narbonensis (purple broad vetch) and highest for Lupinus mutabilis (sweet tarwi).

‘Crop_N_Fixed_Percentage_Aerial’ attribute
This attribute corresponds to the percentage of aerial nitrogen fixed by legume species. ‘NA’ was
systematically reported for non-legume species. Data were reported in 3% of all crop*field site*growing
season*treatment combinations (Fig. 5c). Median fixed aerial nitrogen percentage was lowest for Cajanus
cajan (pigeonpea) and highest for Trifolium repens (white clover).
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Figure 4. Distribution of grain yield (t ha− 1) for 39 grain legume species (a), aerial biomass (t ha− 1) for

31 grain legume species (b), and harvest index for 19 grain legume species (c). Distributions are derived using data

extracted from the database without additional calculations. Intrabox lines indicate medians, box edges indicate

25th and 75th percentiles, and whiskers indicate minimum and maximum values. The number of observations (n)

is also indicated. The scientific names of the species are ranked in descending order of median values.
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Figure 5. Distribution of grain nitrogen (kg ha− 1) for 24 grain legume species (a), aerial nitrogen (kg ha− 1) for

23 grain legume species (b), and fixed aerial nitrogen (%) for 15 grain legume species (c). Distributions are

derived using data extracted from the database without additional calculations. Intrabox lines indicate medians,

box edges indicate 25th and 75th percentiles, and whiskers indicate minimum and maximum values. The

number of observations (n) is also indicated. The scientific names of the species are ranked in descending order

of median values.
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‘Crop_N_Fixed_Percentage_Aerial_Method’ and ‘Crop_N_Fixed_Percentage_Aerial_
Reference_Species’ attributes
These two attributes correspond to the method used to determine the percentage of aerial nitrogen fixed
by legume species (e.g., the 15N isotope dilution method or the A-value method), and the scientific
name of the non-fixing reference species. Some articles used a legume reference species rather than a
non-legume reference species. In all cases, the legume reference species was a mutant non-nodulating
legume cultivar that did not fix atmospheric nitrogen.

‘Crop_Biomass_Aerial_Stage_Detailed’, ‘Crop_Biomass_Aerial_Stage_Simplified’,
‘Crop_N_Fixed_Percentage_Aerial_Stage_Detailed’ and ‘Crop_N_Fixed_Percentage_
Aerial_Stage_Simplified’ attributes
These attributes correspond to the phenological stages at which aerial biomass and the percentage of fixed
aerial nitrogen (or the quantity of fixed aerial nitrogen with the ‘Crop_N_Fixed_Quantity_Aerial’
attribute) were determined. The ‘Crop_Biomass_Aerial_Stage_Detailed’ and ‘Crop_N_Fixed_Percentage_
Aerial_Stage_Detailed’ attributes correspond to the detailed phenological stage originally stated in the
article. The ‘Crop_Biomass_Aerial_Stage_Simplified’ and ‘Crop_N_Fixed_Percentage_Aerial_Stage_
Simplified’ attributes correspond to a simplified phenological stage divided into ‘Before physiological
maturity’ and ‘Physiological maturity’.

‘Crop_Protein_Quantity_Percentage_Grain’ attribute
This attribute corresponds to the percentage or the quantity of protein in grains. In the selected articles,
these protein contents were often calculated by multiplying the percentage or the quantity of nitrogen in
grains by a constant. However, this constant differed between articles. Note that only a few articles
referred to the percentage or the quantity of protein. We reported the percentage or the quantity of
protein in grains independently of the percentage or the quantity of nitrogen in grains.

‘Crop_N_Balance_Simplified’ attribute
This attribute corresponds to the simplified nitrogen balance originally calculated in the articles (e.g., the
difference between the quantity of nitrogen in grains and the quantity of fixed aerial nitrogen). Nitrogen
balance data were only reported if the attributes used to calculate them were not directly available from
raw data (e.g., the quantity of nitrogen in grains and the quantity of fixed aerial nitrogen). This was the
case for only three articles.

‘Crop_N_Soil_Quantity_Percentage_Seeding’ and ‘Crop_N_Soil_Quantity_Percentage_
Harvest’ attributes
These two attributes correspond to the percentage or the quantity of soil nitrogen at seeding and at
harvest, respectively.

‘Crop_N_Soil_Quantity_Percentage_Seeding_Type’, ‘Crop_N_Soil_Quantity_Percentage_
Seeding_Depth’, ‘Crop_N_Soil_Quantity_Percentage_Seeding_Date’, ‘Crop_N_Soil_
Quantity_Percentage_Harvest_Type’, ‘Crop_N_Soil_Quantity_Percentage_Harvest_Depth’
and ‘Crop_N_Soil_Quantity_Percentage_Harvest_Date’ attributes
These attributes correspond to (i) the type of nitrogen (e.g., nitrogen or nitrate or mineral), (ii) the depth
of soil used to determine the percentage or the quantity of soil nitrogen and (iii) the date at which soil
measurements were made. These attributes were reported at both seeding and harvest.

‘Crop_Water_Use_Balance’ attribute
This attribute corresponds to the water use or the water balance, according to the equation given in the
selected articles. Data were reported in 6% of all crop*field site*growing season*treatment combinations.
Water use (or water balance) varied both between grain legume species and between articles for a given
species (Fig. 6). Median water use (or water balance) was lowest for Vigna aconitifolia (moth bean) and
highest for Lablab purpureus (hyacinthbean).

‘Crop_Harvest_Index’, ‘Crop_N_Percentage_Grain’, ‘Crop_N_Percentage_Aerial’, ‘Crop_N_
Harvest_Index’, ‘Crop_N_Fixed_Quantity_Aerial’, ‘Crop_Water_Use_Balance_Efficiency_
Grain’ and ‘Crop_Water_Use_Balance_Efficiency_Aerial’ attributes
These seven attributes were reported in the database to calculate missing data: aerial biomass, quantity of
nitrogen in grains, quantity of nitrogen in aerial components, percentage of fixed aerial nitrogen, and
water use.
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‘Crop_Biomass_Aerial_Definition’, ‘Crop_N_Percentage_Aerial_Definition’, ‘Crop_N_
Quantity_Aerial_Definition’, ‘Crop_N_Fixed_Quantity_Aerial_Definition’ and ‘Crop_Water_
Use_Balance_Efficiency_Aerial_Definition’ attributes
Different aerial components were included in the aerial biomass, the percentage or the quantity of
aerial nitrogen, and the efficiency of aerial water use or aerial water balance. These five attributes
were used to determine the aerial components originally reported in the articles. When the ‘shoot’, ‘straw’
and ‘stubble’ terms were used to define the aerial components in the articles, we assumed that the
grains were not included in the aerial components. This information was reported for (i) the aerial
biomass in the ‘Crop_Biomass_Aerial_Definition’ attribute, (ii) the percentage of aerial nitrogen
in the ‘Crop_N_Percentage_Aerial_Definition’ attribute, (iii) the quantity of aerial nitrogen in the
‘Crop_N_Quantity_Aerial_Definition’ attribute, (iv) the quantity of fixed aerial nitrogen in the
‘Crop_N_Fixed_Quantity_Aerial_Definition’ attribute, and (v) the efficiency of aerial water use or aerial
water balance in the ‘Crop_Water_Use_Balance_Efficiency_Aerial_Definition’ attribute.

‘Crop_N_Balance_Simplified_Equation’ and ‘Crop_Water_Use_Balance_Equation’ attributes
For these two attributes, we reported the equations used to calculate simplified nitrogen balance and
water use or water balance, respectively.

Attributes relating to error terms and error types
When available, we systematically reported error terms and error types associated with data about grain
yield, aerial biomass, crop nitrogen content, residual soil nitrogen content and water use. For the
‘Crop_Yield_Grain’ attribute, the ‘Crop_Yield_Grain_Error’ attribute indicates the error term and the
‘Crop_Yield_Grain_Error_Type’ attribute indicates the error type for a given item of grain yield data for
a given crop in the ‘Crop’ table. Error terms and error types were reported as raw data. For instance,
when an article reported the error type as Fisher's Least Significant Difference, the data were directly
reported as Fisher's Least Significant Difference. Unidentified error bars digitized from graphs were
assumed to represent standard errors. When available, the numbers of replicates were also reported. For
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Figure 6. Distribution of water use (mm) for 18 grain legume species. Water use is calculated using different

types of equations, indicated within the ‘Crop_Water_Use_Balance_Equation’ attribute. The distribution is

derived using data extracted from the database without additional calculations. Intrabox lines indicate medians,

box edges indicate 25th and 75th percentiles, and whiskers indicate minimum and maximum values. The

number of observations (n) is also indicated. The scientific names of the species are ranked in descending order

of median values.
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48% of grain yields, both error terms and the numbers of replicates were reported. For 47% of grain
yields, only the number of replicates was reported.

Technical Validation
Each article was read carefully at least three times by the same person, to determine the type and the
quantity of data reported by the authors. Once the data had been extracted, all the data reported in the
tables were checked at least three times by the same person, to identify possible mistakes. SQL subset
queries were systematically performed, to check the structural validity and coherence of class, numerical,
index, binary and date attributes within each table, and to check the relationships between ‘mother’ and
‘child’ tables. Once the set of data was complete, SQL queries were carried out, to compare the entire
content of the database with the original data reported in the selected articles. We systematically and
manually checked for outliers in order to detect possible mistakes made during data extraction. We
returned to the original articles as many times as needed to check the accuracy of the data. We checked
the qualitative and quantitative contents of all class, numerical, index, binary and date attributes by
importing each table in turn into the R software (version 3.2, https://cran.r-project.org/), and by
visualizing data distribution for each attribute in turn. When the meaning of the data reported in the
articles was unclear, authors were directly contacted and asked to provide additional information about
their experimental protocols. Authors were also asked to provide additional data, particularly if large
numbers of treatments had been averaged in their articles. Overall, 17 authors provided us with
additional information and raw data (see the Acknowledgements section).

Usage Notes
The dataset is based on a compilation of experimental data published in 173 articles over the last 50 years.
To our knowledge, this dataset is unique and constitutes the most comprehensive agronomic dataset for
grain legume crops worldwide.

The dataset can be analyzed to assess performances for a broad diversity of grain legume species, and
to provide global rankings for these species in terms of grain yield, aerial biomass, harvest index, aerial
nitrogen fixation, nitrogen content in aerial components, nitrogen balance, and water use. It can also be
used to assess the effect of including different grain legumes as preceding crops, before cereals and
oilseeds in the same crop sequences. Global species rankings were recently estimated for energy crops188,
but never for grain legumes. Rankings of grain legume species could be directly derived from our dataset
by using standard meta-analysis methods based on random-effect models188. Attributes describing
environmental factors (e.g., climate conditions and soil types) and management practices (e.g., tillage,
fertilization, pest management and irrigation) can be used to analyze the variability of grain legume
performances over field sites, growing seasons, and management practices.

Our dataset covers several contrasted geographical areas. It can be used to target suitable grain legume
species for cultivation in particular pedoclimatic conditions. In the context of climate change, the
database represents a useful resource to assess comparatively the production of grain legume species in
drought-prone environments, or to identify innovative agricultural techniques for improving grain
legume cultivation under yield-limiting abiotic and biotic stresses.

Subsets of the dataset can be used to address regional issues. Figure 7 presents six regional networks
including the pairs of grain legume species frequently compared at the same field sites during the same
growing seasons, and the grain legume species that were not frequently compared with each other. Such
networks can be used to identify the species for which reliable comparisons are feasible, and those for
which limited data are available. A quantitative analysis can then be computed to determine regional
rankings of grain legume species. This approach could be used to identify highly productive species, and
to compare them with major regional grain legume crops (e.g., garden pea in Europe or soybean in North
America). Our dataset could thus shed new light on the potential value of as yet underused grain legumes
from regional to global scales.

As geographical coordinates of the experiments were systematically reported, our dataset can be
connected to large-scale climate and soil maps, and to Geographic Information Systems. An example is
shown in Fig. 1 where the Köppen-Geiger climatic classification was indicated for field sites included in
the database. Similar maps could be easily produced using other global classification of agroecological
zones (e.g., the Global Agro-Ecological Zones Data Portal, http://gaez.fao.org/Main.html#), or soil
typology (e.g., the Soils Portal of the Food and Agriculture Organization of the United Nations, http://
www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/).

The dataset is also useful for comparing productivity levels of native and non-native grain legume
species used as raw materials for food and feed across diverse geographic regions. Grain yield data can be
converted into crude protein or energy contents metabolizable for livestock animals (e.g., pigs and
poultry) using, for example, the Feedipedia Animal Feed Resources Information System (http://www.
feedipedia.org/).

In the future, the dataset could be expanded in different ways. Results of new experiments comparing
grain legume species can be easily included in our database. So far, we focused on legume species
produced for grains, but legume grown for forage can also be included in the database without changing
the relational database structure. In many world regions such as Africa, Asia and South America,
agricultural grain legumes are frequently intercropped. Data collected in intercropping experiments could
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be further included in our dataset. Note that the relational structure of the database is relatively coercive,
and should be modified with great care. The addition of a new table can have consequences on the
relational framework and the cardinality relationships. But new data or new attributes can be easily
incremented in existing tables.

The CSV format is well adapted for analyzing data using standard statistical softwares such as the R
software (https://cran.r-project.org/). However, because of the cascade path between tables and of the
cardinality relationships between attributes (Fig. 3), data extraction can be easily performed using SQL
queries. An example of query is presented below for extracting binary data indicating absence (‘0’) or
presence (‘1’) of tillage management for grain legume species included in the article indexed ‘29’ in our
dataset:

SELECT IDCrop, Crop_Species_Scientific_Name, IDTillage, Tillage_Presence_Tillage
FROM Article, Site, Crop_Sequence_Trt, Crop, Tillage
WHERE identifiant= identifiant_Paper
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Figure 7. Regional networks of grain legume species included in the database. The regions considered are:

(a) Africa, (b) Asia, (c) Europe, (d), North America (e) Oceania, and (f) South America. The links represent the

pairs of species grown simultaneously at the same field sites during the same growing seasons. The thickness of

the links increases with the number of field sites and the number of growing seasons over which the species are

compared. The three most widely cropped grain legume species in each region over the 1961–2014 period,

according to the crop classification and crop data from the Statistics Division of Food and Agriculture

Organization of the United Nations22, are indicated as nodes in dark blue. The three most frequently compared

grain legume species in the experimental dataset are indicated, by region, with light blue edges. The scientific

names of grain legume species are abbreviated: AH, Arachis hypogaea; CA, Cicer arietinum; CC, Cajanus cajan;

CT, Cyamopsis tetragonoloba; GM, Glycine max; LAl, Lupinus albus; LAn, Lupinus angustifolius; LAp, Lathyrus

aphaca; LAt, Lupinus atlanticus; LCi, Lathyrus cicera; LCl, Lathyrus clymenum; LCu, Lens culinaris; LL, Lupinus

luteus; LM, Lupinus mutabilis; LO, Lathyrus ochrus; LPi, Lupinus pilosus; LPu, Lablab purpureus; LS, Lathyrus

sativus; MU, Macrotyloma uniflorum; PL, Phaseolus lunatus; PS, Pisum sativum; PV, Phaseolus vulgaris;

TFG, Trigonella foenum-graecum; TR, Trifolium repens; VAc, Vigna aconitifolia; VAn, Vigna angularis;

VAr, Vicia articulata; VB, Vicia benghalensis; VE, Vicia ervilia; VF, Vicia faba; VH, Vicia hybrida; VM, Vigna

mungo; VN, Vicia narbonensis; VP, Vicia pannonica; VR, Vigna radiata; VSa, Vicia sativa; VSu, Vigna

subterranea; VU, Vigna unguiculata; VV, Vicia villosa.
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AND IDSite= IDSite_Site
AND IDRotation= IDRotation_CropSystem
AND IDCrop=Tillage.IDCrop_Crop
AND identifiant= '29'

The result of the SQL query is:
IDCrop, Crop_Species_Scientific_Name, IDTillage, Tillage_Presence_Tillage
853 Cicer arietinum 849 1
854 Vicia faba 851 1
857 Lens culinaris 856 1
858 Pisum sativum 858 1
859 Cicer arietinum 860 1
860 Vicia faba 861 1
861 Lens culinaris 862 1
862 Pisum sativum 863 1
864 Cicer arietinum 864 1
865 Vicia faba 865 1
866 Lens culinaris 866 1
867 Pisum sativum 867 1
869 Cicer arietinum 868 1
870 Vicia faba 870 1
871 Lens culinaris 871 1
872 Pisum sativum 872 1
873 Cicer arietinum 873 0
874 Vicia faba 874 0
875 Lens culinaris 875 0
876 Pisum sativum 876 0
877 Cicer arietinum 877 0
878 Vicia faba 878 0
879 Lens culinaris 879 0
880 Pisum sativum 880 0
881 Cicer arietinum 881 0
882 Vicia faba 882 0
883 Lens culinaris 883 0
884 Pisum sativum 884 0
885 Cicer arietinum 885 0
887 Vicia faba 886 0
888 Lens culinaris 887 0
890 Pisum sativum 889 0

Other examples of SQL queries are shown in the TXT-formatted file entitled ‘Examples_SQL_Queries.
txt’, downloadable from Dryad Digital Repository (Data Citation 1).
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