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J Physiol Gastrointest Liver Physiol 312: G171–G193, 2017. First published
December 1, 2016; doi:10.1152/ajpgi.00048.2015.—The gut barrier plays a crucial
role by spatially compartmentalizing bacteria to the lumen through the production of
secreted mucus and is fortified by the production of secretory IgA (sIgA) and
antimicrobial peptides and proteins. With the exception of sIgA, expression of these
protective barrier factors is largely controlled by innate immune recognition of micro-
bial molecular ligands. Several specialized adaptations and checkpoints are operating in
the mucosa to scale the immune response according to the threat and prevent overre-
action to the trillions of symbionts inhabiting the human intestine. A healthy microbiota
plays a key role influencing epithelial barrier functions through the production of
short-chain fatty acids (SCFAs) and interactions with innate pattern recognition recep-
tors in the mucosa, driving the steady-state expression of mucus and antimicrobial
factors. However, perturbation of gut barrier homeostasis can lead to increased
inflammatory signaling, increased epithelial permeability, and dysbiosis of the micro-
biota, which are recognized to play a role in the pathophysiology of a variety of
gastrointestinal disorders. Additionally, gut-brain signaling may be affected by pro-
longed mucosal immune activation, leading to increased afferent sensory signaling and
abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier
partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-
dependent and mast cell-independent mechanisms. The modulation of gut barrier
function through nutritional interventions, including strategies to manipulate the mi-
crobiota, is considered a relevant target for novel therapeutic and preventive treatments
against a range of diseases. Several biomarkers have been used to measure gut
permeability and loss of barrier integrity in intestinal diseases, but there remains a need
to explore their use in assessing the effect of nutritional factors on gut barrier function.
Future studies should aim to establish normal ranges of available biomarkers and their
predictive value for gut health in human cohorts.

gut barrier; antimicrobial peptides; microbiota; epithelial permeability

IN MULTICELLULAR ANIMALS the intestinal tract is a dominant
arena for interaction with commensal microbiota. The coevo-

lution of mammals with intestinal bacteria has resulted in a
highly specialized mucosa that can fulfill the requirement for
digestion and absorption of nutrients while maintaining a
peaceful coexistence with symbionts and protecting the body
against infection. In this respect the chemical and physical
components of the intestinal mucosa, often referred to as the
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“gut barrier,” play a crucial role. A consequence of perturba-
tions in gut barrier function, for example due to poor nutrition,
infection, or other illness, can lead to increased “intestinal
permeability,” which refers to the rate of flux of molecules
across the epithelium. Thus, the terms “gut barrier” and “in-
testinal permeability” are often used interchangeably, although
they refer to different functional aspects of the mucosa. In-
creased intestinal epithelial permeability, also known as “leaky
gut,” is associated with a variety of gastrointestinal disorders,
including inflammatory bowel disease (IBD), irritable bowel
syndrome (IBS), celiac disease, and the early stages of colon
cancer development (27). In IBD, altered permeability in-
creases the translocation of proinflammatory stimuli into the
lamina propria (LP), triggering inflammatory cytokine-medi-
ated changes to the tight junctions that result in permeability
changes (46). Similarly, the increased epithelial permeability
associated with the diarrheal form of IBS is thought to exac-
erbate the symptoms via increased paracellular transport of
luminal antigens (20). Altered intestinal epithelial permeability
is furthermore associated with type 2 and type 1 diabetes,
celiac disease, and food allergy among others (62, 76, 199,
203, 278). Consequently, modulation of gut barrier function is
a highly relevant target for novel treatment and prevention
strategies against a range of diseases that have all increased
dramatically over the past 5 decades. Nutrition and microbe-
gut interactions can have a substantial and clinically relevant
effect on the development of the immune system and intestinal
barrier function with consequences for resistance to pathogens,
development of gut inflammation, and abdominal complaints
(131).

In this review, we describe the role of different defense
mechanisms that support barrier function, and how they are
regulated and measured. Additionally, we describe how integ-
rity of the barrier is maintained and regulated by the complex
network of interactions between microbes and host epithelium.
Finally, we discuss the importance of proper functioning of the
gut barrier in relation to bidirectional signaling between the
enteric nervous system and the brain. We end the review by
discussing biomarkers in blood, feces, or urine that can be used
to assess intestinal permeability and epithelial integrity as well
as ex vivo approaches to studying gut barrier function and
intestinal permeability.

Intestinal Epithelium, Tight Junctions, and Gut Permeability

A single-cell epithelial layer separates the intestinal luminal
content from the underlying loose connective tissue and the
interior milieu. The intestinal epithelium is renewed every 3–5
days in humans due to apoptosis and exfoliation of mature
enterocytes and their replacement by proliferation from stem
cells in the crypts. The high rate of epithelial cell turnover also
serves as a protective mechanism to remove infected or dam-
aged cells (27, 91). Increased epithelial cell proliferation will
increase cell crowding at the villus tip, which is known to be a
driver of epithelial cell extrusion (64). Stem cells found in the
crypts of the small intestine and colon have the ability to
perpetuate themselves and the potential to generate differenti-
ated cells of the tissue of origin, a process otherwise known as
multipotency (47). Intestinal stem cells continuously generate
rapidly proliferating transit-amplifying cells, which differenti-
ate into mature enterocytes, goblet cells, or endocrine cells

after migrating upward and out of the intestinal crypt (295). In
the small intestine, stem cells also differentiate into Paneth
cells during downward migration to the base of the crypt,
where they reside below the stem cell population (230). Paneth
cells help to maintain the stem cell niche through paracrine
signaling and they regulate the proliferation and differentiation
programs of other cell lineages (22). Paneth cells also play a
key role in innate immunity discussed below in Antimicrobial
Peptides and Proteins. In colon crypts, cells expressing CD24
that reside between the stem cells may represent may represent
Paneth cell equivalents (229).

The paracellular permeability of the epithelium is controlled
by protein complexes known as tight junctions (TJs), which
reside near the apical surface of adjacent epithelial cells (Fig.
1). TJs prevent the paracellular passage of large molecules
through the epithelium while allowing diffusion of ions, water,
and small compounds [reviewed in (257)]. Beneath the TJs are
the adherens junctions, desmosomes, and gap junctions, which
are lateral structures involved in cell-cell adhesion and intra-
cellular signaling (284). Both TJs and adherens junctions are
connected to the cellular actin cytoskeleton (Fig. 1). The TJs
also demarcate the apical and basolateral membranes of epi-
thelial cells by preventing membrane diffusion of lipids, re-
ceptors, and other membrane proteins through the junction
complex Fig. 1 (294). Integrins in the basolateral membrane of
the epithelium are attached to the extracellular matrix present
in the underlying connective tissue of the lamina propria (LP).

The permeability of the epithelium varies along the intestinal
tract, and is determined by the composition and abundance of
different components of the TJ. The TJ consist of transmem-
brane proteins such as occludins (82), claudins (81, 255),
junctional adhesion molecules (25, 168), tricelluin (110), and
intracellular scaffold proteins [such as zonula occludens (ZO)
proteins ZO-1, -2, and -3] (98, 249) (Fig. 1). The role of
specific TJ proteins on epithelial permeability has been shown
in several knock-down and expression studies in polarized
epithelial cell lines [reviewed in (81, 148, 252, 257)]. In the
intestine, claudins -1, -3, -4, -5, and -8 decrease paracellular
permeability, whereas claudin-2 forms cation-selective chan-
nels that decrease transepithelial permeability and reduce para-
cellular NaCl and water reabsorption (10). The ZO proteins,
ZO-1, ZO-2, and ZO-3, all contain PDZ domains, which
interact with other proteins including actin in the cytoskeleton
(Fig. 1). ZO-1-deficient cells are still able to form TJs and
display normal permeability, possibly due to the functional
redundancy by ZO-2, but they have altered kinetics of TJ
assembly (258).

Hyperpermeability of the intestinal barrier is believed to
contribute to the pathogenesis of several gastrointestinal dis-
orders including IBD, celiac disease, IBS, and food allergy
(27). Inflammation associated with these diseases and disorders
is likely to be one of the major inducers of TJ dysfunction and
increased permeability. Several inflammatory cytokines in-
cluding interferon-� (IFN-�) (2), TNF-� (164), IL-1� (9), and
IL-17 (138) have been shown to cause increases in intestinal
permeability through altered expression of TJ proteins, or
increased expression of myosin light chain kinase (MLCK),
which can alter TJ structure and paracellular permeability by
phosphorylation of myosin II regulatory light chain (MLC)
(250). In contrast, the anti-inflammatory cytokines such as
IL-10 and transforming growth factor-� (TGF-�) enhance
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epithelial permeability and block the negative effects of infec-
tion with pathogenic Escherichia coli on epithelial permeabil-
ity (105).

Epidermal growth factor has been shown to protect against
the increased permeability caused by noxious stimuli including
oxidative stress, ethanol, and acetaldehyde via MAPK activa-
tion and TJ modulation (23). Glutamine, an essential amino
acid in pigs, was reported to enhance barrier function in vivo
(277), and its absence in tissue cultures of Caco-2 cell mono-
layers, decreases expression of claudin-1 and increases trans-
epithelial permeability (58, 157, 158).

TJ complexes and epithelial permeability are known to be
affected by epithelial interaction with microbes and their me-
tabolites. Studies in vitro have shown that stimulation of the
Toll-like receptor 2 (TLR2) signaling pathway activates pro-
tein kinase C (PKC)-� and PKC�, which in turn, lead to an
increase in transepithelial resistance and a redistribution of
ZO-1. Recently, administration of Lactobacillus plantarum to
humans was shown to increase staining for ZO-1 and occludin
in the vicinity of TJ structures in biopsy tissue (128). In vitro,
L. plantarum also conferred protection against chemically
induced disruption of the epithelial barrier in Caco-2 mono-
layers (128). TLR2 is expressed by epithelial cells (79) in vivo
and recognizes diacylated or triacylated lipopeptides of bacte-
ria and thus represents a plausible mechanism for the reported
effects of probiotics on small intestinal barrier function.

As discussed below, the intestinal microbiota produce short-
chain fatty acids (SCFAs), including butyrate, propionate, and
acetate, which reach concentrations up to 100 mM in the colon
due to the fermentation of complex carbohydrates. In vitro, low
concentrations (2 mM) of butyrate were shown to increase
transepithelial resistance and decrease inulin permeability in
Caco-2 cell monolayers, whereas higher concentrations (8
mM) had an opposite effect, even inducing apoptosis in a
concentration-dependent manner (197). In contrast, a recent
study reported that 10 mM butyrate was shown to reduce the

flux of 3-kDa FITC-dextran through Caco-2 monolayers com-
pared with control cells, suggesting that it enhances intestinal
permeability (133). Using a calcium switch assay to induce TJ
formation, butyrate was shown to enhance TJ assembly, in-
volving the AMP-activated protein kinase (197, 198).

Mucus Glycoproteins

Mucins, secreted by goblet cells in the epithelium, are the
determining constituents of the mucus layer, which form a
considerable physical barrier to enteric commensals and patho-
gens. The importance of the mucus glycoproteins for host
protection is highlighted by the fact that absence of the main
intestinal secreted mucin (MUC2) leads to spontaneous and
lethal colitis (246, 265). The secreted mucins are glycopro-
teins, containing up to 80% carbohydrates in the form of a
dense array of O-linked oligosaccharides, which are linked into
a large macromolecular complex via cysteine-rich domains at
both the amino- and carboxy-termini (57, 174). It is this
extensive network structure that gives secreted mucus its vis-
cous rheological properties. In humans there are five oligomer-
izing secreted mucins (MUC2, MUC5AC, MUC5B, MUC6,
and MUC19), of which the first four are produced in different
regions of the gastrointestinal tract (57). In the stomach the
secreted mucus consists of MUC5AC and MUC6, which are
produced by separate gastric mucous cells. Mucus in the small
intestine is mainly composed of MUC2 and is produced by
goblet cells (Fig. 2). In the small and large intestine the
secreted mucus is predominantly composed of MUC2, al-
though in the large intestine, MUC5AC and MUC6 may be
produced in small quantities under some conditions (174).

In humans, the goblet cell-to-enterocyte ratio increases from
the proximal to distal intestine, with an estimated 4, 6, 12, and
16% of goblet cells in the epithelium of the duodenum, jeju-
num, ileum, and distal colon, respectively (137). Mucus thick-
ness varies at different intestinal locations and can be studied

Fig. 1. A: simplified schematic view of the location of the cellular junctions in juxtaposed epithelial cells (EC). Tight junctions (TJs) form the most apical junction
and interconnect laterally neighboring cells in the epithelium. TJs allow selective diffusion of fluids, electrolytes, and small molecules through the paracellular
space while providing a highly selective barrier for larger molecules, thereby regulating paracellular permeation of ions and other molecules. Adherens junctions
are involved in cell-cell adhesion and intracellular signaling. Other basolateral epithelial junctions include desmosomes and gap junctions, which are involved
in cell-cell adhesion and intracellular communication, respectively. B: TJs are composed of several types of occludins, junctional adhesion molecule (JAM)
proteins, and members of the claudin protein family that influence the charge selectivity of the TJ. These are all transmembrane proteins that form intermolecular
and intercellular connections within the paracellular space. All transmembrane junctional proteins interact with intracellular scaffold proteins (such as ZO-1, -2,
and -3) that interact with other proteins, including actin in the cytoskeleton.
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by applying charcoal particles to mounted tissue explants and
microscopically measuring the transparent gap between the
particles and the surface of the epithelium (17). In rats the
mucus layer was thickest in the colon (~830 �m) and thinnest
in the jejunum (~123 �m). Aspiration of the loose mucus from
the apical surface leaves a “firm” mucus layer adhered to the
epithelium (17). In the rat colon the firm mucus layer was ~116
�m thick but only ~20 �m or absent in the small intestine. In
the ileum, mucus with a long, sticky, rope-like structure flows
above the villi spatially compartmentalizing the bacteria to the
lumen (Fig. 2B). The exception is segmented filamentous
bacteria that lie beneath the mucus strands in the small intestine
and attach themselves to epithelial cell (55). This overall
structure of the intestinal mucus layer in small and large
intestines is conserved in rats, mice, and humans.

Carnoy fixation and paraffin embedding technique prevents
complete shrinkage of the mucus and has also been used to
assess mucus thickness (174) (Fig. 2). Immunofluorescent
visualization of mucus and microbiota in Carnoy-fixed tissue
showed that the firm mucus layer in the colon is largely devoid
of intact bacteria (120) (Fig. 2A). The secreted mucus contains
several secreted host factors including trefoil peptides, and
antimicrobial factors such as regenerating islet-derived protein
3 (Reg3) proteins and secretory IgA, which play an important
role in the immune exclusion of microorganisms and other
antigens to the mucosal surface (see below). A recent study has
revealed that the composition of the gut microbiota can influ-
ence the penetrability of the firm mucus with genetically
identical animals housed in the same facility differing with

respect to the penetrability of the colonic mucus (116). The
colony of mice with a mucus layer that was penetrable to
bacteria had relatively higher levels of Proteobacteria and TM7
bacteria in the distal colon mucus than the colony of mice with
an impermeable mucus barrier. Gnotobiotic mouse models
have also been used to study the influence of two major
commensal bacteria, Bacteroides thetaiotaomicron and Faeca-
libacterium prausnitzii, on the intestinal mucus layer. B.
thetaiotaomicron increased goblet cell differentiation and mu-
cin synthesis, but when associated with F. prausnitzii these
effects were diminished (293). Recently, it was shown that
colonic mucus remains permeable to bacteria-sized beads for 6
wk following colonization of germ-free mice with conven-
tional mouse microbiota (116). These changes in mucus prop-
erties correlated with changes in the development of microbi-
ota ecosystem, suggesting that similar changes might be ob-
served after weaning.

Although secreted mucin is expressed constitutively by
goblet cells, its production is upregulated by TLR signaling to
replenish that degraded by commensals or removed by peri-
stalsis (109). Additionally, IL-22, a cytokine produced by type
3 innate lymphoid cells and Th17 cells, stimulates MUC1
production and the enhancement of epithelial regeneration with
goblet cell restitution (245) [reviewed in (181)]. A broad range
of cytokines, including some produced by epithelial cells, can
also influence mucin production [reviewed in (174)]. Recently,
butyrate was shown to stabilize hypoxia-inducible factor in
vivo (133), a transcription factor that regulates metabolism and
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Mucus - filled

crypts

Bacteria Lumen

Firm mucus
Feces in lumen
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Epithelium

Mucus layer

Bacteria

A C

DB

Mucus flowing out 
from a goblet cell 

Goblet cells 
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Fig. 2. Fluorescence microscopy of mucus and mi-
crobiota in Carnoy-fixed sections of colon (A) and
ileum (B) from mice. Mucin 2 (Muc2) was detected
by immunofluorescence using anti-Muc2 and goat-
anti-rabbit Alexa Cy3 antibodies (red). Nuclei were
visualized using DRAQ5 (blue). Bacteria were iden-
tified using fluorescence in situ hybridization and the
universal Euprobe 388 (green). C: Alcian blue/peri-
odic acid Schiff-stained colonic tissue (frozen sec-
tion) from a mouse showing a dark blue firm mucus
layer, dark blue-stained goblet cells, and fecal mate-
rial in the lumen. D: section of ileum (formalin fixed)
from a conventional mouse stained with the Cross-
mon procedure. Arrows indicate segmented filamen-
tous bacteria (SFB), which in contrast to other com-
mensals, are typically found in contact with the
epithelium.
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other aspects of intestinal barrier function, including mucin
production (161).

Intestinal epithelial cells produce transmembrane mucins,
which are crucial components of the glycocalyx on the apical
surface of mucosal epithelium. The cell-surface mucins pro-
duced in the human gastrointestinal tract include MUC1,
MUC3A, MUC3B, MUC4, MUC12, MUC13, MUC15,
MUC16, and MUC17 (99), and their expression varies at
different locations along the gastrointestinal tract. The cell-
surface mucins are considered to be cleaved during biosynthe-
sis resulting in a smaller membrane-attached part that is joined
to the larger secreted component via a conserved sea-urchin
sperm domain (36, 99). Like the secreted mucins, the mucins
forming the glycocalyx are extensively O-glycosylated on the
extracellular domains. Apart from steric hindrance of bacterial
binding the cell–surface, MUC1 can modulate nuclear fac-
tor-�B signaling through its cytoplasmic domain (6). Pathogen
binding also enhances shedding of cell-surface mucins as a
mechanism to release pathogens from the surface. In this
context it is important to note that the oligosaccharides found
on cell-surface mucin may mimic ligands for microbial ad-
hesins (101).

Secretory IgA

Humans secrete an estimated 3 g of secretory immunoglob-
ulin A (sIgA) into the intestinal lumen every day, reflecting its
important role in protecting the mucosal surface. Intestinal
sIgA levels in germ-free mice increase soon after colonization
with bacteria, as does the number of sIgA-secreting plasma
cells in the LP. Around 25 to 75% of sIgA is reported to bind
to the commensal microbiota, suggesting that it also shapes the
composition of the microbial community (123). The important
contribution of sIgA to barrier function is evident from studies
in B cell-deficient mice and in mice lacking the polymeric
immunoglobulin receptor required for sIgA transport to the
lumen. Both of these knockout mice have enhanced stimulation
of innate responses in gut epithelial cells in the small and large
intestines (240). Further evidence for the role of adaptive
immune responses in controlling mucosal inflammatory re-
sponses to commensal bacteria comes from studies in mice that
lack a functional adaptive immune system. In these immune-
deficient mice, bacterial colonization results in a stronger
intestinal innate response than their wild-type counterparts (40,
132), demonstrating that the adaptive immune response con-
tributes to minimizing activation of the innate immune system
by the gut microbiota. Secretory IgA levels are normal in mice
lacking CD40, a receptor that on B cells mediates “T cell help”
and also in humans lacking germinal centers, suggesting the
existence of T cell-independent pathways of IgA induction.
Both T cell-dependent and -independent mechanisms of IgA
induction and their contribution to the IgA pool and its spec-
ificity have been recently reviewed (193) and are not discussed
here in detail.

A role for epithelial TLR4 signaling in B cell recruitment
and IgA class switching was demonstrated in transgenic mice
expressing a constitutively active form of TLR4 in intestinal
epithelial cells (237). These mice had substantial increases in B
cell recruitment to the mucosa and IgA production that was
linked to increased intestinal epithelial expression of the
chemokines CCL20, CCL28, and cytokine APRIL, a potent B

cell activator. In the large intestine, pattern recognition recep-
tor signaling also appears to induce IgA class switching to
IgA2, which is more resistant to proteolysis through the in-
creased expression of APRIL and BAFF in intestinal epithelial
cells (100) (Fig. 3). Interestingly, TLR signaling has addition-
ally been reported to enhance uptake of particulate antigens in
Peyer’s patches (PP), suggesting that induction of sIgA anti-
body responses might be directly modulated by the extent of
microbial signaling in the follicular epithelium (41). Recently,
the microbiota of low-IgA mice were shown to vertically
transmit an IgA-low dominant phenotype to genetically iden-
tical mice in the same facility (183). These findings were
shown to be a result of the degradation of the secretory
component of sIgA as well as IgA itself by bacteria from
low-IgA mice. Moreover, these results highlight the fact that
when comparing wild-type and mutant mice from different
facilities and breeders, microbiota exposure should be equiva-
lent to minimize nonchromosomal phenotypic variation (183).

Secretory IgA produced by plasma cells in the mucosal LP
is recognized by the polymeric Ig receptor (pIgR) expressed on
the basal membrane of enterocytes. Binding of sIgA to pIgR
through the secretory component results in transport through
vesicles and release into the lumen, a process known as
transcytosis (30) (Fig. 3). The secretory component (SC) in
sIgA confers hydrophilic properties to the Fc fragment of the
IgA antibody, which is considered important for interaction
with mucus, and therefore proper anchoring in the secreted
mucus layers. The primary mechanism of sIgA-mediated pro-
tection is immune exclusion, referring to the antibody binding
to microorganisms and toxins, thereby preventing colonization
or toxicity and damage to epithelial cells (177) (Fig. 3).
Compelling evidence for this mechanism of protection comes
from several animal and in vitro models (11, 28, 108, 201, 213,
241, 287), including studies using a hybridoma implanted in
the back of mice that secretes antigen-specific IgA (33, 292).
Additionally, sIgA can bind to intracellular pathogens in en-
dosomes during transcytosis to the lumen (Fig. 3). This mech-
anism was shown to inhibit key steps in the assembly of
influenza, Sendai virus, and rotavirus, and contribute to immu-
nity capable of infecting mucosal epithelial cells (48, 78, 171,
221). Furthermore, sIgA may also bind to antigen complexes
formed in the LP before pIgR-mediated transport through
epithelial cells, thereby reducing the likelihood of inflamma-
tory reactions and systemic responses (124, 215) (Fig. 3). The
free SC, a polypeptide comprising the extracellular portion of
the pIgR that remains attached to dimeric IgA after transcyto-
sis, is also reported to have protective functions at the epithelial
surface. The free SC released in secretions has been demon-
strated to neutralize Clostridium difficile toxin A and entero-
pathogenic E. coli intimin via interaction with sialic and
galactose residues present on the SC polypeptide (200) (Fig. 3).

Apart from its direct effects on immune exclusion of patho-
gens and pathogenicity factors, sIgA is reported to contribute
to homeostasis by promoting anti-inflammatory responses at
mucosal surfaces. In the small intestine sIgA facilitates uptake
of pathogens into IgA-inducing Peyer’s patches and isolated
lymphoid compartments (122), and recognition of sIgA by
dendritic cells is reported to inhibit IL-12 cytokine secretion,
leading to induction of helper T cell 2 (Th2) or regulatory T
cell (Treg) responses (24, 150) (Fig. 3). These functions of
sIgA collectively reinforce the integrity of the intestinal bar-
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rier, dampen proinflammatory immune responses, and thereby
contribute to intestinal homeostasis.

Despite the recognized importance of sIgA in gut barrier
protection, it should also be mentioned that polymeric IgM
actively transported across epithelia by pIgR as well as IgG
from local secretions, can also contribute to protection of
mucosal epithelium (39, 70, 89, 185). This is partly the expla-
nation for why deficiencies in IgA in both humans and mice do
not result in chronic inflammation (97), but also because
defects in the production of IgA can be largely compensated by
other gut barrier functions, including the range of antimicrobial
products produced by epithelial cells. Many individuals af-
fected with IgA deficiency have no apparent symptoms,
whereas others suffer from recurrent mucosal infections, aller-
gies, and autoimmune disease (4).

Antimicrobial Peptides and Proteins

The intestinal epithelium produces and secretes a vast array
of antimicrobial peptides and proteins (AMPs) into the lumen
that contribute to the multilayered defense against luminal
microorganisms (Table 1). Growing preclinical and clinical
evidence supports an essential role for these molecules in gut
protection against infection and inflammatory disease. Besides
their direct bactericidal activity, AMPs represent a link be-
tween innate and adaptive immunity. The aim of this section is
to summarize the available evidence about the role of AMPs in

host defense, and the mechanisms by which the intestinal
antimicrobial response is regulated. The structure-function re-
lationship of mammalian antimicrobial peptides has been re-
viewed recently (54, 84, 115, 184, 283) and is not discussed in
detail here.

Virtually all the epithelial cell types in the intestine can
produce AMPs. However, the largest amounts of AMPs are
produced by enterocytes lining the gastrointestinal tract and by
Paneth cells in the small intestine. Expression of some Paneth
cell antimicrobials varies along the small intestine, with the
highest amounts produced in the ileum (129, 279). Paneth cells
are absent in the large intestine, which leads to a different AMP
expression profile in the small and large intestines, although
intact Paneth cell products have been detected in the colonic
lumen (169) and they possibly contribute to the colonic anti-
microbial background. Therefore, the antimicrobial pressure is
likely to change along the gut and this may play a role in
shaping the distinct microbiota profile observed in the different
segments of the intestine. AMPs appear to be concentrated
close to the epithelium and within the firm layers of mucus,
which may account for the relatively high numbers of bacteria
found in the lumen (178).

Expression of different groups of AMPs appears to be
regulated by diverse mechanisms. Some groups, including
most alpha-defensins, are constitutively expressed and do not
require microbiota signaling, as shown by comparing their

Fig. 3. Schematic representation of the protective mechanism of IgA, secretory IgA (sIgA), or secretory component (SC) in the intestinal mucosa. 1: plasma cells
in the lamina propria (LP) produce polymeric IgA, which is transported across epithelial cells (a process known as transcytosis) to the lumen by the polymeric
Ig receptor (pIgR), where it may interact with antigens of bacteria, viruses, toxins, etc. to exclude them from contact with the epithelium. 2: in the LP, polymeric
IgA (pIgA) can bind to immune complexes, including those comprising infectious agents, leading to their removal by removed by transcytosis. 3: pIgR-mediated
trafficking of pIgA through epithelial cells can interfere with intracellular viral assembly in the Golgi apparatus. 4: free SC in the lumen has been shown to
neutralize pathogen-derived toxins and adehsins. 5: sIgA facilitates uptake of pathogens into IgA-inducing Peyer’s patches and isolated lymphoid compartments
and presentation to dendritic cells the subepithelial dome region. Recognition of sIgA by dendritic cells is reported to inhibit IL-12 cytokine secretion, leading
to induction of helper T cell 2 (Th2) or regulatory T cell (Treg) responses.
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expression levels in germ-free and conventional animals (207,
283). In contrast, innate recognition of microbes via TLRs and
nucleotide oligomerization domain (NOD)-like receptors can
upregulate expression of other AMP groups, including the
human �-defensins hBD2 and hBD3 (189, 280), ANG4 (104),
and the C-type lectins Reg3� (210) and Reg3� (40) or resistin-
like molecule beta (RELM-�) (12, 210). Accordingly,
Nod2�/� (141), MyD88�/� (a TLR signaling adaptor) (260),
and TLR2�/� mice (176) display lower amounts of different
Paneth cell antimicrobials than wild-type mice. Apart from
regulation of AMP expression, signaling through innate recep-
tors also controls secretion by Paneth cells. This was first
demonstrated by Ayabe and colleagues (18) by triggering
isolated small intestinal crypts with different groups of mi-
crobes and microbial molecules. Exposure to intact bacteria
and bacterial products induced a fast Paneth cell degranulation
and antimicrobial activity release. By contrast, fungi and pro-
tozoa do not stimulate antimicrobial secretion, suggesting that
Paneth cells are primarily involved in intestinal protection
against bacteria.

Recent studies in animal models indicate a key role for
AMPs in limiting the access of luminal bacteria to the mucosal
surface. Meyer-Hoffert et al. (178) showed that AMPs secreted
in the small intestine are essentially retained by the mucus
layer covering the epithelium, and only minor levels of these
molecules are found in the lumen. These data suggest that high
AMP concentration in the mucus coat can contribute to limit
the bacterial load associated with the epithelium without ex-
erting excessive pressure on the luminal microbiota. Accord-
ingly, research directed by Hooper (260) showed that the

presence of functional Paneth cells was essential to control
levels of bacteria associated with the epithelium and to limit
the translocation of both pathogenic and commensal bacteria
through the intestinal barrier. In contrast, no changes in total
numbers of luminal bacteria were observed in animals with
defective Paneth cell function (260). Recently, both MyD88
and Reg3� were shown to play a role in spatially separating the
microbiota from the epithelium without any detected effect on
the number and species profile of luminal communities (160,
261). Interestingly, in agreement with the reported antimicro-
bial specificity of this lectin, only the numbers of gram-
positive, but not gram-negative, mucosa-colonizing bacteria
were increased in Reg3�-deficient mice (261). Further evi-
dence for the role of Reg3 polypeptides in intestinal defense
against pathogens comes from studies in Reg3�-deficient mice,
which were shown to be more susceptible to infection than
wild-type mice. Enteric challenge of Reg3�-deficient mice
with Yersinina pseudotuberculosis (60) or Salmonella enterit-
idis (262), leads to increased mucosal colonization and trans-
location by these pathogens, without affecting their survival in
the lumen. The effect of Reg3� seemed to be specific to
gram-negative bacteria because there was no effect of the
knockout on mucosal colonization and translocation of the
gram-positive pathogen Listeria monocytogenes (262). Reg3�
was recently shown to have a protective role against mucosal
infection with pathogenic Listeria and Salmonella in vivo
(160). These results suggest that a complementary activity of
these two closely related mouse Reg3 proteins exists in vivo.
Additional evidence for the importance of Paneth cell AMPs in
regulating microbiota was demonstrated in mice that overex-

Table 1. Human and mouse antimicrobial peptides and proteins produced in intestinal epithelium

Human Mouse Epithelial-Producing Cells Expression Regulation Biological Activities References

hBD1 mBD1 Enterocytes in SI and colon Constitutive Antimicrobial (gram-positive bacteria,
fungi), chemotactic

189

hBD2, 3, 4, 5, 6 mBD2, 3, 4, 5 Enterocytes in SI Upregulated by infection and
inflammation

Antimicrobial (gram-positive and
negative bacteria, fungi),
chemotactic

283

HD5, HD6 Cryptidins Paneth cells in SI Constitutive Antimicrobial (HBD5: gram-positive
and negative bacteria, fungi),
entrapment (HBD6)

283

Cathelicidin (LL37) CRAMP Enterocytes in colon Upregulated by butyrate Antimicrobial (gram-positive and
negative bacteria, fungi),
chemotactic

54, 283

Lysozyme C Lysozyme C Paneth cells and enterocytes
in SI

Constitutive Antimicrobial (gram-positive bacteria) 126, 184, 206

BPI BPI Enterocytes Constitutive, upregulated by
anti-inflammatory
eicosanoids

Antimicrobial (gram-negative
bacteria), LPS binding

35, 37, 38, 54

sPLA2 Paneth cells Constitutive Antimicrobial (gram-positive bacteria),
eicosanoide metabolism

54, 184

HIP/PAP (Reg3�) Reg3� Paneth cells and enterocytes
mainly in SI

Upregulated by infection and
inflammation

Antimicrobial (gram-negative
bacteria), bacterial entrapment

179, 262

Reg3� Paneth cells and enterocytes
mainly in SI

Upregulated by infection and
inflammation

Antimicrobial (gram-positive bacteria),
bacterial entrapment

40, 160

ANG4 Paneth cells Upregulated by commensals
and pathogens

Antimicrobial (gram-positive and
negative bacteria, nematodes),
angiogenesis

104

Elafin Elafin ��T cells, goblet cells Upregulated by LPS,
inflammation, and
defensins

Anti-proteases, antimicrobial (Gram
positive and negative bacteria,
protozoa, viruses)

73, 223

ANG4, angiogenin 4; BPI, bacterial permeability increasing protein; hBD, human �-defensin; HD, human �-defensin; HIP/PAP, hepatocarcinoma-intestine-
pancreas/pancreatic associated protein; LPS, lipopolysaccharide; Reg3, regenerating gene family protein 3 (islet-derived); SI, small intestine; sPLA2, secretory
group IIA phospholipase.
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press human alpha-defensin 5 (HD5) or that lack matrix met-
alloproteinase 7 (MMP7), which is required for the proteolytic
activation of alpha defensins (225). HD5 overexpression re-
sulted in eradication of segmented filamentous bacteria (225),
a commensal tightly associated to the ileal epithelium and
known to play an important role in the development and
regulation of mucosal immunity (114). Mmp7�/� mice had an
altered microbiota profile compared with wild-type mice, but
the total numbers of luminal microbiota were not affected as
was described for Reg3��/� mice.

By limiting the interaction and penetration of bacteria
through the intestinal mucosa, AMPs might be expected to play
an important role in the pathogenesis of inflammatory and
infectious diseases. Evidence to support this notion is provided
by a series of studies involving transgenic animals and human
individuals with defective AMP levels or Paneth cell function,
or both. For example, an in vivo antiparasitic function of
RELM-� has been shown in mice genetically deprived of this
goblet cell peptide (102). Also, cathelicidin knockout mice had
increased susceptibility to E. coli O157:H7 infection (45),
whereas Mmp7�/� mice were more sensitive to chemically
induced colitis (238) and to pathogen infection (291) than
wild-type animals. Conversely, mice overexpressing the hu-
man alpha-defensin HD5 (224) displayed increased resistance
to infection by Salmonella typhimurium. In line with these
findings, a decreased expression of HD5 in jejunal mucosa was
associated with increased susceptibility to infectious diarrhea
in a human cohort (134), and reduced expression of LL-37 and
of hBD-1 was reported in adults and children during the early
phases of Shigella infection (111). A number of clinical reports
also support a role for AMPs in preventing chronic intestinal
inflammation. For instance, single nucleotide polymorphisms
of the hbd-1 gene are strongly associated with colonic Crohn’s
disease (142), whereas defective expression of alpha-defensins
(281) and of hBD-1 (280) has been observed in this condition.
Interestingly, low copy numbers of the gene encoding for
hBD-2 and reduced mucosal expression of hBD-2 in healthy
individuals have been identified as a risk factor for Crohn’s
disease (69). Downregulation of hbd-1 and hbd-4, has also
been reported in duodenal biopsies of celiac disease in pediat-
ric patients (272). Furthermore, mutations in a series of genes
involved in Paneth cell differentiation and function have been
identified as risk factors of ileal Crohn’s disease. Some exam-
ples include TCF-4 (143), a transcription factor involved in
Paneth cell differentiation (204); NOD2 (107), a cellular re-
ceptor for bacterial motifs mediating the Paneth cell response
to luminal bacteria (141, 202); and ATG16L1 (222), which is
involved in Paneth cell granule exocytosis and phagosomal
killing of invading bacteria (34, 222).

Gut Microbiota and Barrier Function

The intestinal tract harbors one of the densest and most
complex microbial ecosystems associated with mammals and
humans. In the small intestine, the number of microorganisms
is relatively low compared with that of the colon, and in the
ileum they reach densities of 107 to 108 cells per milliliter of
contents (95, 236). The human large intestine is larger in
diameter than the small intestine; does not contain villi; and in
humans includes the cecum and the ascending, transverse, and
descending colon. Here most of the microbes are found with

densities of 1010 to 1011 cells per milliliter of contents (155,
236). A detailed characterization of the microbiota along the
gastrointestinal tract and its variation over time has been
recently described (52, 208, 236, 248, 297). Two major phyla,
Bacteroidetes and Firmicutes, dominate the microbiota of hu-
mans, and although their abundance in fecal samples remains
relatively constant in healthy subjects, many studies have
shown the considerable inter- and intrapersonal variability at
the genus level and above (63, 155, 156, 208). Previously, the
gut microbiota was estimated to consist of 500–1,000 species
of microbes (220), but a recent large-scale study has estimated
that the collective human gut microflora is composed of more
than 35,000 bacterial species (77). The MetaHIT consortium
(13) proposed the concept of intestinal enterotypes in humans
reflecting three different host-microbial symbiotic states that
are defined by the dominance of Bacteroides, Prevotella, or
Ruminococcus. Alternative interpretations of the enterotype
concept have also been proposed suggesting that that continu-
ous variation of the human microbiota diversity is a better-
supported conclusion (140). Gut microbial community compo-
sition varies less within an individual than among different
individuals, suggesting a strong environmental component (52,
66, 234). Examples of environmental factors influencing mi-
crobiota composition include age, geographic location, dietary
habits, and antibiotic use [see (167, 190, 259)].

Symbioses with intestinal microorganisms is known to have
a profound effect on the mammalian physiology by, for exam-
ple, influencing tissue and immune development (127, 144,
243), providing metabolic functions (19, 247), and providing
colonization resistance against pathogens [reviewed in (32)].
However, the beneficial effects of the gut microbiota are highly
dependent on its composition, which has been shown to change
dramatically in several human disorders and diseases (77, 130,
231) [also see recent review (236)]. For some diseases the
altered composition or emergence of pathobionts may contrib-
ute to the pathophysiology of a disease, as shown in Crohn’s
disease (56, 166, 232), metabolic diseases such as type II
diabetes (146), and obesity (42, 226).

Much of the knowledge about microbiota composition men-
tioned above has been generated from fecal material, particu-
larly studies of human microbiota. However, some studies have
shown distinct mucosal populations within the mucosal and
luminal niches within healthy individuals (214). For example,
segmented filamentous bacteria colonizes the epithelium in the
ileum and is found beneath the detached mucus layer (55). A
few studies have shown that the mucosa-associated microbiota
differs substantially from the luminal microbiota (63, 274,
290). Most bacteria are restricted to the lumen, but some, such
as Bacteroides fragilis, was shown to colonize both the lumen
and crypts of the colon (152). The mucosa-associated bacteria,
including mucin-degrading specialists, are scattered among the
gut microbiota-associated phyla and include species that can
degrade mucins such as Akkermansia muciniphila, Bacteroides
thetaiotaomicron, Bifidobacterium bifidum, B. fragilis, Rumi-
nococcus gnavus, and Ruminococcus torques (205, 214). It is
likely that the community of mucosal-associated bacteria are
those that promote mucus secretion and increase mucus thick-
ness through release of microbe-associated molecular patterns
(MAMPs) and the production of SCFAs (21, 242, 289). Ad-
herence to the mucus can allow these species to outcompete
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others depending on the rates of production and release of the
mucus (235).

As mentioned under Antimicrobial Peptides and Proteins,
microbiota play a key role in influencing epithelial barrier
functions through their interactions with innate pattern recog-
nition receptors, particularly the TLRs and NOD-like receptors
(NLRs) (1, 285, 286). These innate receptors recognize com-
mon MAMPs such as lipopolysaccharide (LPS), which binds
to TLR4. It may not be necessary for microbes to colonize the
epithelial cell surface to trigger TLR signaling because
MAMPs are also released from both live and dead microbes in
the intestine. Bacterial MAMPs may differ in their capacity to
trigger TLR signaling depending on the species. Of particular
importance is the recent finding that that LPS from Bacteroides
dorei harbored tetra- and penta-acylated lipid A structures, as
opposed to the hexa-acylated lipid A observed in E. coli.
Moreover, the presence of Bacteroides species in the microbi-
ota of children in countries with high susceptibility to autoim-
munity produce a type of LPS with inhibited immune stimu-
lation and inflammatory signaling (270), which was associated
with increased incidence of type 1 diabetes. It was hypothe-
sized that the immune inhibitory properties of Bacteroides LPS
may prevent early education of the mucosal immune system
and contribute to the development of type 1 diabetes.

Accumulating evidence shows the importance of TLR and
NLR signaling to homeostasis in the intestine (186, 209).
Intestinal epithelial cell-specific deletion of TLR4, the TLR
signaling adaptor protein MyD88, and NOD1 in mice, leads to
impaired immunity to bacterial infections (149, 233). TLR5
knockout mice have a tendency to develop spontaneous colitis
due to a failure to control translocation of the microbiota (147).
NOD2 polymorphisms in patients with Crohn’s disease are
associated with decreased intestinal defenses via reduced se-
cretion of antimicrobial proteins and intracellular killing of
microbes (107, 165). Additionally, patients with Crohn’s dis-
ease with NOD2 polymorphisms have reduced numbers of
intestinal LP Tregs due to the role of NOD2 signaling in
promoting survival of human regulatory T cells.

As mentioned above, TLR signaling is involved in IgA
production, maintenance of TJs, and expression of antimicro-
bial peptides, all functions that are crucial to maintaining an
intestinal barrier (4, 85, 96, 159, 176, 118a, 260, 271). Despite
these clear beneficial roles, chronic proinflammatory responses
involving immune cells in the LP need to be avoided to prevent
barrier destruction and pathology. Thus, several host mecha-
nisms exist to tightly regulate inflammatory signaling in re-
sponse to the microbial threat (1, 79, 151, 191, 216, 218, 239).
Additionally, the microbiota considered to contribute to the
maintenance of homeostasis, a prominent example being F.
prausnitzii, which has anti-inflammatory activities that attenu-
ate colitis development in mouse models (217, 219, 244).
Many studies have shown that the relative abundance of this
normally abundant colonic species is reduced in patients with
active IBD and thus may contribute the loss of homeostasis and
inflammatory pathology (180).

Segmented filamentous bacteria are found in the gut of many
vertebrate species, including mice and possibly humans (139),
and have gained much attention due to their firm attachment of
the growing filaments to epithelial cells and their capacity to
stimulate innate immunity, IgA responses, and striking in-
creases in small intestinal Th17 cells (83, 112). Moreover,

mice that acquire segmented filamentous bacteria have en-
hanced small intestinal and pulmonary type 17 immunity and
enhanced resistance to Staphylococcus aureus pneumonia, and
the intestinal pathogen Citrobacter rodentium (87, 112). Thus,
manipulation of this commensal-regulated pathway may pro-
vide new opportunities for enhancing mucosal immunity. More
recently, a strong correlation was observed between adhesion
and Th17 cell induction via the induction of a Th17-inducing
program in the epithelium (14).

The effects of some bacterial species on the epithelial barrier
and immune response have been characterized in germ-free
mice or in vitro studies. These include (model) commensals
such as Bacteroides spp., F. prausnitzii (244), Akkermansia
muciniphila, Roseburia spp.; probiotic bacteria including Bifi-
dobacterium and Lactobacillus spp.; or specific pathobionts
such as Helicobacter; or bacteria belonging to Enterobacteri-
aceae (e.g., E. coli, Citrobacter). The emerging picture is that
the responses are specific for each microbe studied, but further
comparative work is needed to substantiate this and to discover
general patterns. Moreover, the responses relate to animal and
in vitro models and must be translated to the human situation.
Pioneering studies using human volunteers and probiotic can-
didates has opened up the possibility to investigate mucosal
transcriptional responses to specific bacteria (263, 264) and
modification of small intestinal TJs (128).

Many of the physiological effects of the microbiota can be
attributed to end products of fermentation, SCFAs (primarily
acetate, propionate, and butyrate), branched-chain fatty acids
(isovalerate, isobutyrate, and caproate), H2, CO2, and CH4.
Acetate is the most abundantly produced SCFA in the colon
and its production is a common feature of most gut microbiota
members. Propionate is more restricted to Bacteroidetes, Clos-
tridium cluster IX (Veillonella), Clostridium cluster XI (Me-
gasphaera), and Actinobacteria (Propionibacterium). Butyrate
production is generally restricted to some Clostridium clusters
(IV and XIVa) from the Firmicutes phylum. Besides acetate,
lactate can also be a precursor for butyrate production under-
pinning the notion of metabolic cross-feeding between gut
bacteria. Loss of some bacteria members will disturb this
interaction and will undeniably alter the abundance or ratio of
SCFAs, and subsequently, interaction with the host. Butyrate
has been the most studied SCFA for its pleiotropic effects on
metabolism, immune function, and epithelial barrier. Butyrate
exerts various beneficial effects in the host such as enhance-
ment of intestinal barrier function in vitro using cell lines
(198), reduction of translocation of E. coli, and attenuation of
visceral pain [for a review see (93)]. Recently, administration
of butyrate-producing Clostridium tyrobutyricum was shown to
prevent acute dextran sodium sulfate-induced colitis in mice
(106). Administration of the spore-forming component of in-
digenous intestinal microbiota, particularly clusters IV and
XIVa of the genus Clostridium, was shown to promote Treg
accumulation in the LP of the colon (16). Mucosal Tregs play
a key role in maintaining an anti-inflammatory tone in the gut
and thus in the preservation of an intact barrier. A follow-up
study showed this could also be achieved with a more restricted
population of Clostridium and oral inoculation during the early
life of conventionally reared mice resulted in resistance to
colitis and systemic IgE responses in adult mice (15). Shortly
after that study, butyrate was shown to induce the differentia-
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tion of colonic Treg cells in mice via increased epithelial
expression of TGF� (80).

Although the intestinal microbiota is remarkably stable over
time, its equilibrium and symbiotic homeostasis with the host
can be disturbed (i.e., dysbiosis). Many human disorders have
been linked to an altered microbiota composition with reduced
diversity and lack of butyrate-producing bacteria in compari-
son to healthy individuals. Such perturbations are frequently
associated with immune and metabolically related diseases.
Whether this disturbance in the microbial community is the
cause or effect of a loss in the homeostatic relation with the
host remains to be determined. Nevertheless, there is good
evidence that an altered microbiota can contribute to the
pathophysiology of some diseases (44).

Another function of the commensal microbiota is the antag-
onism of pathogens through the production of bacteriocins or
through competition for nutrients, commonly known as colo-
nization resistance (32). The protective function of a healthy
microbiota is clearly evident from antibiotic administration,
which can sometimes result in intestinal problems such as
antibiotic-associated diarrhea caused by enteropathogens and
dysregulation of intestinal homeostasis (61, 173).

Gut-Brain Axis and Immune System—An Interdisciplinary
View of Gut Barrier Function

In this section we describe the functional evidence for
bidirectional signaling between the central nervous system and
enteric nervous system, linking neurological activity in the
different parts of the brain with peripheral intestinal functions.
The integrated model of bidirectional gut-brain signaling has
five major components [i.e., intestinal microbiota, intestinal

epithelium, enteric nervous system, intermediary metabolism,
and the brain (Fig. 4)]. Important mediators of this bidirec-
tional signaling include serotonin (5-HT), other monoaminer-
gic, opioid, and endocannabinoid compounds, the autonomic
nervous system, hypothalamus-pituitary-adrenal (HPA) axis,
gut hormones, cytokines, and other gut-derived metabolic
signaling molecules (e.g., growth factors). Serotonin, which is
affected by intermediary metabolism, plays a key role in this
gut-brain signaling (135, 136, 145). Functional evidence of
efferent communication between the central nervous system
and the gut mucosa has been widely reported. Extrinsic affer-
ents include the vagal nerve and pelvic parasympathetic
nerves, and postganglionic sympathetic neurons. These could
also act via axon connections to other intrinsic enteric neurons.
The stress associated with separation of neonatal mice from
their mothers induces intestinal hyperpermeability due to in-
creased secretion of corticotropin-releasing factor from the
hypothalamus leading to release of the neurotransmitter ace-
tylcholine by cholinergic neurons in the submucosa of the
intestine (86). However, other animal studies report that vagus
nerve activity can be protective in maintaining gut barrier
function and TJ integrity under pathological conditions. In
burn-induced intestinal injury, vagal nerve stimulation attenu-
ated burn-induced intestinal hyperpermeability through activa-
tion of enteric glial cells (EGCs) (51). Emerging evidence
underlines a major role of EGCs in the regulation of intestinal
barrier function. EGCs inhibit intestinal epithelial cell prolif-
eration and decrease intestinal paracellular permeability (267).
The protective effect of EGCs on intestinal hyperpermeability
involves EGC-derived S-nitrosoglutathione, as has been shown
in a model of epithelial barrier defect induced by Shigella
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Fig. 4. Schematic model of gut-brain signal-
ing representing five components, with a cen-
tral role of host-microbe interaction and in-
testinal barrier function (for detailed descrip-
tion, see text).
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flexneri (74). Neuroimmune communications involving the
vagus nerve have been shown to have a profound effect on
intestinal barrier function. First, an anti-inflammatory effect of
vagal afferences (90% of vagal fibers) has been shown (172).
More recently it has been shown that vagal efferences (10% of
vagal fibers) also play an anti-inflammatory role via acetylcho-
line, which is able to inhibit cytokine release directly via the �7
nicotinic acetylcholine receptor expressed on macrophages
(276). The cholinergic anti-inflammatory pathway may also
involve an indirect modulation of innate inflammatory pro-
cesses via postganglionic modulation of immune cells in pri-
mary immune organs [i.e., spleen (254)].

Concordant to the concept of the microbe-gut-brain axis, not
only is intestinal function affected by the brain, but also brain
function may be influenced by intestinal factors including that
of its microbial community (31, 72), possibly partly by the
vagal route (266).

The intestinal barrier function plays a pivotal role in bidi-
rectional gut-brain signaling and associated immune function.
Deterioration of the intestinal barrier and deregulation of im-
mune responses are associated processes and may provoke
mucosal inflammation and increased afferent sensory signaling
leading to abdominal complaints (7). Animal studies have
elegantly provided evidence for the relationship between in-
testinal barrier impairment, mucosal immune activation, and
visceral sensitivity. Accordingly, Su et al. (250) have devel-
oped transgenic mice that express constitutively active MLCK
specifically within intestinal epithelia. Application of an acute
stress in rats led to increased gut paracellular permeability and
visceral sensitivity. Interestingly, prevention of stress-induced
gut permeability using a TJ blocker abolished visceral hyper-
sensitivity (7), suggesting that gut hyperpermeability is respon-
sible for visceral hypersensitivity. A positive correlation be-
tween increased gut permeability and hypersensitivity to vis-
ceral nociceptive stimuli has also been demonstrated in patients
with IBS (298). Besides the interplay with visceral sensory
pathways, prevention of gut leakiness also leads to an attenu-
ated HPA-axis response to stress. In a model of acute stress,
blockade of epithelial cell cytoskeleton contraction by an
inhibitor of MLCK activation or by a probiotic, Lactobacillus
farciminis, was able to decrease MLC phosphorylation (8),
resulting in suppressed stress-induced hyperpermeability, en-
dotoxemia, central neuroinflamamtion, and attenuated HPA-
axis response to stress (8). Attenuation of the HPA-axis re-
sponse to stress has also been observed by use of antibiotic
treatment to lower intestinal levels of LPS. These results taken
together suggest that intestinal barrier impairment and subse-
quent decrease in LPS translocation are primary causes of the
HPA-axis response to acute stress.

Brain function affects intestinal barrier function as clinically
illustrated by increasing evidence that depression and (psycho-
logical) stress is associated with exacerbations of IBD and with
the pathogenesis of IBS (88, 153, 170). This may be explained
by serotonergic deregulation and the fact that psychological
and physical stress are associated with deterioration of intes-
tinal barrier function via mast cell-dependent (275) and mast
cell-independent mechanisms (59). Recently, the role of mi-
crobial metabolites such as butyrate has gained interest in
relation to improving human colonic function under stressed
conditions (92), and butyrate may ameliorate bacterial translo-
cation through stressed epithelium (154).

Biomarkers of Intestinal Epithelial Permeability and
Integrity in Blood, Feces, or Urine

Measurements of intestinal permeability are often used syn-
onymously with the term “gut barrier function,” although these
are not the same, as was discussed above. For example,
intestinal permeability changes do not necessarily reflect
changes in mucus secretion, antimicrobial production, or IgA
secretion. In this section we discuss the use of markers in
blood, feces, or urine that could be used to assess intestinal
permeability in animals and humans (Table 2).

Permeability of the small intestine is commonly evaluated
by measurement of intestinal permeation and urinary excretion
of orally administered water-soluble, nonmetabolizable sugars
that differ in size. Typically, these assays use oligosaccharides
of a large size [e.g., lactulose or polyethylene glycols (PEGs)
of 1,500 to 4,000 kDa] and low-molecular-weight sugars such
as mannitol and L-rhamnose, or low-molecular-weight PEG
(400 kDa) (Table 2). The larger sugar molecules such as
lactulose are assumed to permeate paracellularly when the
intestinal barrier is compromised, whereas the smaller mole-
cules such as mannitol are assumed to permeate both transcel-
lularly and paracellularly so that the ratio of these two sugars
in plasma or excreted in the urine reflects intestinal permeation,
taking into account differences in the surface area of the
epithelium. Because the sugars used in these permeability
assays can be metabolized by colonic bacteria, their excretion
in the urine is assumed to predominantly reflect permeation of
the small intestine (175). Sucralose has been used instead of
lactulose as a measure of whole gut permeability (67). The
influence of preabsorptive factors such as small-bowel transit
time was shown not to influence the outcome of the dual-sugar
permeability test. Recently, renal clearance of rhamnose but
not lactulose was shown not to depend on the quantity of these
sugars in the circulation (67). Thus, a relative increase in
permeation of lactulose and rhamnose in the small intestine
may be underestimated in this test (267a).

In a review of the clinical applications of the dual-sugar
permeability test it was reported to be useful for screening of
small intestinal disease, prognosis, and response to treatment,
especially in celiac disease (256). However, it was not recom-
mended as a predictor of nonsteroidal anti-inflammatory drug-
related upper gastrointestinal damage or as a marker of disease
activity in IBD (256). The dual-sugar permeability test has
been used to measure increased intestinal permeability in a
human cohort before the onset of type 1 diabetes (29), sug-
gesting the method may also be useful to assess “gut health” in
nutritional intervention studies involving healthy subjects. In
the diabetes study mentioned above (29), at-risk individuals
having B-cell autoantibodies showed an increased lactulose-
to-mannitol ratio, which is indicative of increased paracellular
permeability. Interestingly, this finding is supported by a fur-
ther study (227), which showed that serum zonulin concentra-
tions correlated with increased intestinal permeability in vivo
in patients with type 1 diabetes. Moreover, serum zonulin
levels were even increased in B-cell autoantibody-positive
individuals at risk for type 1 diabetes (227). This indicates that
serum levels of TJ proteins might also be promising biomark-
ers of epithelial integrity. An alternative method for measuring
intestinal permeability is the 51Cr-ETA test, which is per-
formed by calculating the percentage of recovery from urine of
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an oral dose of 51Cr-EDTA (Table 2). It has been used to detect
increased intestinal permeability in Crohn’s disease, celiac
disease, and nonalcoholic fatty liver disease (188). Urinary
excretion of PEGs has also been used to study intestinal
permeability changes in patients with alcoholic liver disease
and Crohn’s disease compared with healthy controls (71, 118).
A recent study using PEG and lactulose/rhamnose sugar probes
to measure intestinal permeability in healthy human volunteers
given indomethacin showed that both methods give compara-
ble results in a clinical setting (269).

Potential biomarkers of epithelial integrity that have a causal
relationship with permeability and innate barrier functions
would be molecules produced by epithelial cells. One example
is the fatty acid-binding proteins (FABPs), which are small
cytosolic proteins found in enterocytes of both the small and

large intestines. Three different types of FABPs are found in
the intestine (Table 2). Intestinal-FABP (I-FABP) is found
mainly in the enterocytes of the jejunum and in low amounts in
the colon. Liver-type FABP is found throughout the intestine
but also in the liver and kidney. The ileal bile acid-binding
protein (I-BABP) is found only in the ileum. All protein
markers can be measured in plasma and urine using ELISA. To
date they have been used only in clinical studies; for example,
in patients with celiac disease, intestinal ischemia, necrotizing
colitis (3, 211, 212, 253, 273), and in patients who have
undergone liver transplant in which their prognostic value was
demonstrated (182). Alternative small-molecule markers of
intestinal epithelial integrity include TJ proteins. Studies in
patients with Crohn’s disease have shown a relationship be-
tween levels of claudin-3 in the urine of patients with IBD or

Table 2. Methods for assessment of intestinal permeability, epithelial integrity, and mucus properties

Method Test Molecules Applicable Sites Biological Sample Comments

Methods of assessing intestinal permeability
Measurement of short-circuit current

in Ussing chambers
Ion transport Whole intestine Biopsies Invasive, fresh tissue or biopsy material needed,

duration of experiment limited to 2 h
Dual sugar quantification using mass

spectrometry
Oligosaccharides of different

MW (e.g., lactulose/
mannitol)

Small intestine Urine Time consuming, affected by GI motility, renal
function

Quantification using mass
spectrometry

PEGs, 4,000/400 kDa Whole intestine Urine Equivalent performance to dual sugar test
reported, time-consuming

51Cr-EDTA radioisotope activity 51Cr-EDTA Whole intestine Urine Radioactivity
LAL assay Endotoxin (LPS) Whole intestine Plasma Standardization difficult in human samples

Methods of assessing epithelial integrity and intestinal inflammation
Mass spectrometry Citrulline, an epithelial

amino acid not
incorporated into protein

Small intestine Plasma Validated as a useful indicator of loss of small
bowel epithelial cell mass in transplant
recipients and chemotherapy; not likely to be
sensitive enough for healthy subjects

ELISA I-FABP Jejunum Plasma Studies mostly in patients with small intestinal
inflammation

ELISA I-BABP Ileum Plasma Studies mostly in patients with small intestinal
inflammation

ELISA L-FABP Whole intestine Plasma Expressed in kidney and liver
ELISA Zonulin, claudin 3

(potentially other tight
junction proteins)

Whole intestine Plasma Few studies

Confocal fluorescence microscopy
of TJ proteins

TJ proteins Whole intestine Biopsy or
surgical
tissue

Requires confocal microscopy and specialized
image analysis methods; labor intensive

ELISA Calprotectin Whole intestine Feces Released by activated neutrophils at inflamed
sites; evaluated in colitis studies

ELISA LCN-2 Whole intestine Feces Expression of LCN-2 upregulated in epithelial
cells by inflammation; also expressed in
neutrophils

Quantification by real-time PCR miRNAs upregulated in
inflamed enterocytes

Whole intestine Feces or plasma Potential new markers but few studies and
mainly in cancer patients

Morphological studies using paraffin
fixed tissue and H&E staining

Tissue appearance and
morphology

Whole intestine Biopsy or
surgical
tissue

Invasive, used to assess severity of mucosal
damage in patients

Methods of assessing mucus thickness and penetrability
Fluorescent microscopy of mounted

tissue ex vivo
Permeability of fluorescent

beads through mucus
Whole intestine Biopsy or

surgical
tissue

Fresh tissue required, specialized microscopy
set up required

Carnoy fixation and mucus detection
using PAS/Alcian blue or
antibodies

Secreted mucus, Whole intestine Tissue sample Invasive but can be used to measure mucus
thickness and quantify goblet cell numbers,
can be combined with FISH staining of
microorganisms; human biopsy sampling
method may not preserve mucus layer

51Cr-EDTA, chromium-labeled EDTA; FABP, fatty acid binding protein; FISH, fluorescent in situ hybridization; GI, gastrointestinal; H&E, hematoxylin and
eosin; I-BABP, ileal bile acid-binding protein; I-FABP, intestinal fatty acid-binding protein; LAL, limulus amebocyte lysate assay; LCN-2, lipocalin-2; L-FABP,
liver-type fatty acid-binding protein; LPS, lipopolysaccharide; miRNA, microRNA; MW, molecular weight; PAS, period acid Schiff; PEG, polyethylene glycol;
TJ, tight junction.
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necrotizing colitis (90, 296) (Table 2). In type 1 diabetes,
impairment of the gut barrier is considered one of the factors
contributing to the onset of the disease, and increased serum
zonulin precedes the onset of the disease (227). Similarly,
significantly greater amounts of zonulin were measured in the
serum of patients with celiac disease and obesity than in
healthy controls (68) (Table 2).

Plasma levels of citrulline, an amino acid produced by small
intestinal enterocytes from glutamine but not incorporated into
proteins, is considered a useful marker of functional enterocyte
mass (Table 2). It has been validated as a useful marker of
small bowel epithelial cell mass in hemopoietic stem cell
transplant recipients suffering from severe oral and gastroin-
testinal mucositis following intensive myeloablative therapy
(53). More recently, citrulline was established as a valuable
marker for chemotherapy-induced mucosal barrier injury in
pediatric patients (268). The sensitivity and specificity of
citrulline as a marker of were better than the sugar permeability
tests (163).

Detection of the inflammatory marker calprotectin in feces
has also been used as a surrogate marker of epithelial integrity
in many disease studies because excessive intestinal inflam-
mation is known to increase epithelial permeability. Calpro-
tectin is highly expressed in neutrophils and macrophages, and
the increased permeability of an inflammed mucosa allows
calprotectin released from activated neutrophils to be released
into the intestinal lumen (49, 50). A sensitive noninvasive
marker of intestinal inflammation is lipocalin 2 (LCN2) (43)
(Table 2), which binds to bacterial siderphore enterochelin,
thereby limiting the growth of bacteria in the iron-limited
environment of the gut (75). Elevated amounts of LCN2 have
been detected in mice fed a high-fat, high-salt diet and in colitis
models (5). Recent studies of patients with IBD showed that
LCN2 was among the 10 most upregulated genes in both active
ulcerative colitis and active Crohn’s disease compared with
healthy controls (192). LCN2 protein was found in both epi-
thelial cells and infiltrating neutrophils, whereas mRNA syn-
thesis was detected only in epithelial cells. Thus, fecal LCN2
is another interesting putative biomarker for intestinal inflam-
mation.

Recently, noncoding microRNAs (miRNAs) such as
miRNA-222, miRNA-30, miRNA-29b, miRNA-503, miRNA-
195, and miRNA-320a have been demonstrated to play a role
in the regulation of epithelial regeneration, protection, and
epithelial barrier function (194). The mechanisms through
which these miRNAs modulate the stability and translation of
target mRNAs are still being unraveled, but they have future
potential to be used as fecal biomarkers of intestinal function
and diseases such as IBD and cancer (125, 195).

Ex Vivo and Histological Approaches to Studying Intestinal
Permeability or Gut Barrier Properties

The Ussing chamber allows animal or human intestinal
tissue to be mounted such that the apical side is isolated from
the basolateral side, and by filling each compartment with
Ringer solution the short-circuit current can be used as an
indicator of ion transport across the epithelium [reviewed by
Herrmann and Turner (103)]. The technique allows the perme-
ability of tissue from biopsies of patients and healthy subjects
to be measured. The influence of nutrients and other factors on

intestinal ion permeability can also be studied. A drawback is
that fresh tissue is needed and must be used immediately.
Experiments are typically limited to about 2 h after mounting
to avoid artifacts from necrosis of the tissue.

Histological examination using biopsies or resected tissue
from animals and humans is also a common experimental way
of studying aspects of barrier function (103, 162). For example,
immunofluorescent antibody detection of TJs or adherens junc-
tions has been used to assess altered barrier dysfunction in
disease states (26, 288) (Table 2).

Carnoy fixation and paraffin embedding of intestinal tissue
followed by immunofluorescent antibody or periodic acid
Schiff/Alcian blue staining of MUC2 can be used to assess
mucus thickness in the colon of small rodents, but the tech-
nique is dependent on the presence of a fecal pellet in the
intestine, otherwise the mucus is easily displaced during the
fixation and staining procedure (Fig. 2). Detection of bacteria
in the same sections with fluorescence in situ hybridization
probes to conserved or specific 16S RNA gene sequences also
enables the location of microbiota to be localized in the
intestine (94, 119, 120). Ex vivo techniques have also been
developed for investigating mucus permeability using mounted
tissue explants and a specialized fluorescent microscopy setup
to visualize the spatial distance of fluorescence beads from the
epithelium (17, 65) (Table 2).

Main Conclusions

The gut barrier plays a crucial role by spatially compartmen-
talizing bacteria to the lumen. This is achieved through the
production of a secreted mucus that limits penetration of the
bacteria and is fortified by the production of antimicrobial
peptides and proteins that kill or inhibit growth of bacteria in
proximity to the epithelium. Secretory IgA is abundantly pro-
duced in the gut and contributes to the exclusion of bacteria
from the epithelial surface primarily through agglutination.
With the exception of sIgA, expression of these protective
barrier factors is largely controlled by innate signaling mech-
anisms involving pattern-recognition receptor signaling in re-
sponse to binding of conserved microbial molecular ligands.
Overreaction is regulated by inherent feedback mechanisms
and the controlled expression of pattern recognition receptors
in the epithelium. Additionally, the mucosa maintains a distinct
noninflammatory tone through the steady-state induction of
mucosal regulatory T cells and tolerogenic dendritic cells in LP
and mucosal lymphoid tissues. Collectively, these mechanisms
contribute to the homeostasis of gut barrier function and
mucosal immunity (218).

Antibiotic treatment alters microbiota composition pro-
foundly leading to diminished goblet cell function, a reduction
of the inner mucus layer, and loss of antimicrobial peptides and
immune tolerance [for a detailed review see (290)], which may
be due in part to the reduced stimulation of the innate immune
system. Antibiotic treatment or other environmental factors
may also promote greater numbers of pathobionts that have the
capacity to cause harm in compromised or genetically suscep-
tible individuals. Over the past 5 yr, several prominent com-
mensal-host interactions have been characterized in vivo and in
vitro. On the basis of this research it is becoming clear that
certain bacterial species can either promote or attenuate inflam-
matory responses (112, 180, 244). In a healthy animal or
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person these opposing host interactions are probably balanced,
but in several intestinal disorders, host-microbe interactions
may be skewed in a direction that contributes to pathophysio-
logical processes (44).

The paracellular permeability of the intestine to ions and
small molecules is dependent on the intestinal location and is
controlled by the TJ protein complexes that connect adjacent
cells in the epithelium. Inflammatory stimuli can increase
permeability of the epithelium through contractions of the
perijunctional actomyosin ring that is connected to the TJ
complex or via altered TJ protein composition or dynamics.
Chronic changes in epithelial permeability are considered to
contribute to the pathophysiology of several intestinal disor-
ders by allowing antigens or inflammatory stimuli to enter the
LP and perturb homeostasis. In obesity, for example, altered
epithelial permeability and permeation of the gut by LPS can
lead to increased levels in the plasma and insulin-resistant
states (117).

The proper functioning of the gut barrier has implications
beyond the gut and mucosal immunity affecting metabolism,
adaptive immunity, the enteric nervous system, and the brain.
The intestinal barrier function plays a central role in how
gut-brain interaction affects the immune system. Deterioration
of the intestinal barrier function may lead to increased and
prolonged mucosal immune activation and, consequently, to
increased afferent sensory signaling and abdominal com-
plaints. Brain function affects the intestinal barrier partly by
activation of the HPA-axis and both mast cell-dependent as
well as mast cell-independent mechanisms. Furthermore, the
role of microbial metabolites such as butyrate have gained
interest in this respect.

Several biomarkers have been developed to measure intes-
tinal permeability and epithelial integrity in blood, feces, and
urine. The dual-sugar permeability assay is the most widely
used method of assessing permeability. The method is consid-
ered to mainly reflect small intestinal permeability, and vali-
dated assays for colonic barrier function remain to be fully
developed. PEGs of 1,500 to 4,000 kDa are alternatives to the
sugar probes and have shown comparable results in a clinical
setting (269). Biomarkers that can be measured in feces include
inflammation-induced proteins LCN2 and calprotectin, but to
date, they have been used only to study epithelial integrity in
patients.

Several plasma and urine biomarkers of epithelial integrity
have been evaluated in patients, including the intestinal FABPs
and TJ proteins, which can be measured in plasma and urine.
I-FABP is found primarily in enterocytes of the small intestine,
and I-BABP is found only in the ileum, offering the possibility
of measuring integrity at specific intestinal locations. Citrul-
line, an amino acid produced by epithelial cells, has been
validated as a useful marker of loss of enterocyte mass in
severe conditions of intestinal damage. However, the bio-
marker is not sufficiently sensitive to assess the extent of
intestinal damage and is likely to be of limited use in nonclini-
cal situations.

Although some of the markers reviewed above may be
useful for determining prognosis in treatment of diseases, few
examples exist of their use in assessing the effects of nutrition
in healthy subjects. One exception is the application of the
dual-sugar and PEG permeability markers in healthy volun-
teers given indomethacin, which temporally increases small

intestinal permeability (269). Challenge studies of this kind
might therefore be useful in assessing the effects of nutrition on
intestinal permeability. Regardless of the marker used, there
will be a normal range of values defining the “bandwidth” of
health in the general population that is due to differences in
genetic make-up and environmental and lifestyle factors. Val-
ues close to or outside the normal boundaries may modify
disease risk or contribute to pathological processes. Therefore,
including these potential biomarkers in future prospective co-
hort studies involving healthy subjects, will help to establish
normal ranges of biomarker measurements, their variability
within a subject over time, and their predictive values for onset
of diseases related to gut barrier dysfunction. Ultimately, such
markers and assays could be used to assess associations be-
tween particular nutritional traits and gut barrier function or
experimentally to assess the effect of a specific nutritional
intervention. Thus, validating markers to assess intestinal
health in the general population is clearly an important goal for
the future.
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