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Acute loss of the hepatic endo-
lysosomal system in vivo causes 
compensatory changes in iron 
homeostasis
Christoph Metzendorf1,2,7, Anja Zeigerer3,8, Sarah Seifert3, Richard Sparla1,2, Bahar Najafi4,5, 
François Canonne-Hergaux6, Marino Zerial3 & Martina U. Muckenthaler1,2

Liver cells communicate with the extracellular environment to take up nutrients via endocytosis. Iron 
uptake is essential for metabolic activities and cell homeostasis. Here, we investigated the role of the 
endocytic system for maintaining iron homeostasis. We specifically depleted the small GTPase Rab5 
in the mouse liver, causing a transient loss of the entire endo-lysosomal system. Strikingly, endosome 
depletion led to a fast reduction of hepatic iron levels, which was preceded by an increased abundance 
of the iron exporter ferroportin. Compensatory changes in livers of Rab5-depleted mice include 
increased expression of transferrin receptor 1 as well as reduced expression of the iron-regulatory 
hormone hepcidin. Serum iron indices (serum iron, free iron binding capacity and total iron binding 
capacity) in Rab5-KD mice were increased, consistent with an elevated splenic and hepatic iron export. 
Our data emphasize the critical importance of the endosomal compartments in hepatocytes to maintain 
hepatic and systemic iron homeostasis in vivo. The short time period (between day four and five) upon 
which these changes occur underscore the fast dynamics of the liver iron pool.

Iron is an essential micronutrient. Due to its ability to undergo redox-reactions it serves as a cofactor for many 
enzymes. However, excess free iron causes the formation of toxic reactive oxygen species that damage proteins, 
lipids and nucleic acids. Hence, iron-balance must be accurately maintained at the cellular and organismal level 
(reviewed among others in refs 1–3).

On the organismal level, the liver detoxifies and stores iron and plays a central role in maintaining systemic 
iron homeostasis via the expression of the peptide hormone hepcidin. Hepcidin expression is regulated in 
response to iron levels involving proteins mutated in patients with Hereditary Hemochromatosis (HFE, TFR2 and 
HJV) and the BMP/SMAD1/5/8 signaling pathway. Additionally, inflammation results in increased expression of 
hepcidin through IL6/IL6R and JAK/STAT3 as well as ActivinB/SMAD1/5/8 signaling4–13. Hepcidin is secreted 
by the liver and binds to its receptor, the iron exporter ferroportin (IREG1, FPN1, SLC40A1). Ferroportin is 
mainly expressed in duodenal enterocytes, hepatocytes and reticuloendothelial macrophages, and its abundance 
on the cell surface regulates iron export into plasma. Hepcidin binding triggers ferroportin endocytosis and 
ubiquitin-mediated proteolytic degradation14–16. Thus, elevated hepcidin levels in response to high systemic iron 
availability decrease iron uptake from the diet and iron release from iron stores. Inadequate expression of hepci-
din causes frequent iron related disorders, such as Hereditary Hemochromatosis, iron refractory iron deficiency 
anemia or the anemia of inflammation17.
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Iron released into the bloodstream via ferroportin is oxidized by ferroxidases and binds to the plasma pro-
tein transferrin. Holo-transferrin interacts with the transferrin receptor (TFR1) and is taken up by cells via 
clathrin-mediated endocytosis18. In acidified endosomes iron is released from transferrin, reduced, and trans-
ported across the membrane by divalent metal transporter (DMT)119, 20. Non-transferrin-bound iron (NTBI), 
detectable in the plasma under conditions of high transferrin saturation, is efficiently taken up by the liver via zinc 
transporter protein ZIP14 (SLC39A14)21, 22. ZIP14 localizes to the cytoplasmic membrane and endosomes23 and 
endocytosis is required for efficient NTBI uptake24. Within hepatocytes, iron is stored in the iron storage protein 
ferritin. Iron mobilization from ferritin requires its degradation via the lysosomal compartment25 and transfer 
of iron from early endosomes to mitochondria via membrane contact sites (MCS) occurs at least in endothelial 
cells26 and reticulocytes27. Thus, several critical steps involved in maintaining cellular iron homeostasis require 
endosomal compartments. So far, the direct requirement of the endosomal system for maintaining iron homeo-
stasis has not been established.

Rab5 is essential for endosome biogenesis and the maintenance of the endo-lysosomal system28, 29. Previous 
work demonstrated that RNAi of Rab5 caused a reduction of early and late endosomes and lysosomes at day four 
and five post RNAi injection, establishing Rab5 as the master regulator of endosomal biogenesis29. The same 
experimental strategy was applied here to investigate the consequences of the loss of the endo-lysosomal system 
on hepatocellular and systemic iron homeostasis. Strikingly, the short time span (24–48 hrs) during which the 
endolysosomal system is significantly ablated in this model29 was sufficient to significantly reduce liver iron levels 
and cause compensatory responses, exemplifying the highly dynamic nature of the liver-iron pool.

Results and Discussion
Endosome depletion in hepatocytes causes reduced hepatic iron levels. To investigate the role of the 
endo-lysosomal system for maintaining iron homeostasis, we silenced the three isoforms of Rab5 (Rab5a, b, c)28, 29.  
This was achieved by injection of lipid nanoparticles (LNPs) containing small interfering RNAs through the tail 
vein29. We previously demonstrated that RNAi of all three Rab5 isoforms caused a 50% decrease of Rab5 protein 
levels three days after a single siRNA injection, without affecting endosome numbers. Early and late endosomes 
and lysosomes were however reduced dramatically at day four and five post injection29. At day 10 post-injection, 
the endo-lysosomal system was restored to its normal state29, 30.

Here we confirm that all three Rab5 isoforms were successfully depleted in the liver three, four and five days 
post siRNA injection (Supplementary Figure S1A–C), while no changes were observed in spleen (Supplementary 
Figure S1D), indicating high specificity of this RNAi approach for liver/hepatocytes. Previous work fur-
ther demonstrated that the transient depletion of the endo-lysosomal system does not cause inflammatory or 
liver-damaging effects as serum IL-1b, IL6, TNFα, AST (aspartate amino-transferase activity) and ALT (ala-
nine amino-transferase activity) levels remained unaffected and lethality of the mice was not observed29, 30. 
Consistently, we show that liver IL6, Saa2 and F4/80 as well as spleen IL6 mRNA levels remained unchanged 
(Supplementary Figure S1E–H). Thus, inflammatory signals previously reported to control iron homeostasis1, 31, 32  
are unlikely to influence cellular and systemic iron homeostasis in this model.

To study the effect of Rab5 loss on liver iron homeostasis, we compared liver iron levels in control and 
Rab5-depleted mice. Strikingly, five days post RNAi-treatment we detected a 29% decrease of liver iron levels 
(Fig. 1A). This is surprising considering the relatively short time period during which the endo-lysosomal sys-
tem is depleted (approximately 24–48 hrs, between days four and five post-LNP injection29). In addition, splenic 
iron levels were mildly reduced as indicated by two-way ANOVA analysis (Fig. 1B). To identify putative causes 
for the decrease of tissue iron content, we next analyzed the expression levels of mRNAs and proteins that play 
critical roles in maintaining cellular iron homeostasis. We show that mRNA and protein expression of transferrin 
receptor 1 (Tfr1), and protein levels of TFR2 are significantly increased in livers of Rab5-KD mice at day five post 
siRNA treatment; however, at the same time point Tfr2 mRNA levels were significantly decreased (Fig. 1C–F). 
mRNA levels of both, the iron responsive element (IRE)-containing isoform of Dmt1 as well as its splice variant 
without the IRE were decreased in Rab5-depleted livers (Fig. 1G and H), while changes on the protein level were 
not observed (Fig. 1I). In addition, ZIP14 mRNA levels were reduced (Fig. 1J; determination of ZIP14 protein lev-
els was not possible (data not shown)). By contrast, mRNA levels of the iron export protein ferroportin remained 
unaltered (Fig. 1K), while its protein level was significantly increased on days four and five post siRNA treatment 
(Fig. 1L). Expression of the iron storage protein ferritin was not significantly changed in the liver (Fig. 1M).

In contrast to the liver, Tfr1 and Fpn1 mRNA and protein levels and ferritin protein levels remained unaltered 
in the spleen on day five post siRNA treatment (Fig. 1N and O), consistent with a liver-specific effect of Rab5-KD 
on iron homeostasis. Reduced splenic iron levels may be explained by the decreased hepatic hepcidin expression 
(Fig. 2A and next section).

Post-transcriptional control of iron-related genes via the iron regulatory protein (IRP)/IRE system is critical to 
maintain cellular iron homeostasis. Under iron-deficient conditions, IRPs bind to IREs located in the 3′ untrans-
lated region of the Tfr1 mRNA, resulting in its protection from RNase-mediated degradation33. Hence, increased 
Tfr1 mRNA and protein levels in the livers of Rab5-KD mice are likely a compensational response to low cellular 
iron levels (Fig. 1A,C and D). Additionally, TFR1 protein may accumulate in Rab5-KD cells due to the depletion 
of the endo-lysosomal system29, which is required for TFR1 endocytosis, recycling and degradation. Despite its 
increased expression in Rab5-KD mice, TFR1 seems to be unable to increase cellular iron levels in the liver to 
compensate for iron losses caused by increased ferroportin protein expression. Compared to TFR1, TFR2 binds 
to holo-transferrin with much reduced affinity34 and, thus, may not play a significant role in reverting hepatic iron 
deficiency. TFR2 is rather involved in iron sensing and the regulation of hepcidin expression35, 36.

In conditions of liver iron deficiency, ferritin is (1) translationally repressed by IRP binding to its 5′UTR 
IRE and (2) degraded in lysosomes to release iron25 and thus would be expected to show reduced expression. 
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Figure 1. Iron-related parameters in liver and spleen of Rab5-KD (KD) and control mice (c). (A) Non-heme 
iron concentrations in liver. (B) Relative iron concentrations in liver and spleen. Relative mRNA (C, E, G, 
H, J, K and N) and protein (D, F, I, L, M and O) levels in liver (C–M) and spleen (N and O) of transferrin 
receptor (Tfr1/TFR1; C, D, N and O), Tfr2/TFR2 (E and F), divalent metal transporter 1 (Dmt1/DMT1; G, H 
and I), Zip14 (J) ferroportin (Fpn1/FPN1; K, L, N and O) and ferritin light chain (FER-L; M) as determined 
by qPCR and semi-quantitative western blot analysis, respectively. Normalization was carried out as indicated; 
proteins detected in membrane fractions from liver samples were normalized to ponceau stained membrane. 
“c” = control, “KD” = Rab5-KD; day 3–5 refer to days post-RNAi. See Supplementary Figures S2–S4 for 
representative blots. One-way ANOVA with Bonferroni correction for comparison of selected pairs for all 
panels except (B) two-way ANOVA. *P < = 0.05, **P < = 0.01, ***P < = 0.005 and ****P < = 0.001.
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Figure 2. Systemic iron-related parameters in Rab5-KD (KD) and control mice (c). Relative mRNA expression 
of hepcidin (Hamp1; A), Bmp6 (B), Smad6 (D), Smad7 (E), Id1 (F) and transferrin (Tf, K) in liver, as determined 
by qPCR. (C) Relative abundance of phosphorylated SMAD1/5/8 as determined by semi-quantitative western 
blotting from tissue lysates normalized to tubulin expression (see Supplementary Figure S3 for representative 
blot). (G) Serum iron concentration, (H) unsaturated iron binding capacity (UIBC), (I) total iron binding 
capacity (TIBC) and (J) transferrin saturation in serum of control and Rab5-KD mice. “c” = control, 
“KD” = Rab5-KD; day 3–5 refer to days post-RNAi. (A, B and D–G) One-way ANOVA with Bonferroni 
correction for comparison of selected pairs. (C) Student´s t-test. *P < = 0.05, **P < = 0.01, ***P < = 0.005 and 
****P < = 0.001.
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However, ferritin levels are not significantly different between Rab5-KD and control mice (Fig. 1M), suggesting 
impairment of these processes in Rab5-KD mice.

The finding that ferroportin mRNA levels were not changed and protein abundance was significantly increased 
in Rab5-KD livers at day four and five post RNAi treatment (Fig. 1K and L) may be explained by an impairment of 
ferroportin degradation. Ferroportin is degraded in lysosomes37, and thus the loss of the endo-lysosomal system 
in Rab5-KD mice is expected to cause reduced clearance of the protein from the cell surface as well as reduced 
protein degradation. Likewise, other proteins with a localization in plasma or endosomal membranes, such as 
TFR2 and DMT-1 also show increased protein levels in relation to their mRNA levels (Fig. 1E–I). This finding is 
consistent with comparative micro-array and proteomics analysis of Rab5-KD mouse livers, which demonstrates 
that numerous transmembrane proteins are more abundant than their mRNA expression would suggest30. More 
specifically, due to the strong reduction of the endo-lysosomal system upon Rab5-KD, canonical endocytic trans-
port processes, such as receptor-mediated clathrin coated LDL internalization and degradation are dramatically 
reduced29, resulting in protein amounts of the LDL-receptor that are increased despite unaltered mRNA expres-
sion. Because the recycling and secretory pathways are almost unaffected29 this provides the cell with a continu-
ous supply of transmembrane proteins29, 30.

Ferroportin protein levels are already increased at day four after Rab5-RNAi, contrasting the responses of 
other membrane proteins and the hepatic iron level, which are altered on day five. This suggests that increased 
iron release from hepatocytes may be the primary reason for the decrease of liver iron levels that cannot be com-
pensated for by elevated iron uptake through holo-transferrin/TFR1, DMT1 or ZIP14. Impaired iron uptake in 
hepatocytes is explained by compromised endocytosis in Rab5-KD cells29 that is required for both, the uptake of 
transferrin bound iron and non-transferrin bound iron18, 24. Additionally, reduced hepcidin expression observed 
in Rab5-KD livers (Fig. 2A) will contribute to the stabilization of ferroportin protein on the cell membrane of 
hepatocytes15, 16, 38. These findings are consistent with data obtained by a systems biology approach which pre-
dicted that the liver iron pool is highly dynamic and is maintained through a high iron uptake-rate in addition to 
iron storage in ferritin39. Taken together our data suggest that depletion of the endo-lysosomal system causes ele-
vated iron export via ferroportin and reduced hepatic iron levels, which cannot be compensated by an increased 
rate of iron uptake.

Alterations in systemic iron homeostasis induced by endosome depletion. We next analyzed 
whether the depletion of endosomes alters hepcidin levels and the pathways regulating its expression. Consistent 
with decreased hepatic iron concentrations, we observed significantly reduced Bmp6 and hepcidin mRNA levels as 
well as reduced SMAD1/5/8 phosphorylation at day five post-RNAi (Fig. 2A–C), whereby reduced Bmp6 mRNA 
expression preceded the hepcidin response by one day (Fig. 2A and B). These findings suggest that the iron sens-
ing process adequately responds to decreased hepatic iron levels in endosome-depleted livers, despite elevated 
levels of the hepcidin activator TFR2 (Fig. 1F). While Smad6 and Smad7 mRNA levels were decreased consistent 
with attenuated SMAD1/5/8 phosphorylation and decreased hepcidin expression, Id1, an additional target gene of 
BMP6/SMAD signaling, which is frequently co-regulated with hepcidin9, did not show the expected decrease in 
mRNA expression (Fig. 2D–F). Interestingly, Id1, a regulator of energy metabolism40 was significantly induced in 
Rab5-KD livers on day four and five (Fig. 2F). This may be explained by an increased glycolytic flux in Rab5-KD 
livers30 and a function of ID1 in promoting a metabolic shift towards aerobic glycolysis41.

Our molecular analysis demonstrates elevated ferroportin protein levels in the liver of Rab5-KD mice. As 
a consequence, we would expect an increased iron export rate, which may be reflected by elevated serum iron 
levels. Indeed, serum analysis shows a mild increase in serum iron levels (Fig. 2G), albeit only statistically sig-
nificant when data of independent experiments are normalized to the respective control group (Supplementary 
Figure S5D). In addition, unsaturated iron binding activity and total iron binding capacity were increased to a 
similar degree as serum iron levels, resulting in a transferrin saturation that was not significantly different in 
Rab5-KD mice compared to control mice (Fig. 2H–J).

Based on previous observations that levels of liver-secreted proteins such as factor VII, albumin and HDL 
are not altered in the Rab5-KD model29, we expect that hepcidin secretion is intact. Furthermore, an increase in 
the iron binding capacity in Rab5-KD mice is only possible if secretion of the plasma protein transferrin, which 
is predominantly synthesized in the liver, is adequate. We speculate that increased transferrin levels may be a 
result of a decreased uptake/degradation rate by the liver, because transferrin transcript levels are not increased 
(Fig. 2K).

Taken together, this study shows that Rab5 and the endo-lysosomal system are required for iron homeostasis. 
As the depletion of the endo-lysosomal system occurs within a 24–48 hour period, between day three and five 
post treatment (maximal on day five29), it was surprising to observe such a rapid drop in liver iron levels. Reduced 
hepatic iron levels in Rab5 depleted mouse livers are very likely initiated by increased iron export from the liver 
through ferroportin. Because all iron uptake processes require the endo-lysosomal system, compensation by 
increased iron uptake via TFR1/DMT1/ZIP14 is not possiblel29. In addition, iron mobilization from ferritin, 
which requires lysosomal degradation, is likely impaired. Thus, compensatory responses to counteract hepatic 
iron deficiency are inactive in the absence of the endosomal system, causing a negative feedback that worsens 
hepatocyte iron depletion.

Materials and Methods
Animals and LNP injections. Animal studies were approved and conducted in accordance with German 
animal welfare legislation and in specific pathogen-free conditions in the animal facility of the MPI-CBG, 
Dresden, Germany. Protocols were approved by the Institutional Animal Welfare Officer (Tierschutzbeauftragter), 
and necessary licenses were obtained from the regional Ethical Commission for Animal Experimentation of 
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Dresden, Germany (Tierversuchskommission, Landesdirektion Dresden). LNP injections and Rab5 silencing in 
mice were performed as described before29.

Tissue and serum iron quantification. Tissue iron was measured in dried tissue samples using acid 
extraction and bathophenantroline as established by42 and modified by43. Because absolute iron levels between 
control animals of different experiments varied when samples of each experiment were processed separately 
on different days, we normalized tissue iron levels by dividing each value by the average iron level of the con-
trol group of the respective experiment to determine relative iron levels to compare liver and spleen iron levels 
(Supplementary Figure S5A–D).

Serum iron was measured using the bathophenantroline based method of the SFBC kit 80008 (BIOLABO, 
France) adapted to 96-well manual format by scaling to 40 uL sample volumes44. Unsaturated iron binding capac-
ity (UIBC) in serum was determined using the UIBC kit 97408 (BIOLABO, France) adapted to 96-well format by 
scaling to 20 uL sample volumes44.

RNA extraction, cDNA synthesis and qPCR. Total RNA was purified from tissue samples using Trizol 
reagent (life technologies) according to the manufacturer’s protocol applying one additional ethanol-wash of the 
RNA prepared from liver to reduce high A 230 nm. 2 μg total RNA were reverse transcribed using random hexamers 
and RevertAid (Fermentas). qPCR was performed on a StepOne thermocycler (Applied Biosystems) using the 
SYBR-green Master Mix (Applied Biosystems) and primers listed in Supplementary Table S1. Relative mRNA 
expression was calculated by the delta Ct method and normalized to the reference gene Rplp029, 45.

Western blot analysis. SDS-PAGE and western blot analysis of total protein lysates were performed as pre-
viously described46, 47. DMT1 antiserum and affinity purified antibody were used as described in48.

Microsome/cytoplasm membrane extracts (membrane fraction) were obtained by homogenizing tissue sam-
ples in hypotonic buffer (10 mM Tris HCl, 2 mM MgCl2 and protease inhibitor mix (Roche) using a glass homog-
enizer. The supernatants obtained from centrifuging homogenates for 10 min at 4 °C and 1000 rpm were sonicated 
(Bandilin Sonoplus) for 15 min on ice before adding 250 mM sucrose and centrifuging at 1000 × g for 10 min 
at 4 °C to remove nuclei. The resulting supernatants were centrifuged at 12000 × g at 4 °C for 15 min to remove 
mitochondria. Microsomes and plasma membranes were obtained by centrifugation of the supernatants from the 
previous step at 105000 × g at 4 °C for 60 min.

To normalize sample data between different experiments and western blots we generated a standard sample 
that was applied in triplicate to SDS-PA gels where applicable. Western blots were imaged and analyzed using the 
Fusion-FX system (Vilber Lourmat) or ECL and x-ray film and BioRad QuantityOne or ImageJ software. Western 
blot signals were normalized by the signal of tubulin. As depletion of the endolysosomal pathway will result in the 
accumulation of many membrane proteins, signals obtained from membrane fractions were normalized to total 
protein levels as quantified by densitometry of the Ponceau signal per sample lane.
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