
HAL Id: hal-01602254
https://hal.science/hal-01602254

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Heritability of boldness and hypoxia avoidance in
European seabass, Dicentrarchus labrax

Sebastien Ferrari, Khaled Horri, François Allal, Alain Vergnet, David
Benhaim, Marc Vandeputte, Béatrice Chatain, Marie-Laure Bégout

To cite this version:
Sebastien Ferrari, Khaled Horri, François Allal, Alain Vergnet, David Benhaim, et al.. Heritability
of boldness and hypoxia avoidance in European seabass, Dicentrarchus labrax. PLoS ONE, 2016, 11
(12), pp.1-16. �10.1371/journal.pone.0168506�. �hal-01602254�

https://hal.science/hal-01602254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Heritability of Boldness and Hypoxia

Avoidance in European Seabass, Dicentrarchus

labrax
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Abstract

To understand the genetic basis of coping style in European seabass, fish from a full facto-

rial mating (10 females x 50 males) were reared in common garden and individually tagged.

Individuals coping style was characterized through behavior tests at four different ages, cat-

egorizing fish into proactive or reactive: a hypoxia avoidance test (at 255 days post hatching,

dph) and 3 risk-taking tests (at 276, 286 and 304 dph). We observed significant heritability of

the coping style, higher for the average of risk-taking scores (h2 = 0.45 ± 0.14) than for the

hypoxia avoidance test (h2 = 0.19 ± 0.10). The genetic correlations between the three risk-

taking scores were very high (rA = 0.96–0.99) showing that although their repeatability was

moderately high (rP = 0.64–0.72), successive risk-taking tests evaluated the same genetic

variation. A mild genetic correlation between the results of the hypoxia avoidance test and

the average of risk-taking scores (0.45 ± 0.27) suggested that hypoxia avoidance and risk-

taking tests do not address exactly the same behavioral and physiological responses.

Genetic correlations between weight and risk taking traits showed negative values whatever

the test used in our population i.e. reactive individual weights were larger. The results of this

quantitative genetic analysis suggest a potential for the development of selection programs

based on coping styles that could increase seabass welfare without altering growth perfor-

mances. Overall, it also contributes to a better understanding of the origin and the signifi-

cance of individual behavioral differences.

Introduction

Recent years have seen a growth of interest towards the causes and consequences of consistent

differences in individual behavior over time or contexts constituting so-called “coping styles”

or “personality” [1–4]. It has been clearly identified that, within species, individuals may react
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differently to the same situation. This inter-individual variability is generated by a collection of

correlated physiological and behavioral responses, resulting in only a limited number of

behavioral phenotypes. Coping style covers numerous traits such as boldness and shyness,

avoidance of novelty, exploration, activity, aggressiveness and sociability [5]. Various behav-

ioral models reflecting coping strategies exist for mammals, birds and teleosts such as cichlids,

salmonids, sticklebacks and a large number of tropical fish (reviewed in [6] and [7]). This

inter-individual variability in behavioral and physiological responses is conserved between

taxa, suggesting it is genetically determined. A better understanding of this inter-individual

variation is essential to improve our knowledge of the adaptive value of behavior [1, 8].

Individuals from a fish population can be clustered into two main categories, based on their

predisposition to take risks: bold and shy [9]. Usually, boldness is associated with a proactive

strategy whereas shyness is associated with a reactive strategy. Proactive individuals tend to

engage in active avoidance or cope with stressful stimuli [10, 11] through a “fight or flight”

response. Their behaviors differ from that of reactive individuals: 1) they are more aggressive/

dominant [3, 12], 2) they show greater motivation to feed after transfer to a novel environment

[6], 3) they rapidly approach new objects [3], 4) they take more risks (i.e. they are bolder) and

are more likely to explore when exposed to novelty [13–16] and 5) they tend to develop behav-

ioral routines [17, 18]. Physiologically, a proactive strategy is associated with a lower hypothal-

amus-pituitary-inter-renal (HPI) activity [6, 19–21] and a higher sympathetic reactivity [6]

than the reactive strategy.

Usually, behavioral studies aiming at characterizing coping style are carried out on small

samples, using time consuming individual tests. These tests do not make the characterization

of a large number of individuals possible, while this is a prerequisite for quantitative genetics

studies [22]. However, recent work developed tests characterizing fish coping style in small to

medium size groups: hypoxia avoidance test (N = 24 in [3, 16, 23]) and risk taking test (N = 24

in [3], N = 30 in [16], N = 60 in [24], N = 500 in [25]). The first test, hypoxia avoidance test,

was based on previous studies showing that fish with divergent stress coping styles react differ-

ently to hypoxic conditions [26, 27]. This suggests that measuring how fish escape hypoxic

conditions can qualify individuals within a population with respect to stress coping style, tak-

ing activity, boldness and hypoxia tolerance into account [3, 7, 16, 23]. The second one, risk

taking test, has been successfully used to characterize fish boldness and activity in numerous

experiments [3, 16, 24–26, 28].

Genetic variability of behavioral variation in teleosts has been studied only by a few authors

[29–31]. To go further in the understanding of the origin and the significance of individual

behavioral differences, it is important to improve our knowledge on the genetic basis of coping

style and of its interactions with environmental conditions. Heritability, the proportion of phe-

notypic variance that can be attributed to additive genetic variance is estimated by measuring

the similarity between relatives [32, 33]. Genetics of fish personality traits and coping style is

still in its infancy, but some studies have shown Quantitative Trait Loci (QTL, in zebrafish,

Danio rerio [34]) or genetic variance or heritability of boldness [30, 35]. Heritability of stress

response, particularly post-stress plasmatic cortisol has been mainly studied in salmonids [36–

42] and recently in European seabass, Dicentrarchus labrax [43, 44]. Divergent strains on post-

stress plasmatic cortisol level have been developed in rainbow trout [41, 42]. This divergent

selection led to strains also divergent for numerous traits of interest related to behavior, physi-

ology and neurophysiology, making rainbow trout a model species for behavioral selection

in teleosts [6, 20, 45–50]. It has also been shown that farmed trout populations selected for

growth display proactive behavior [51]. All these studies suggest a potential for selection of

individuals based on their coping styles. Understanding the genetic basis of these traits is key

to understand the evolution of populations in changing environmental contexts [52].

Heritability of Coping Style
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Especially, quantitative genetics approaches could be of great value, as genetic variance is the

major factor underlying the capacity of a trait to evolve in a population [32]. Moreover, evalu-

ating different component traits under a quantitative genetics framework may help understand

which part of the observed covariation between traits is of genetic or environmental origin

[53]. As it is acknowledged that coping style might be composed by multi-dimensional inde-

pendent components [54] efficient methods to assess the quantitative genetic components of

coping styles are needed.

European seabass is a major species for Mediterranean aquaculture, but also a model spe-

cies for genetic studies in marine fish. Genetic variability of growth performance and sex ratio

in this species has been well established [55–61], but no study exists concerning the genetic

variability of behavioral traits linked to coping style, and the genetic correlations between cop-

ing style and production traits such as growth.

In this study, we coupled genetic analyses of growth with that of boldness and hypoxia

avoidance, using microsatellites to perform parental assignment and identify families, a widely

applied method in fish, which enables rearing numerous families in common garden and thus

controlling environmental effects, which then cannot confound family effects [61]. The aims

of this study were therefore 1) to estimate the heritability of coping style traits (herein boldness

and hypoxia avoidance which encompasses the individual measure of both risk taking and

hypoxia sensitivity) and 2) to estimate the genetic and phenotypic correlations between growth

and these traits.

Material and Methods

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical

standards of the institution and followed the European Directive 2010/63 UE; this study was

conducted under the official national license of M.L. Bégout (17–010). All fish handling proce-

dures (except just before behavioral tests) were conducted under anesthesia to minimize

animal stress and suffering. Fish behavior was monitored daily, and humane endpoints (eutha-

nasia by an excess of anesthetic dose) were planned in case fish would exhibit abnormal behav-

ior (isolation from the group with slow and erratic swimming during two consecutive days).

The sample size was determined according to simulations performed for heritability estima-

tion protocols, where protocols with 50 sires and 30 offspring per sire were devised appropriate

to estimate both genetic parameters for binary traits such as hypoxia avoidance [62] and

genetic parameters for continuous traits [63]. The expected mortality rate, unavoidable in

experiments with that many fish and lasting 218 days, was between 2 and 3%, and this is why

1536 individuals were tagged to obtain the expected sample size of 1500. However, the total

observed mortality (6.9%) was in excess of this expectation, due to a short term disease out-

break (Tenacibaculum maritimum) just after tagging at 179 dph which was promptly cured by

our veterinarian.

Broodstock selection, mating and rearing conditions

Fish were produced according to a full factorial mating design from first generation domesti-

cated West Mediterranean broodstock, combining 10 dams and 50 sires by in vitro fertiliza-

tion, giving a theoretical number of 500 full-sib families. The number of parents and offspring

sample size was optimized in order to have reliable heritability estimates, based on simulations

performed earlier for binary traits [62] and continuous traits [22, 63]. Mating was carried

out using the procedures described in [64]. After fertilization, eggs were pooled and reared in

common garden following seabass rearing standards [65]. A random sample of offspring

Heritability of Coping Style
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(13.2 ± 4.3 g mean body weight; N = 1536) were individually tagged at 179 days post hatching

(dph) using PIT tags for longitudinal follow up (growth and behavioral analyses). At the time

of tagging, they were fin-clipped (0.5 cm2 caudal fin sample) using scissors for DNA extrac-

tion, microsatellite genotyping and parental assignment. Tagged fish were stocked in a single 5

m3 tank within a recirculating bio-filtered system, with water at 21.9 ± 1.7˚C, salinity of 37.9

and under a photophase of 12 hours. Fish were fed ad libitum by self-feeder using a standard

aquaculture diet (Neo-grower, Le Gouessant, France) all along the experiment duration.

Growth performances

The variable chosen to evaluate biological performances over time was the body weight (BW)

and growth of all fish was followed from 179 dph to 397dph.

Biometric measurements were performed under anesthesia (Benzocaine, 200 ppm, after

tranquilization in the rearing tank with 70 ppm Benzocaine) at 179, 200, 228, 256, 305, 325

and 397 dph. Two days before each biometric measurement, fish were fasted. At each biomet-

ric measurement, they were individually identified using a PIT tag reader and weighed to the

nearest 0.1 g. At 397 dph, all fish were sacrificed by anesthetic overdose using 400 ppm of Ben-

zocaine, weighed and dissected for identification of sex by visual inspection of the gonads fol-

lowing Menu et al., [66].

Parental assignment

DNA extraction and the genotyping of twelve microsatellite markers were performed by

LABOGENA-DNA, the French laboratory for livestock genotyping (ISO 17025 accredited,

Jouy-en-Josas, France) for every sire, dam and offspring. Using these multilocus genotypes,

fish parentage assignment was performed with VITASSIGN [67] following authors recom-

mendations, with two allelic mismatches tolerated.

Characterization of coping styles

Hypoxia avoidance test. The hypoxia avoidance test was carried out at 255 dph on 1442

individuals held in a circular tank (5 m3, h: 144 cm, diameter: 210 cm, water height: 140 cm,

Fig 1), which was strictly identical in size to the rearing tank. This tank was divided in two

equal zones by an opaque divider with a circular opening (Ø 12cm) placed at 96 cm from the

bottom, and equipped with a PIT tag antenna connected to a computer for data acquisition

(Dorset, The Netherlands, adapted from Laursen et al., [23]). Each resulting chamber was con-

sidered to be a separate environment, individually equipped with an oxygen supply. All fish

were placed in one chamber which was shadowed and subsequently considered as “safe” for

the fish. The opening was closed for 30 minutes before the start of the test to allow fish acclima-

tion. The test started with the switch from air and oxygen supply to nitrogen bubbling in the

dark chamber containing the fish, progressively inducing hypoxic conditions during the exper-

iment and further referred to as the "hypoxic” chamber. The second chamber of the tank, was

maintained in normoxic conditions by oxygen supply (104.1% of saturation), and this hereaf-

ter called “normoxic” chamber was lit up to represent a “risky” area. Oxygen was monitored

continuously using 3 oxymeters (Odeon1), two of them placed in the hypoxic chamber (one

at the bottom and the other one under the water surface), and the third one placed in the mid-

dle of the water column of the normoxic chamber. The variables of interest were: individual

time lapse to emerge from the hypoxia chamber to the normoxic chamber (emerg_hypo, in

min); the individual fish escape order; the oxygen level in the hypoxic area at the first passage

of each fish from the hypoxic to the normoxic chamber (O2mean, in percentage of saturation,

calculated as the mean oxygen concentration between the two oxymeters); and the number of

Heritability of Coping Style
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passages from the hypoxic to the normoxic chamber (NBhypo). The hypoxia test was stopped

after two hours, when 10.3% oxygen saturation was reached in the hypoxic chamber (water tem-

perature 21.9˚C, salinity 37.9). A binary variable was also computed defining hypoxia-tolerant

(HT) fish (Hypo_status = 0, when NBhypo = 0), also considered as reactive fish, and hypoxia

avoider (HA) fish (Hypo_status = 1, when NBhypo� 1), also considered as proactive fish (23).

Risk taking test. Risk-taking behavior was assessed using the same experimental tank as

for the hypoxia avoidance test, but maintaining optimal oxygen conditions in both chambers

(Fig 2). Fish were transferred from their rearing tank into the shadowed chamber (hereafter

called ‘safe chamber’ as opposed to the ‘risky chamber’). The opening was blocked for 30 min-

utes before the start of the test to allow fish acclimation. Individual fish passages from the safe

chamber to the risky chamber through the opaque divider were monitored during 24h, with

the usual photoperiod used during rearing (12D/12N) maintained in the risky chamber. This

test was carried out three times (hereafter called sessions) at 276, 286 and 304 dph (RT1, RT2

and RT3 respectively) on the 1430 remaining individuals in order to assess consistency of the

behavioral responses observed. The same procedure was used and environmental conditions

were kept constant for all three sessions. The variables of interest were: the individual time-

lapse to the first passage into the risky chamber (emerg_RT1, emerg_RT2,emerg_RT3,in min)

used to assess risk taking level; the total number of passages through the opaque divider for

each individual (NBRT1, NBRT2, NBRT3) used as a proxy of individual activity level; and the

binary variables RT1_status, RT2_status and RT3_status defining risk takers (RT_status = 1,

when NBRT� 1) also referred as proactive, and risk avoiders (RT_status = 0 when NBRT = 0)

further considered as reactive (23). Finally, new consolidated variables were calculated as

means of each variable (NBRTmean, RT_status_mean) over the three sessions in order to

assess the genetic variability of these variables.

Fig 1. Scheme of the experimental set up used for the hypoxia avoidance test. Fish were gathered in one

shadowed side of a circular tank (2.25 m in diameter, 5 m3 in volume) divided into two equal chambers by an

opaque divider equipped with a PIT tag antenna surrounding a circular opening (12 cm in diameter). This enabled

the monitoring of fish individual movement in a group situation without any disturbance. After 30 min of acclimation,

nitrogen was bubbled in the shadowed chamber (called hypoxic chamber in the text) to reduce oxygen level and fish

were allowed to freely move to the lit up chamber (called normoxic chamber) with normoxic conditions.

doi:10.1371/journal.pone.0168506.g001
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Statistical analyses. Of the 1442 fish tested for Hypoxia Avoidance and consecutively the

1430 fish tested for Risk Taking, only 1243 could be unambiguously assigned to their parents,

and among those 1155 were correctly sexed and were used for the statistical analyses. BW data

were further analyzed as ln(BW) and back-transformed to original scale following [61].

Multi-trait sire models were applied to all traits, including BW at final biometric measure-

ment, emerg_hypo, O2mean, NBhypo, Hypo_status, emerg_RT1, emerg_RT2, and emerg_RT3,

NBRT1, NBRT2, NBRT3, RT1_status, RT2_status and RT3_status, to estimate (co) variance

components:

Yijk ¼ mþ Sexi þ sirej þ εijk

Where Yijk is the performance of the kth individual, μ is the population mean, Sexi is the fixed

effect of sex (i = 1 for males, 2 for females), sirej is the random additive genetic effect of sire j

(j = 1 to 50) and εijk is the random residual.

For all traits, the heritability, phenotypic correlations (rP) and genetic correlations (rA)

amongst traits were estimated from the variance components using ASReml version 4.1 [68].

As the sire variance component accounts for ¼ of the additive genetic variance, heritability

was estimated as follows:

h2

t ¼ 4s2

ts=s2

tp

Where ht
2 is the heritability for the tth trait, σts

2 is the sire variance component for the tth trait

and σtp
2 the total phenotypic variance for the same trait [69].

For discrete binary traits, a generalized linear mixed effects model with binomial error

structure and probit link function was used to estimate the sire variance component. In this

Fig 2. Scheme of the experimental set up used for the risk taking test sessions. Fish were gathered in one

shadowed side (called safe chamber in the text) of a circular tank (2.25 m in diameter, 5 m3 in volume) divided into

two equal chambers by an opaque divider equipped with a PIT tag antenna surrounding a circular opening (12 cm in

diameter). This enabled the monitoring of fish individual movement in a group situation without any disturbance.

After 30 min of acclimation, fish were allowed to freely move in the lit up chamber (called risky chamber in the text)

with normoxic conditions during the next 24 hours with the usual photoperiod used during rearing.

doi:10.1371/journal.pone.0168506.g002
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case, the heritability on the underlying (probit) scale was estimated as follow:

h2

t ¼ 4s2

ts=ðs
2

ts þ s2

εÞ

where s2
ε the residual variance on the underlying scale corresponding to the variance of the

probit link which has a value of 1 [70].

For each trait, the significance of the random (sire) and fixed (sex) effects at a 5% alpha risk

threshold was tested by likelihood ratio test (LRT) between nested models respecting margin-

ality of the effects that are supposed to follow a χ2 distribution under the null hypothesis (type

II tests; [71]). Diagnostics based on residuals were performed to assess the adequacy of the

model and compliance to the underlying assumptions.

Finally, factorial ANOVAs were used to compare mean body weight of fish according to

their sex and coping style. Chi-square tests were used to compare proportions of fish charac-

terized as proactive or reactive in each test as well as sex ratio.

Results

The dataset underlying our findings is available in the institutional public data repository

(SEANOE: http://doi.org/10.17882/47080).

Parentage assignment

DNA quality was unexpectedly poor in many individuals, and only 1267 individuals out of the

1442 fish tested for hypoxia tolerance showed DNA amplification, with only 1144 having a

complete genotype for all 12 markers (90.2%). Parentage assignment revealed 329 full sib fami-

lies out of the 500 possible ones, with 1 to 28 fish per full-sib family, and 1243 individuals

(86.2% of the total, but 98.1% of the fish with DNA amplification) were correctly assigned to

their parents when tolerance for a maximum of 2 allelic mismatches between parents and off-

spring genotypes was allowed. Only 24 individuals (1.9%) were assigned to more than 2

parents and were therefore disqualified for further analyses. All dams gave progeny, although

in highly variable numbers (124 on average, SD = 102, min = 7, max = 283). Out of 50 sires,

only one displayed no contribution to the progeny, probably due to a bad sperm quality, and

the contribution of the 49 sires with progeny was much more balanced than that of dams (25.4

offspring per sire on average, SD = 10.9, min = 7, max = 52). The dataset was thus appropriate

to be analyzed with a sire model as proposed. The observed parental assignment rate is in the

usual range for seabass, if we exclude the individuals not genotyped because of poor DNA

quality [72].

Survival and basic growth survey

Mortality was moderate during the experiment (106 individuals, 6.9% in 218 days). At tagging

at 179 dph, the mean body weight of fish was BW_179dph = 13.2 g (SD = 4.3) and reached

BW_397dph = 104.6 g (SD = 39.0) at the end of the experiment.

Coping style

Number, proportions and mean body weight (at day of coping style) as well as the sex ratio of

fish characterized as proactive and reactive during hypoxia avoidance test and the three ses-

sions of risk taking test are reported in Table 1. Taking all tests and sessions together, we

observed that 82.5% of the fish could be classified as reactive and 17.5% as proactive.

Using the hypoxia avoidance test, 83.5% of fish were characterized as reactive (at 256 dph,

572 males, BW = 31.9 g; 386 females, 45.6 g, Table 1) and 16.5% as proactive (134 males,

Heritability of Coping Style
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BW = 29.5 g; 63 females, BW = 46.9 g, Table 1). Females had higher mean body weight than

males (F(1, 1151) = 240.1, p<0.001) but no effect of coping style and no interaction between sex

and coping style were observed on body weight (F(1, 1151) = 0.3, p = 0.64 and F(1, 1151) = 3.4,

p = 0.06 respectively).

Combining the three risk-taking test sessions, 82.2% of fish were characterized as reactive

(after the third risk taking test, at 305 dph, 573 males, BW = 47.1 g; 373 females, 65.8 g,

Table 1) and 17.8% as proactive (133 males, BW = 41.7 g; 75 females, BW = 64.9 g, Table 1).

Mean body weights were different according to sex (F(1, 1150) = 235.7, p<0.001) and to coping

style as characterized by the risk taking test: reactive individuals had a higher mean body

weight than proactive ones (55.0 ± 0.7 g and 50.0 ± 1.3 g respectively, F(1, 1150) = 7.3, p<0.01).

No interaction between sex and coping style was observed (F(1, 1150) = 1.09, p = 0.30).

Proportions of individuals in each category (i.e. reactive vs. proactive) remained stable

between tests (Df = 3, χ2 = 6.38, p = 0.09) and were different according to the sex for the hyp-

oxia avoidance test (Hypo_Status: Df = 1, χ2 = 4.75, p = 0.03) but not for risk taking tests

(RT1_Status: Df = 1, χ2 = 0.88, p = 0.35; RT2_Status: Df = 1, χ2 = 0.36, p = 0.55; RT3_Status:

Df = 1, χ2 = 1.26, p = 0.26; RT_status_mean: Df = 1, χ2 = 0.82, p = 0.37).

Heritability and traits correlations

Only fish correctly assigned with valid performances and identified sex were used (N = 1155)

for analyses of genetic parameters. BW at the different measurements showed high heritability

estimates (h2 = 0.47–0.59), accompanied with extremely high genetic correlations (0.87 ±
0.05< rA(BW)< 1.00±0.00) as well as phenotypic correlations (0.70±0.02< rP(BW)< 0.99±
0.00) between successive BW values.

Heritability estimates for variables of interest in hypoxia avoidance test are reported in

Table 2. These values are relatively low (0.08–0.11), except for the variable Hypo_Status (repre-

senting the hypoxia avoidance behavior) that showed a moderate heritability estimate (0.19 ±
0.10, Table 2). Hypo_Status showed very high genetic correlation rA > 0.92 ± 0.44 with the

other variables measured in the same test, and especially a genetic correlation of 0.98± 0.14

was estimated between Hypo_status and NBhypo. Another noticeable genetic correlation was

observed between emerg_hypo and O2mean (rA = 1.00± 0.10, Table 2).

Heritability estimates, phenotypic and genetic correlations between the three successive

risk taking test sessions are presented in Table 3. Risk-taking, measured by the binary trait

RT_Status, was shown to be highly heritable (h2 = 0.36–0.55, Table 3). In addition, phenotypic

correlations between successive risk-taking test sessions were relatively high (0.64–0.72,

Table 1. Numbers, proportions, mean body weight and sex ratios of fish characterized by the hypoxia avoidance test, the three sessions of the

risk taking test and the mean of the three sessions for all fish correctly assigned and with correct sex data (N = 1155 for hypoxia avoidance test,

N = 1154 for RT1 RT2, RT3 and RT_mean).

Hypoxiaavoidance

test

Risktaking test

Hypo_status RT1_status RT2_status RT3_status RT_status_mean

Sex M F M F M F M F M F

Reactive (number) 572 386 584 380 578 373 556 365 573 373

BW (g) 31.9 45.6 47.1 66.1 47.0 65.8 47.2 65.6 47.1 65.8

Proactive (number) 134 63 122 68 128 75 150 83 133 75

BW (g) 29.5 46.9 41.2 63.6 42.1 65.1 41.9 66.0 41.7 64.9

Reactive (in %) 81.02 85.97 82.72 84.82 81.87 83.26 78.75 81.47 81.16 83.26

Proactive (in %) 18.98 14.03 17.28 15.18 18.13 16.74 21.25 18.53 18.84 16.74

doi:10.1371/journal.pone.0168506.t001
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Table 3) showing that behavioral response was consistent over time. Finally, very high genetic

correlations between sessions were observed (0.96–0.99). The variables emerg_RT1, -2 and -3

showed moderate but significant heritabilities (0.20–0.21; Table 3). The variables NBRT1, -2

and -3 (representing activity levels) showed a low heritability (0.16 ± 0.06, for NBRT1,

0.04 ± 0.03 for NBRT2 and 0.09 ± 0.05 and NBRT3, Table 3). A weak phenotypic correlation

was observed between NBRT1 and NBRT2 (0.24 ± 0.03) whereas the genetic correlation was

high (0.87 ± 0.58). The phenotypic correlation between NBRT2 and NBRT3 was 0.43± 0.02

whereas the genetic correlation was 0.41 ± 0.45.

We then created new consolidated variables as means of each variable over the three ses-

sions in order to assess the genetic variability of these variables (Table 4). Analyses showed

important genetic correlations between the mean variables from the risk taking tests. Among

them, RT_Status_mean (i.e. proactive-reactive category) showed the highest heritability

(0.45 ± 0.14). The phenotypic correlation between Hypo_Status and RT_status_mean was

weak (rP = 0.10± 0.03), and the genetic correlation was moderate (rG = 0.45 ± 0.27, Table 4).

Genetic correlations between weight and variables from the hypoxia avoidance test

(Hypo_Status) were negative and stable over time (-0.62 ± 0.24 with BW at 179 dph to

-0.53 ± 0.28 with BW at 397 dph). Genetic correlations between body weight and RT_Status_-

mean were also negative and stable (-0.28 ± 0.20 with BW at 179 dph to -0.32 ± 0.19 with BW

at 325 dph).

Discussion

In the present study, we assessed the genetic variability of body weight and coping style in

European seabass, as well as phenotypic and genetic correlations between these traits. Two

tests were used for measuring five traits in different contexts. An hypoxia avoidance test

Table 2. Heritabilities (h2), genetic correlations and phenotypic correlations estimated for the variables of hypoxia avoidance test using a sire

models. Genetic correlations ± SE are presented above the diagonal, heritabilities h2 ± SE on the diagonal and phenotypic correlations under the diagonal.

NE represents non estimable value due to bad model convergence.

Variables of interest emerg_hypo NBhypo Hypo_status O2mean

emerg_hypo 0.11 (0.05) 0.80 (0.20) NE 0.99 (0.04)

NBhypo 0.55 (0.02) 0.08 (0.05) 0.98 (0.14) 0.84 (0.24)

Hypo_status NE 0.61 (0.01) 0.19 (0.10) 1.00 (0.10)

O2mean 0.46 (0.01) 0.47 (0.02) 0.71 (0.01) 0.08 (0.05)

doi:10.1371/journal.pone.0168506.t002

Table 3. Heritabilities (h2), genetic correlations and phenotypic correlations estimated for variables of the three risk taking test sessions using a

sire models. Genetic correlations ± SE are presented above the diagonal, heritabilities h2 ±SE on the diagonal and phenotypic correlations under the

diagonal.

Risk taking test (sessions 1 to 3)

Variables of interest RT1_status RT2_status RT3_status emerg_RT1 emerg_RT2 emerg_RT3 NBRT1 NBRT2 NBRT3

RT1_status 0.55 (0.16) 0.96 (0.06) 0.99 (0.06) - - - - - -

RT2_status 0.64 (0.01) 0.41 (0.14) 0.99 (0.05) - - - - - -

RT3_status 0.66 (0.01) 0.72 (0.01) 0.36 (0.12) - - - - - -

emerg_RT1 - - - 0.21 (0.07) 0.95 (0.06) 0.98 (0.06) - - -

emerg_RT2 - - - 0.67 (0.02) 0.21 (0.07) 0.97 (0.04) - - -

emerg_RT3 - - - 0.69 (0.01) 0.79 (0.01) 0.20 (0.07) - - -

NBRT1 - - - - - - 0.16 (0.06) 0.87 (0.58) 0.77 (0.29)

NBRT2 - - - - - - 0.24 (0.03) 0.04 (0.03) 0.41 (0.45)

NBRT3 - - - - - - 0.18 (0.03) 0.43 (0.02) 0.09 (0.05)

doi:10.1371/journal.pone.0168506.t003
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allowed to characterize the coping style (proactive/reactive) taking individual activity, boldness

and hypoxia tolerance into account [3, 7, 16, 23] while the risk taking tests were used to

address individual boldness and activity [16, 24]. We showed significant heritability of coping

style measured both in the hypoxia avoidance test and during three sessions of risk taking test,

and demonstrated links between growth and coping style. To our knowledge, our study is the

first to assess coping style in a teleost on a very high number of individuals (N > 1000) reared

in common garden, and combining parental links between individuals to assess the genetic

components of behavioral traits.

Hypoxia avoidance

The high genetic correlations between hypoxia status (tolerance vs. avoidance) and other vari-

ables derived from the hypoxia avoidance test (Number of passages between the hypoxic and

the normoxic zones and the oxygen level when the fish first escapes from the hypoxic zone)

make this variable (Hypo_status) the most synthetic to describe the genetic basis of an individ-

ual’s coping style [3, 7, 16, 23]. In addition, the high genetic correlation observed between

activity and the oxygen threshold triggering the hypoxia avoidance suggests a common under-

lying genetic basis for these two traits that should probably be linked to metabolism. Indeed,

this link between individual needs in oxygen and activity level is consistent with other studies

on seabass [73] and on gilthead sea bream, Sparus aurata [74]. However, relatively weak herita-

bility estimates were observed for these variables, suggesting a limited genetic basis.

Risk taking

High phenotypic correlations were observed between risk-taking status and emergence time in

the three sessions of the risk taking test, showing consistency over time of the behavioral

responses, further reinforced by the very strong genetic correlations estimated between the

risk taking test sessions. The families were therefore ranked similarly in the three sessions, i.e.

risk-taking behavior is governed by the same genetic basis in the different test sessions. In

addition, the observed heritability of emergence times suggests that the latency to pass from

the safe to the risky chamber (i.e. decision making) was at least partially genetically deter-

mined. These results confirm the validity of the risk taking test to characterize coping style in

this species.

Link between hypoxia and risk taking

The low phenotypic correlation and the weak genetic correlations between hypoxia avoidance

and risk taking tests depict that they do not assess exactly the same behavioral traits, or that

they are composed at least partially of different component traits. This result confirms those of

Ferrari et al., [16] showing no cross context consistency between behavioral responses of sea-

bass using the same tests. Indeed, the hypoxia avoidance test encompasses the willingness to

Table 4. Heritabilities (h2), genetic correlations and phenotypic correlations estimated between the variables of hypoxia avoidance test and risk

taking test using a sire models. Genetic correlations ± SE are presented above the diagonal, heritabilities h2 ± SE on the diagonal and phenotypic correla-

tions under the diagonal.

Variables of interest RT_status_mean NBRTmean NBhypo Hypo_status

RT_status_mean 0.45 (0.14) 0.81 (0.26) 0.46 (0.27) 0.45 (0.27)

NBRTmean 0.19 (0.03) 0.09 (0.05) -0.26 (0.40) -0.26 (0.39)

NBhypo 0.10 (0.03) -0.00 (0.03) 0.08 (0.05) 0.98 (0.14)

Hypo_status 0.10 (0.03) 0.01 (0.03) 0.61 (0.01) 0.19 (0.10)

doi:10.1371/journal.pone.0168506.t004
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take risk and individual hypoxia sensibility hereby linking with an additional component

through the respiratory metabolism. These results evidence complex links between boldness

and hypoxia tolerance as demonstrated by Killen et al., [73] and McKenzie et al., [75], confirm-

ing that some behaviors are context specific [9]. Further, this absence of cross context consis-

tency may be explained by the fact that correlations between behavioral responses in different

contexts are generated by selection pressures partially alleviated in rearing environment and in

domesticated species when compared to the wild environment [76].

Proportions of proactive and reactive fish weakly differed between sexes when characterized

by the hypoxia avoidance test, but did not when characterized by the risk taking test. Contrary

to what was observed in zebrafish [30] or a Poeciliid, Brachyraphis episcopi [77], seabass males

are not bolder than females.

Coping style heritability was studied in a few teleost fish models, such as zebrafish [30],

brown trout, Salmo trutta [31], or the cichlids Neolamprologus pulcher [29] and Amatitlania
siquia [78] but our study is the first one dedicated to an economically major marine species. In

European seabass, coping style traits were found to be heritable. The heritability observed in

the hypoxia test (avoidance vs tolerance) was moderate while the heritability measured in the

risk-taking test (risk taker vs risk avoider) was twice higher. Since variability in risk taking

behavior has already been observed in many taxa, this confirms its higher importance in terms

of fitness [1, 77, 79, 80]. The heritability estimated for risk taking was lower than that estimated

for zebrafish (h2 = 0.76; [30]) but slightly higher than that estimated in the Honduran red

point cichlid, Amatitlania siquia (h2 = 0.37; [78]) suggesting this trait has been selected differ-

ently according to species and environmental pressures. Heritability of hypoxia tolerance in

fish was never estimated before, so that we cannot compare our results with other species.

Growth and coping styles

Genetic correlations between weight and risk taking traits showed negative values whatever

the test used. This showed that proactive fish were smaller and had a lower growth than reac-

tive ones in this population. We observed a large proportion of reactive individuals which is in

accordance with a previous study [16]. This may be due to the genetic origin of our population,

which is in the first stages of its domestication history. The population studied comes from

individuals born in captivity but without any selection pressure and with high genetic variabil-

ity, close to that observed in a wild population. A study comparing seabass from one genera-

tion of domestication versus a wild population showed equal growth performance [81].

However, when the coping style dimension was added, differences between phenotypes and

risk taking appeared, as demonstrated by Millot et al. [82]. Indeed, Millot et al. [24] showed

that in an unselected seabass population, reactive individuals had a higher mean body weight

than proactive ones, whereas the opposite was observed in a population selected for fast

growth. These results are confirmed by our study: reactive seabass from our unselected popula-

tion had a higher mean body weight than proactive individuals. In addition, another study

already demonstrated that wild reactive trout had a higher growth rate in a natural habitat [83]

and by contrast numerous studies have shown that selection for growth co-selects bold and

proactive individuals [51, 84, 85]. Our results are thus in accordance with the literature.

This could have numerous applications in aquaculture industry including welfare issues

[12], health and disease susceptibility [10, 86] and feed efficiency [87] (reviewed in Castanheira

et al. [7] and Huntingford and Adams [85]). For example, Fevolden et al. [86] suggested that

selecting salmon for their coping style rather than for their specific response to pathogen (diffi-

cult to select) could enhance immune defense mechanisms on a larger spectrum, enabling a

global enhancement of disease resistance. These findings all together open new perspectives
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for further breeding programs in teleosts. For example, the coping style approach could be

used to improve fish adaptation to rearing conditions. Further studies are however needed to

determine if and how selection for growth and other traits of interest may interact with behav-

ioral traits.

Conclusions

For the first time, we evidenced that coping style measured using hypoxia avoidance and risk

taking tests was heritable in European seabass and correlated with a production trait such as

growth. Importantly, heritability measured in the risk taking test shows that significant genetic

gains for this trait could be achieved by selective breeding, opening a new research era for

selective breeding programs aiming at enhancing the domestication process while taking into

account animal behavioral responses. In addition, the high heritability of risk taking suggests

its importance in terms of fitness. Overall, this study also allows a better understanding of the

origin of interindividual variation in behavior.
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78. Mazué GPF, Dechaume-Moncharmont F-X, Godin J-GJ. Boldness–exploration behavioral syndrome:

interfamily variability and repeatability of personality traits in the young of the convict cichlid (Amatitlania

siquia). Behavioral Ecology. 2015; 26(3):900–8.

79. White JR, Meekan MG, McCormick MI, Ferrari MCO. A Comparison of Measures of Boldness and Their

Relationships to Survival in Young Fish. PLoS ONE. 2013; 8(7):e68900. doi: 10.1371/journal.pone.

0068900 PMID: 23874804

80. Brown C, Jones F, Braithwaite VA. Correlation between boldness and body mass in natural populations

of the poeciliid Brachyrhaphis episcopi. Journal of Fish Biology. 2007; 71(6):1590–601.

81. Vandeputte M, Dupont-Nivet M, Haffray P, Chavanne H, Cenadelli S, Parati K, et al. Response to

domestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate

and mixed tanks. Aquaculture. 2009; 286(1–2):20–7.

82. Millot S. DOMESTICATION, SELECTION ET COMPORTEMENT DU BAR. Variabilité des aptitudes
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