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Abstract

In this paper, we introduce a novel approach, called Input Output Kernel Regression
(IOKR), for learning mappings between structured inputs and structured outputs. The
approach belongs to the family of Output Kernel Regression methods devoted to regres-
sion in feature space endowed with some output kernel. In order to take into account
structure in input data and benefit from kernels in the input space as well, we use the Re-
producing Kernel Hilbert Space theory for vector-valued functions. We first recall the ridge
solution for supervised learning and then study the regularized hinge loss-based solution
used in Maximum Margin Regression. Both models are also developed in the context of
semi-supervised setting. In addition we derive an extension of Generalized Cross Validation
for model selection in the case of the least-square model. Finally we show the versatility of
the IOKR framework on two different problems: link prediction seen as a structured output
problem and multi-task regression seen as a multiple and interdependent output problem.
Eventually, we present a set of detailed numerical results that shows the relevance of the
method on these two tasks.

Keywords: structured output prediction, output kernel regression, vector-valued RKHS,
operator-valued kernel, semi-supervised learning
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1. Introduction

Many real world applications involve objects with an explicit or implicit discrete structure.
Texts, images and videos in document processing and retrieval as well as genes and proteins
in computational biology are all examples of implicit structured data that we may want to
use as inputs or outputs in a prediction system. Besides these structured objects, structured
output prediction can also concern multiple outputs linked by some relationship that is rele-
vant to take into account. Surprisingly, although a lot of attention has been paid to learning
from structured inputs for now two decades, this problem, often referred as structured output
learning, has emerged relatively recently as a field of interest in statistical learning. In the
literature, structured output prediction has been addressed from two main angles. A first
angle consists in discriminative learning algorithms that provide predictions by maximizing
a scoring function over the output space. Conditional Random Fields (Lafferty et al., 2001)
and their extension to kernels (Lafferty et al., 2004) were first proposed for discriminative
modeling of graph-structured data and sequence labeling. Other discriminative learning al-
gorithms based on maximum margin such as structured SVM (Tsochantaridis et al., 2004,
2005), Maximum Margin Markov Networks (M3N) (Taskar et al., 2004) or Maximum Mar-
gin Regression (Szedmak et al., 2005) have then be developed and thoroughly studied. A
common approach to those methods consists in defining a linear scoring function based on
the image of an input-output pair by a joint feature map. Both methods, either based on
Conditional Random Fields or maximum-margin techniques, are costly to train and gener-
ally assume that the output set Y is discrete. Keeping the idea of a joint feature map over
inputs and outputs, a generative method called Joint Kernel Support Estimation has been
recently proposed (Lampert and Blaschko, 2009). In this approach, a one-class SVM is used
to learn the support of the joint-probability density p(x, y). More recently, another angle to
structured output prediction, that we called Output Kernel Regression (OKR), has emerged
around the idea of using the kernel trick in the output space and making predictions in a
feature space associated to the output kernel. As a first example, the seminal work of Kernel
Dependency Estimation (KDE) was based on the definition of an input kernel as well as an
output kernel. After a first version using kernel PCA to define a finite-dimensional output
feature space (Weston et al., 2003), a more general KDE framework consisting in learning
a linear function from the input feature space to the output feature space was proposed by
Cortes et al. (2005). In this setting, predictions in the original output space are retrieved
by solving a pre-image problem. Interestingly, the idea of Output Kernel Regression can be
implemented without defining an input kernel as it is shown with Output Kernel Tree-based
methods (Geurts et al., 2006, 2007a,b). In these approaches, a regression tree whose outputs
are linear combinations of the training outputs in the output feature space is built using
the kernel trick in the output space: the loss function which is locally minimized during
the construction only involves inner products between training outputs. These methods are
not limited to discrete output sets and they do not require expensive computations to make
a prediction nor to train the model. Combined in ensembles such as random forests and
boosting, they exhibit excellent performances. However these tree-based approaches suffer
from two drawbacks: trees do not take into account structured input data except by using
a flat description of them and the associated (greedy) building algorithm cannot be easily
extended to semi-supervised learning.
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In this work, we therefore propose to extend the methodology of Output Kernel Re-
gression to another large family of nonparametric regression tools that allows to tackle
structured data in the input space as well as in the output space. Moreover we will show
that this new family of tools is useful in a semi-supervised context. Called Input Output
Kernel Regression, this novel family for structured output prediction from structured inputs
relies on Reproducing Kernel Hilbert Spaces (RKHS) for vector-valued functions with the
following specification: the output vector belongs to some output feature space associated
to a chosen output kernel, as introduced in the works of Brouard et al. (2011) and Brouard
(2013). Let us recall that in the case of scalar-valued functions, the RKHS theory offers
a flexible framework for penalized regression as witnessed by the abundant literature on
the subject (Wahba, 1990; Pearce and Wand, 2006). A penalized regression problem is
seen as a minimization problem in a functional space built on an input scalar-valued ker-
nel. Depending the nature of the prediction problem, appropriate penalties can be defined
and representer theorem can be proven, facilitating the minimization problem to be further
solved. In the RKHS theory, regularization constraint on the geometry of the probability
distribution of labeled and unlabeled data can also be added to perform semi-supervised
regression (Belkin et al., 2006). When functions are vector-valued, the adequate RKHS the-
ory makes use of operator-valued kernels (Pedrick, 1957; Senkene and Tempel’man, 1973;
Micchelli and Pontil, 2005). Operator-valued kernels have already been proposed to solve
problems of multi-task regression (Evgeniou et al., 2005; Baldassarre et al., 2012), struc-
tured classification (Dinuzzo et al., 2011), vector autoregression (Lim et al., 2013) as well
as functional regression (Kadri et al., 2010). The originality of this work is to consider that
the output space is a feature space associated to a chosen output kernel. This new approach
not only enhances setting of pattern recognition tasks by requiring to pay attention on both
input and output sets but also opens new perspectives in machine learning. It encompasses
in a unique framework kernel-based regression tools devoted to structured inputs as well as
structured outputs.

1.1 Related Works

In Brouard et al. (2011), the vector-valued RKHS theory was used to address the output
kernel regression problem in the semi-supervised setting. This approach was applied to the
link prediction problem. By working in the framework of RKHS theory for vector-valued
functions, we extended the manifold regularization framework introduced by Belkin et al.
(2006) to functions with values in a Hilbert space. We have also shown that the first step
of KDE (Cortes et al., 2005) is a special case of IOKR using a particular operator-valued
kernel.

Kadri et al. (2013) studied a formulation of KDE using operator-valued kernels. The first
step of this approach is identical to the IOKR framework developed in Brouard et al. (2011)
and Brouard (2013). The second step consists in extending the pre-image step of KDE using
the vector-valued RKHS theory. They also proposed two covariance-based operator-valued
kernels and showed that using these operator-valued kernels allow to express the pre-image
problem using only input and output Gram matrices.
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In parallel of Brouard et al. (2011), Minh and Sindhwani (2011) generalized the manifold
regularization framework proposed by Belkin et al. (2006) for semi-supervised learning to
vector-valued functions.

1.2 Contributions

We introduce Input Output Kernel Regression (IOKR), a novel class of penalized regression
problems based on the definition of an output scalar-valued kernel and an input operator-
valued kernel. This article is an extended version of Brouard et al. (2011), that addresses
more generally the problem of structured output prediction. In this work, we present several
novel contributions regarding the RKHS theory for functions with values in a Hilbert space.
We present the representer theorem for vector-valued functions in the semi-supervised set-
ting. Based on this representer theorem, we study two particular models obtained using
two different loss functions: the IOKR-ridge model introduced in Brouard et al. (2011) and
a new model called IOKR-margin. This model extends the Maximum Margin Regression
(MMR) framework introduced by Szedmak et al. (2005) to operator-valued kernels and to
the semi-supervised setting. In this paper, we also put the reformulation of Kernel Depen-
dency Estimation proposed by Cortes et al. (2005) into perspective in the Output Kernel
Regression framework. We present the solutions corresponding to decomposable kernels. In
the case of the least-squared loss function, we describe a new tool for model selection, which
was first introduced in Brouard (2013). The selection of the hyperparameters is done by
estimating the averaged error obtained with leave-one-out cross-validation as a closed-form
solution. We show the versatility of the IOKR framework on two different problems: link
prediction and multi-task regression. Finally, we present numerical results obtained with
IOKR on these two tasks.

1.3 Organization of the Paper

This paper is organized as follows. In Section 2, we introduce the Input Output Kernel
Regression approach and show how it can be used to solve structured output prediction
problems. In Section 3 we describe the RKHS theory devoted to vector-valued function
and present our contributions to this theory in the supervised and semi-supervised settings.
We also present in this section models based on decomposable operator-valued kernels. We
then show in Section 4 that, in the case of the least-squares loss function, the leave-one-
out criterion can be estimated by a closed-form solution. In Section 5, we describe how
Input Output Kernel Regression (IOKR) can be used to solve two structured prediction
problems, which are link prediction and multi-task learning. In Section 6, we present the
results obtained with IOKR on these two problems.

The notations used in this paper are summarized in Table 1.

2. From Output Kernel Regression to Input Output Kernel Regression

We consider the general regression task consisting in learning a mapping between an input
set X and an output set Y. We assume that both X and Y are sample spaces and that
Sn = {(xi, yi), i = 1...n} is an i.i.d. sample drawn from the joint probability law P defined
on X × Y. Outputs are supposed to be structured, for example objects such as sequences,
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Meaning Symbol

number of labeled examples `
number of unlabeled examples n
input set X
set of labeled examples X`
union of the labeled and unlabeled sets X`+n
output set Y
input scalar kernel κx : X × X → R
output scalar kernel κy : Y × Y → R
input feature space Fx
output feature space Fy
input feature map ϕx : X → Fx
output feature map ϕy : Y → Fy
set of bounded operators from an Hilbert space F to itself B(F)
set of bounded operators from F to an Hilbert space G B(F ,G)
operator-valued kernel Kx : X × X → B(Fy)
reproducing kernel Hilbert space of Kx H,HKx
canonical feature map of Kx φx : X → B(Fy,H)
gram matrix of Kx on X` and X`+n KX` ,KX`+n

gram matrix of κx on X` and X`+n KX` ,KX`+n

gram matrix of κy on Y` KY`

graph Laplacian L
matrix vectorization vec
Kronecker product ⊗
Hadamard product (element-wise product) ◦

Table 1: Notations used in this paper

graphs, nodes in a graph, or simply vectors of interdependent variables. It is realistic
to assume that one can build a similarity κy : Y × Y → R between the elements of the
output set Y, such that κy takes into account the inherent structure of the elements of Y
and has the properties of a positive definite kernel. Then, due to the Moore-Aronszajn
theorem (Aronszajn, 1950), there exists a Hilbert space Fy, called a feature space, and a
corresponding function ϕy : Y → Fy, called a feature map such that:

∀(y, y′) ∈ Y × Y, κy(y, y′) = 〈ϕy(y), ϕy(y
′)〉Fy .

The regression problem between X and Y can be decomposed into two tasks (see Figure 1):

• the first task is to learn a function h from the set X to the Hilbert space Fy
• the second one is to define or learn a function f from Fy to Y to provide an output

in the set Y.

We call the first task, Output Kernel Regression (OKR), referring to previous works
based on Output Kernel Trees (OK3) (Geurts et al., 2006, 2007a) and the second task, a
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Fy

fh

X Y

ϕy

Figure 1: Schema of the Output Kernel Regression approach.

pre-image problem. In this paper, we develop a general theoretical and practical framework
for the OKR task, allowing to deal with structured inputs as well as structured outputs. To
illustrate our approach, we have chosen two structured output learning tasks which do not
require to solve a pre-image problem. One is multi-task regression for which the dimension
of the output feature space is finite, and the other one is link prediction for which prediction
in the original set Y is not required. However, the approach we propose can be combined
with pre-image solvers now available on the shelves. The interested reader may want to
refer to Honeine and Richard (2011) or Kadri et al. (2013) to benefit from existing pre-image
algorithms to solve structured output learning tasks.

In this work, we propose to build a family of models and learning algorithms devoted to
Output Kernel Regression that present two additional properties compared to OK3-based
methods: namely, models are able to take into account structure in input data and can be
learned within the framework of penalized regression, enjoying various penalties including
smoothness penalties for semi-supervised learning. To achieve this goal, we choose to use
kernels both in the input and output spaces. As the models have values in a feature
space and not in R, we turn to the vector-valued reproducing kernel Hilbert spaces theory
(Pedrick, 1957; Senkene and Tempel’man, 1973; Burbea and Masani, 1984) to provide a
general framework for penalized regression of nonparametric vector-valued functions. In
that theory, the values of kernels are operators on the output vectors which belong to some
Hilbert space. Introduced in machine learning by the seminal work of Micchelli and Pontil
(2005) to solve multi-task regression problems, operator-valued kernels (OVK) have then
been studied under the angle of their universality (Caponnetto et al. (2008); Carmeli et al.
(2010)) and developed in different contexts such as structured classification (Dinuzzo et al.,
2011), functional regression (Kadri et al., 2010), link prediction (Brouard et al., 2011) or
semi-supervised learning (Minh and Sindhwani, 2011; Brouard et al., 2011). With operator-
valued kernels, models of the following form can be constructed:

∀x ∈ X , h(x) =

n∑
i=1

Kx(x, xi)ci, ci ∈ Fy, xi ∈ X , (1)

extending nicely the usual kernel-based models devoted to real-valued functions.

In the case of IOKR, the output Hilbert space Fy is defined as a feature space related
to a given output kernel. Note that there exists different pairs (feature space, feature
map) associated with a given kernel κy. Let us take for instance the polynomial kernel
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Fy
g

fh

X Y

Fy
g

fh

X Y

Fx

φxϕx ϕy ϕy

B(Fy, H)

Figure 2: Diagrams describing Kernel Dependency Estimation (KDE) on the left and Input
Output Kernel Regression (IOKR) on the right.

κy(y, y
′) = (yT y′ + c)p: we can choose the finite feature space defined by the different

monomes of the coordinates of a vector y or we can choose the RKHS associated with
the polynomial kernel. This choice will open doors to different output feature spaces Fy,
leading to different definitions of the input operator-valued kernel Kx and thus to different
learning problems. Omitting the choice of the feature map associated to Fy, we therefore
need to define a triplet (κy,Fy,Kx) as a pre-requisite to solve the structured output learning
task. By explicitly requiring to define an output kernel we emphasize the fact that an input
operator-valued kernel cannot be defined without calling into question the output space,
Fy, and therefore, the output kernel κy. We will show in Section 6 that the same structured
output prediction problem can be solved in different ways using different values for the
triplet (κy,Fy,Kx).

Interestingly, IOKR generalizes Kernel Dependency Estimation (KDE), a problem that
was introduced in Weston et al. (2003) and was reformulated in a more general way by
Cortes et al. (2005). If we call Fx a feature space associated to a scalar input kernel
κx : X × X → R and ϕx : X → Fx a corresponding feature map, KDE uses Kernel Ridge
regression to learn a function h from X to Fy by building a function g from Fx to Fy and
composing it with the feature map ϕx (see Figure 2). The function h is modeled as a linear
function: h(x) = Wϕx(x), where W is a linear operator from Fx to Fy. The second phase
consists in computing the pre-image of the obtained prediction.

In the case of IOKR, we build models of the general form introduced in Equation (1).
Denoting φx the canonical feature map associated to the OVK Kx, which is defined as:
φx(x) = Kx(·, x), we can draw the chart depicted in Figure 2 on the right. The function
φx maps inputs from X to B(Fy,H). Indeed the value φx(x)y = Kx(·, x)y is a function of
the RKHS H for all y in Fy. The model h is seen as the composition of a function g from
B(Fy,H) to the output feature space Fy with the input feature map φx.

We can therefore see on Figure 2 how IOKR extends KDE. In Brouard et al. (2011),
we have shown that we retrieve the model used in KDE when considering the following
operator-valued kernel:

Kx(x, x′) = κx(x, x′)I, (2)
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where I is the identity operator from Fy to Fy. Unlike KDE, that learns independently each
component of the vectors ϕy(y), IOKR takes into account the structure existing between
these components.

The next section is devoted to the RKHS theory for vector-valued functions and to our
contributions to this theory in the supervised and semi-supervised settings.

3. Operator-Valued Kernel Regression

In the following, we briefly recall the main elements of the RKHS theory devoted to vector-
valued functions (Senkene and Tempel’man, 1973; Micchelli and Pontil, 2005) and then
present our contributions to this theory.

Let X be a set and Fy a Hilbert space. In this section, no assumption is needed about
the existence of an output kernel κy. We note ỹ the vectors in Fy. Given two Hilbert spaces
F and G, we note B(F ,G) the set of bounded operators from F to G and B(F) the set of
bounded operators from F to itself. Given an operator A, A∗ denotes the adjoint of A.

Definition 1 An operator-valued kernel on X ×X is a function Kx : X ×X → B(Fy) that
verifies the two following conditions:

• ∀(x, x′) ∈ X × X , Kx(x, x′) = Kx(x′, x)∗,

• ∀m ∈ N, ∀Sm = {(xi, ỹi)}mi=1 ⊆ X × Fy,
∑m

i,j=1〈ỹi,Kx(xi, xj)ỹj〉Fy ≥ 0 .

The following theorem shows that given any operator-valued kernel, it is possible to
build a reproducing kernel Hilbert space associated to this kernel.

Theorem 2 (Senkene and Tempel’man (1973); Micchelli and Pontil (2005))
Given an operator-valued kernel Kx : X ×X → B(Fy), there is a unique Hilbert space HKx
of functions h : X → Fy which satisfies the following reproducing property:

∀h ∈ HKx , ∀x ∈ X , h(x) = Kx(x, ·)h,

where Kx(x, ·) is an operator in B(HKx ,Fy).
As a consequence, ∀x ∈ X , ∀ỹ ∈ Fy,∀h ∈ HKx , 〈Kx(·, x)ỹ, h〉HKx = 〈ỹ, h(x)〉Fy .

The Hilbert space HKx is called the reproducing kernel Hilbert space associated to the
kernel Kx. This RKHS can be built by taking the closure of span{Kx(·, x)α |x ∈ X ,α ∈
Fy}. The scalar product on HKx between two functions f =

∑n
i=1Kx(·, xi)αi and g =∑m

j=1Kx(·, tj)βj , xi, tj ∈ X , αi,βj ∈ Fy, is defined as:

〈f, g〉HKx =

n∑
i=1

m∑
j=1

〈αi,Kx(xi, tj)βj〉Fy .

The corresponding norm ‖ · ‖HKx is defined by ‖ f ‖2HKx= 〈f, f〉HKx . For sake of simplicity
we replace the notation HKx by H in the rest of the paper.

As for scalar-valued functions, one of the most appealing feature of RKHS is to provide
a theoretical framework for regularization with the representer theorems.
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3.1 Regularization in Vector-Valued RKHS

Based on the RKHS theory for vector-valued functions, Micchelli and Pontil (2005) have
proved a representer theorem for convex loss functions in the supervised case.

We note S` = {(xi, ỹi)}`i=1 ⊆ X ×Fy the set of labeled examples and H the RKHS with
reproducing kernel Kx : X × X → B(Fy).

Theorem 3 (Micchelli and Pontil (2005)) Let L be a convex loss function, and λ1 > 0
a regularization parameter. The minimizer of the following optimization problem:

argmin
h∈H

J (h) =
∑̀
i=1

L(h(xi), ỹi) + λ1‖h‖2H ,

admits an expansion:

ĥ(·) =
∑̀
j=1

Kx(·, xj)cj ,

where the coefficients cj , j = 1, · · · , ` are vectors in the Hilbert space Fy.

In the following, we plug the expansion form of the minimizer into the optimization prob-
lem and consider the problem of finding the coefficients cj for two different loss functions:
the least-squares loss and the hinge loss.

3.1.1 Penalized Least Squares

Considering the least-squares loss function for regularization of vector-valued functions, the
minimization problem becomes:

argmin
h∈H

J (h) =
∑̀
i=1

‖h(xi)− ỹi‖2Fy + λ1‖h‖2H . (3)

Theorem 4 (Micchelli and Pontil (2005)) Let cj ∈ Fy, j = 1, · · · , `, be the coefficients

of the expansion admitted by he minimizer ĥ of the optimization problem in Equation (3).
The vectors cj ∈ Fy satisfy the equations:

∑̀
i=1

(Kx(xj , xi) + λ1δij)ci = ỹj ,

where δ is the Kronecker symbol: δii = 1 and ∀j 6= i, δij = 0.

Let c = (cj)
`
j=1 ∈ F `y and ỹ = (ỹj)

`
j=1 ∈ F `y. This system of equations can be equiva-

lently written (Micchelli and Pontil, 2005):

(SX`S
∗
X`

+ λ1I)c = ỹ,

where I denotes the identity operator from F `y to F `y and SX` : H → F `y is the sampling

operator defined for every h ∈ H by: SX`h = (h(xi))
`
i=1. The expression of its adjoint

S∗X` : F `y → H of SX` for every c ∈ F `y is given by: S∗X`c =
∑`

i=1Kx(·, xi)ci. Therefore the
solution of the optimization problem in Equation (3) writes as:

hridge(x) = Kx(x, ·)S∗X`(SX`S
∗
X`

+ λ1I)−1ỹ.
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3.1.2 Maximum Margin Regression

Szedmak et al. (2005) formulated a Support Vector Machine algorithm with vector output,
called Maximum Margin Regression (MMR). The optimization problem of MMR in the
supervised setting is the following:

argmin
h
J (h) =

∑̀
i=1

max(0, 1− 〈ỹi, h(xi)〉Fy) + λ1‖h‖2H. (4)

In Szedmak et al. (2005), the function h was modeled as: h(x) = Wϕx(x) + b, where
ϕx is a feature map associated to a scalar-valued kernel. In this subsection, we extend this
maximum margin based regression framework to the context of the vector-valued RKHS
theory by searching h in the RKHS H associated to Kx.

Similarly to SVM, the MMR problem (4) can be expressed according to a primal for-
mulation that involves the optimization of h ∈ H and slack variables ξi ∈ R, i = 1, . . . , `,
as well as its dual formulation which is expressed according to the Lagrangian parameters
α = [α1, . . . , α`]

T ∈ R`. The latter leads to solve a quadratic program, for which efficient
solvers exist. Both formulations are given below.

The primal form of the MMR optimization problem can be written as:

min
h∈H,{ξi∈R}`i=1

λ1‖h‖2H +
∑̀
i=1

ξi

s.t. 〈ỹi, h(xi)〉Fy ≥ 1− ξi, i = 1, . . . , `

ξi ≥ 0, i = 1, . . . , `.

The Lagrangian of the above problem is given by:

La(h, ξ,α,η) = λ1‖h‖2H +
∑̀
i=1

ξi −
∑̀
i=1

αi(〈Kx(·, xi)ỹi, h〉H − 1 + ξi)−
∑̀
i=1

ηiξi,

with αi and ηi being Lagrange multipliers. By differentiating the Lagrangian with respect
to ξi and h and setting the derivatives to zero, the dual form of the optimization problem
can be expressed as:

min
α∈R`

1

4λ1

∑̀
i,j=1

αiαj〈ỹi,Kx(xi, xj)ỹj〉Fy −
∑̀
i=1

αi

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `

(5)

and the solution ĥ can be written as: ĥ(·) = 1
2λ1

∑`
j=1 αjKx(·, xj)ỹj . Note that, similarly

to KDE, we retrieve the original MMR solution when using the following operator-valued
kernel: Kx(x, x′) = κx(x, x′) I.

In Appendix B, we derive the dual optimization problem for a general convex loss
function using the Fenchel duality.
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3.2 Extension to Semi-Supervised Learning

In the case of real-valued functions, Belkin et al. (2006) have introduced a novel framework,
called manifold regularization. This approach is based on the assumption that the data
lie in a low-dimensional manifold. Belkin et al. (2006) have proved a representer theorem
devoted to semi-supervised learning by adding a new regularization term which exploits the
information of the geometric structure. This regularization term forces the target function
h to be smooth with respect to the underlying manifold. In general, the geometry of
this manifold is not known but it can be approximated by a graph. In this graph, nodes
correspond to labeled and unlabeled data and edges reflect the local similarities between
data in the input space. For example, this graph can be built using k-nearest neighbors.
The representer theorem of Belkin et al. (2006) has been extended to the case of vector-
valued functions in Brouard et al. (2011) and Minh and Sindhwani (2011). In the following,
we present this theorem and derive the solutions for the least-squares loss function and
maximum margin regression.

Let L be a convex loss function. Given a set of ` labeled examples {(xi, ỹi)}`i=1 ⊆ X×Fy
and an additional set of n unlabeled examples {xi}`+ni=`+1 ⊆ X , we consider the following
optimization problem:

argmin
h∈H

J (h) =
∑̀
i=1

L(h(xi), ỹi) + λ1‖h‖2H + λ2

`+n∑
i,j=1

Wij‖h(xi)− h(xj)‖2Fy , (6)

where λ1, λ2 > 0 are two regularization hyperparameters and W is the adjacency matrix
of a graph built from labeled and unlabeled data. This matrix measures the similarity
between objects in the input space. We assume that the values of W are non-negative.
This optimization problem can be rewritten as:

argmin
h∈H

J (h) =
∑̀
i=1

L(h(xi), ỹi) + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy ,

where L is the graph Laplacian given by L = D − W , and D is the diagonal matrix of
general term Dii =

∑`+n
j=1 Wij . Instead of the graph Laplacian, other matrices, such as

iterated Laplacians or diffusion kernels (Kondor and Lafferty, 2002), can also be used.

Theorem 5 (Brouard et al. (2011); Minh and Sindhwani (2011)) The minimizer
of the optimization problem in Equation (6) admits an expansion:

ĥ(·) =

`+n∑
j=1

Kx(·, xj)cj ,

for some vectors cj ∈ Fy, j = 1, · · · , `+ n.

This theorem extends the representer theorem proposed by Belkin et al. (2006) to vector-
valued functions. Besides, it also extends Theorem 3 to the semi-supervised framework.
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3.2.1 Semi-Supervised Penalized Least-Squares

Considering the least-squares cost, the optimization problem becomes:

argmin
h∈H

J (h) =
∑̀
i=1

‖h(xi)− ỹi‖2Fy + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy . (7)

Theorem 6 (Brouard et al. (2011); Minh and Sindhwani (2011)) The coefficients
cj ∈ Fy, j = 1, · · · , `+ n of the expansion admitted by the minimizer ĥ of the optimization
problem (7) satisfy this equation:

Jj

`+n∑
i=1

Kx(xj , xi)ci + λ1cj + 2λ2

`+n∑
i=1

Lij

`+n∑
m=1

Kx(xi, xm)cm = Jj ỹj ,

where Jj ∈ B(Fy) is the identity operator if j ≤ ` and the null operator if ` < j ≤ (`+ n).

For the proofs of Theorems 5 and 6, the reader can refer to the proofs given in the supple-
mentary materials of Brouard et al. (2011) or Minh and Sindhwani (2011).

As in the supervised setting, the solution of the optimization problem (7) can be ex-
pressed using the sampling operator:

hridge(x) = Kx(x, ·)S∗X`+n(JJ∗SX`+nS
∗
X`+n

+ λ1I + 2λ2MSX`+nS
∗
X`+n

)−1J ỹ,

where the operator J ∈ B(F `y,F `+ny ) is defined for every c = (cj)
`
j=1 ∈ F `y as: Jc =

(c1, . . . , c`,0, . . . ,0). Its adjoint is defined as: J∗(cj)
`+n
j=1 = (cj)

`
j=1. M is an operator in

B(F `+ny ) and each Mij , i, j ∈ N`+n is an operator in B(Fy) equal to LijI.

3.2.2 Semi-Supervised Maximum Margin Regression

The optimization problem in the semi-supervised case using the hinge loss is the following:

argmin
h∈H

J (h) =
∑̀
i=1

max(0, 1− 〈ỹi, h(xi)〉Fy) + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy . (8)

Theorem 7 The solution of the optimization problem (8) is given by

h(·) =
1

2
B−1

(∑̀
i=1

αiKx(·, xi)ỹi
)
,

where B = λ1I + 2λ2
∑`+n

i,j=1 LijKx(·, xi)Kx(xj , ·) is an operator from H to H, and α is the
solution of

min
α∈R`

1

4

∑̀
i,j=1

αiαj〈Kx(·, xi)ỹi, B−1Kx(·, xj)ỹj〉H −
∑̀
i=1

αi

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `.

(9)

The proof of this theorem is detailed in Appendix A.
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3.3 Solutions when Fy = Rd

In this subsection we consider that the dimension of Fy is finite and equal to d. We first
introduce the following notations:

• Ỹ` = (ỹ1, . . . , ỹ`) is a matrix of size d× `,

• C` = (c1, . . . , c`), C`+n = (c1, . . . , c`+n),

• Kx
X`

= (Kx(x1, x), . . . ,Kx(x`, x))T , Kx
X`+n

= (Kx(x1, x), . . . ,Kx(x`+n, x))T ,

• KX` is a ` × ` block matrix, where each block is a d × d matrix. The (j, k)-th block
of KX` is equal to Kx(xj , xk),

• KX`+n is a (` + n) × (` + n) block matrix such that the (j, k)-th block of KX`+n is
equal to Kx(xj , xk),

• I`d and I(`+n)d are identity matrices of size (`d)× (`d) and (`+ n)d× (`+ n)d,

• J = (I`, 0) is a `× (`+ n) matrix that contains an identity matrix of size `× ` on the
left hand side and a zero matrix of size `× n on the right hand side,

• ⊗ denotes the Kronecker product and vec(A) denotes the vectorization of a matrix
A, formed by stacking the columns of A into a single column vector.

In the supervised setting, the solutions for the least-squares loss and MMR can be
rewritten as h(x) = (Kx

X`
)TC`, where C` is given by:

C`ridge = (λ1I`d + KX`)
−1 vec(Ỹ`),

C`mmr =
1

2λ1
vec(Ỹ` diag (α)).

In the semi-supervised setting, these solutions can be written as h(x) = (Kx
X`+n

)TC`+n
where:

C`+nridge =
(
λ1I(`+n)d + ((JTJ + 2λ2L)⊗ Id)KX`+n

)−1
vec(Ỹ`J),

C`+nmmr =
(
2λ1I(`+n)d + 4λ2(L⊗ Id)KX`+n

)−1
vec(Ỹ` diag (α)J).

For MMR, the vector α is obtained by solving the following optimization problem:

min
α∈R`

1

4
vec
(
Ỹ` diag (α)J

)T
(
λ1I(`+n)d + 2λ2KX`+n(L⊗ Id)

)−1
KX`+n vec

(
Ỹ` diag (α

)
J)−αT1

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `.

(10)

In the case of IOKR, Fy is the feature space of some output kernel. Its dimension may
therefore be infinite depending of which kernel is used. In this case, explicit feature vectors
can be defined using the eigendecomposition of the output kernel matrix on the labeled
data.
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3.4 Models for General Decomposable Kernels

In the remainder of this section we propose to derive models based on on a simple but
powerful family of operator-values kernels (OVK) based on scalar-valued kernels, called
decomposable kernels or separable kernels (Álvarez et al., 2012; Baldassarre et al., 2012).
They correspond to the simplest generalization of scalar kernels to operator-valued kernels.
Decomposable kernels were first defined to deal with multi-task regression (Evgeniou et al.,
2005; Micchelli and Pontil, 2005) and later, with structured multi-class classification (Din-
uzzo et al., 2011). Other kernels (Caponnetto et al., 2008; Álvarez et al., 2012) have also
been proposed: for instance, Lim et al. (2013) introduced a Hadamard kernel based on the
Hadamard product of decomposable kernels and transformable kernels to deal with nonlin-
ear vector autoregressive models. Caponnetto et al. (2008) proved that they are universal,
meaning that an operator-valued regressor built on them is a universal approximator in Fy.
Proposition 8 The class of decomposable operator-valued kernels is composed of kernels
of the form:

Kx : X × X → B(Fy)
(x, x′) 7→ κx(x, x′)A

where κx : X ×X → R is a scalar-valued input kernel and A ∈ B(Fy) is a positive semidef-
inite operator.

In the multi-task learning framework, Fy = Rd is a finite dimensional output space and the
matrix A encodes the existing relations among the d different tasks. This matrix can be
estimated from labeled data or being learned simultaneously with the matrix C (Dinuzzo
et al., 2011).

In the following we assume that the dimension of Fy is finite and equal to d: Fy = Rd.

3.4.1 Penalized Least-Squares Regression

In this section, we will use the following notations: Fx and the function ϕx : X → Fx corre-
spond respectively to the feature space and the feature map associated to the input scalar
kernel κx. We note κxX` = (κx(x1, x), . . . , κx(x`, x))T the vector of length ` containing the

kernel values between the labeled examples and x and κxX`+n = (κx(x1, x), . . . , κx(x`+n, x))T .
Let KX` and KX`+n be respectively the Gram matrices of κx over the sets X` and X`+n. I`
denotes the identity matrix of size `.

The minimizer h of the optimization problem for the penalized least-squares cost in the
supervised setting (3) using a decomposable OVK can be expressed as:

∀x ∈ X , h(x) = A
∑̀
i=1

κx(x, xi)ci = AC` κ
x
X`

= ((κxX`)
T ⊗A) vec(C`)

= ((κxX`)
T ⊗A) (λ1I`d +KX` ⊗A)−1 vec(Ỹ`).

(11)

Therefore, the computation of the solution h requires to compute the inverse of a matrix of
size `d× `d. A being a real symmetric matrix, we can write the eigendecomposition of A:

A = EΓET =

d∑
i=1

γieie
T
i ,
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where E = (e1, . . . , ed) is a d×d matrix and Γ is a diagonal matrix containing the eigenvalues
of A: Γ = diag (γ1, . . . , γd). Using the eigendecomposition of A, we can prove that the
solution ĥ(x) can be obtained by solving d independent problems.

Proposition 9 The minimizer of the optimization problem for the supervised penalized
least squares cost (3) in the case of a decomposable operator-valued kernel can be expressed
as:

∀x ∈ X , hridge(x) =

d∑
j=1

γjeje
T
j Ỹ`(λ1I` + γjKX`)

−1κxX` , (12)

and in the semi-supervised setting (7), it writes as

∀x ∈ X , hridge(x) =
d∑
j=1

γjeje
T
j Ỹ`J

(
λ1I`+n + γjKX`+n(JTJ + 2λ2L)

)−1
κxX`+n .

We observe that, in the supervised setting, the complexity to solve Equation (11) is equal
to O((`d)3), while the complexity for solving Equation (12) is O(d3 + `3).

3.4.2 Maximum Margin Regression

Proposition 10 Given Kx(x, x′) = κx(x, x′)A, the dual formulation of the MMR opti-
mization problem (4) in the supervised setting becomes:

min
α∈R`

1

4λ1
αT (Ỹ T

` AỸ` ◦KX`)α−αT1

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `

where ◦ denotes the Hadamard product, and the solution is given by:

hmmr(x) =
1

2λ1
AỸ` diag (α)κxX` .

In the semi-supervised MMR minimization problem (8), it writes as:

min
α∈R`

1

2
αT (

d∑
i=1

γiỸ
T
` eie

T
i Ỹ` ◦ J(2λ1I`+n + 4λ2γiKX`+nL)−1KX`+nJ

T )α−αT1

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `.

The corresponding solution is:

hmmr(x) =
1

2

d∑
j=1

γjeje
T
j Ỹ` diag (α)J

(
λ1I`+n + 2γjλ2KX`+nL

)−1
κxX`+n .

Proofs of Propositions 9 and 10 are given in Appendix A.
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4. Model Selection

Real-valued kernel-based models enjoy a closed-form solution for the estimate of the leave-
one-out criterion in the case of kernel ridge regression (Golub et al., 1979; Rifkin and Lippert,
2007). In order to select the hyperparameters of OVK-based models with a least-squares
loss presented below, we develop a closed-form solution for the leave-one-out estimate of
the sum of square errors. This solution extends Allen’s predicted residual sum of squares
(PRESS) statistics (Allen, 1974) to vector-valued functions. This result was first presented
in french in the PhD thesis of Brouard (2013) in the case of decomposable kernels. In the
following, we will use the notations used by Rifkin and Lippert (2007). We assume in this
section that the dimension of Fy is finite.

Let S = {(x1, ỹ1), . . . , (x`, ỹ`)} be the training set composed of ` labeled points. We
define Si, 1 ≤ i ≤ `, as the labeled data set with the ith point removed:

Si = {(x1, ỹ1), . . . , (xi−1, ỹi−1), (xi+1, ỹi+1), . . . , (x`, ỹ`)}.

In this section, hS denotes the function obtained when the regression problem is trained on
the entire training set S and we note hSi(xi) the ith leave-one-out value, that is the value
at the point xi of the function obtained when the training set is Si. The PRESS criterion
corresponds to the sum of the ` leave-one-out square errors:

PRESS =
∑̀
i=1

‖ỹi − hSi(xi)‖2Fy .

As for scalar-valued functions, we show that it is possible to compute this criterion
without evaluating explicitly hSi(xi) for i = 1, . . . , ` and for each value of the grid of
parameters.

Assuming we know hSi , we define the matrix Ỹ i
` = (ỹi1, . . . , ỹ

i
`), where the vector ỹij is

given by:

ỹij =

{
ỹj if j 6= i,

hSi(xi) if j = i.

In the following, we show that when using Ỹ i
` instead of Ỹ`, the optimal solution corre-

sponds to hSi :

∑̀
j=1

‖ỹij−hS(xj)‖2Fy + λ1‖hS‖2H + λ2

`+n∑
j,k=1

Wjk‖hS(xj)− hS(xk)‖2Fy

≥
∑
j 6=i
‖ỹij − hS(xj)‖2Fy + λ1‖hS‖2H + λ2

`+n∑
j,k=1

Wjk‖hS(xj)− hS(xk)‖2Fy

≥
∑
j 6=i
‖ỹij − hSi(xj)‖2Fy + λ1‖hSi‖2H + λ2

`+n∑
j,k=1

Wjk‖hSi(xj)− hSi(xk)‖2Fy

≥
∑̀
j=1

‖ỹij − hSi(xj)‖2Fy + λ1‖hSi‖2H + λ2

`+n∑
j,k=1

Wjk‖hSi(xj)− hSi(xk)‖2Fy .
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The second inequality comes from the fact that hSi is defined as the minimizer of the
optimization problem when the ith point is removed from the training set. As hSi is the
optimal solution when Ỹ` is replaced with Ỹ i

` , it can be written as:

∀i = 1, . . . , `, hSi(xi) = (Kxi
X`+n

)TB vec(Ỹ i
` ) = (KB)i,· vec(Ỹ i

` ),

where K = KX`×(`+n)
is the input gram matrix between the sets X` and X`+n and B =

(λ1I(`+n)d + ((JTJ + 2λ2L)⊗ Id)KX`+n)−1(JT ⊗ Id). (KB)i,· corresponds to the ith row of
the matrix KB and (KB)i,j is the value of the matrix corresponding to the row i and the
column j.

We can then derive an expression of hSi by computing the difference between hSi(xi)
and hS(xi):

hSi(xi)− hS(xi) = (KB)i,· vec(Ỹ i
` − Ỹ`)

=
∑̀
k=1

(KB)i,k(ỹ
i
k − ỹk)

= (KB)i,i(hSi(xi)− ỹi),

which leads to

(Id − (KB)i,i)hSi(xi) = hS(xi)− (KB)i,iỹi

⇒ (Id − (KB)i,i)hSi(xi) = (KB)i,· vec(Ỹ`)− (KB)i,iỹi

⇒ hSi(xi) = (Id − (KB)i,i)
−1
(

(KB)i,· vec(Ỹ`)− (KB)i,iỹi

)
.

Let Loo = (hS1(x1), . . . , hS`(x`)) be the matrix containing the leave-one-out vector values
over the training set. The equation above can be rewritten as:

vec(Loo) = (I`d − diag b(KB))−1 (KB − diag b(KB)) vec(Ỹ`),

where diag b corresponds to the block diagonal of a matrix.
The Allen’s PRESS statistic can be expressed as:

PRESS = ‖ vec(Ỹ`)− vec(Loo)‖2

= ‖(I`d − diag b(KB))−1 (I`d − diag b(KB)−KB + diag b(KB)) vec(Ỹ`)‖2

= ‖(I`d − diag b(KB))−1 (I`d −KB) vec(Ỹ`)‖2.

This closed-form expression allows to evaluate the PRESS criterion without having to solve
` problems involving the inversion of a matrix of size (`+ n− 1)d.

5. Input Output Kernel Regression

We now have all the needed tools to approximate vector-valued functions. In this section,
we go back to IOKR and consider that Fy is the feature space associated to some output
kernel κy : Y×Y → R, and that vectors ỹi now correspond to output feature vectors ϕy(yi).
Several feature spaces can be defined, including the unique RKHS associated to the kernel
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κy. This choice has direct consequences on the choice of the input operator-valued kernel
Kx. Depending on the application, we might be interested for instance on choosing Fy as
a functional space to get integral operators or as the finite-dimensional Euclidean space Rd
to get matrices. It is important to notice that this reflects a radically new approach in
machine learning where we usually focus on the choice of the input feature space and do
not discuss a lot the output space. Moreover, the choice of a given triplet (κy,Fy,Kx) has
a great impact of the learning task both in terms of complexity in time and potentially of
performance. In the following, we explain how Input Output Kernel Regression can be used
to solve link prediction and multi-task problems.

5.1 Link Prediction

Link prediction is a challenging machine learning problem that has been defined recently
in social networks as well as biological networks. Let us formulate this problem using the
previous notations: X = Y = U is the set of candidate nodes we are interested in. We want
to estimate some relation between these nodes, for example a social relationship between
persons or some physical interaction between molecules. During the training phase we are
given G` = (U`, A`), a non oriented graph defined by the subset U` ⊆ U and the adjacency
matrix A` of size `× `. Supervised link prediction is usually addressed by learning a binary
pairwise classifier f : U ×U → {0, 1} that predicts if there exists a link between two objects
or not, from the training information G`. One way to solve this learning task is to build
a pairwise classifier. However, the link prediction problem can also be formalized as an
output kernel regression task (Geurts et al., 2007a; Brouard et al., 2011).

The OKR framework for link prediction is based on the assumption that an approxi-
mation of the output kernel κy will provide valuable information about the proximity of
the objects of U as nodes in the unknown graph defined on U . Given that assumption, a
classifier fθ is defined from the approximation κ̂y by thresholding its output values:

fθ(u, u
′) = sgn(κ̂y(u, u

′)− θ).

An approximation of the target output kernel κy is built from the scalar product between
the outputs of a single variable function h : U → Fy: κ̂y(u, u′) = 〈h(u), h(u′)〉Fy . Using
the kernel trick in the output space therefore allows to reduce the problem of learning a
pairwise classifier to the problem of learning a single variable function with output values
in a Hilbert space (the output feature space Fy).

In the case of IOKR, the function h is learnt in an appropriate RKHS by using the
operator-valued kernel regression approach presented in Section 3. In the following, we
describe the output kernel and the input operator-valued kernel that we propose to use for
solving the link prediction problem with IOKR.

Regarding the output kernel, we do not have a kernel κy defined on U × U in the link
prediction problem but we can define a Gram matrix KY` on the training set U`. Here, we
define KY` from the known adjacency matrix A` of the training graph such that it encodes
the proximities in the graph between the labeled nodes. For instance, we can choose the
diffusion kernel matrix (Kondor and Lafferty, 2002), which is defined as:

KY` = exp(−βLy`),
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B = Supervised learning Semi-supervised learning

Ridge (λ1I` +KX`)
−1 J(λ1I`+n +KX`+n(JTJ + 2λ2L))−1

MMR 1
2λ1

diag (α) 1
2 diag (α)J(λ1I`+n + 2λ2KX`+nL)−1

Table 2: Matrix B of the models obtained using the identity decomposable kernel in the
case of different settings and loss functions.

where Ly` = D` −A` is the graph Laplacian, with D` the diagonal matrix of degrees. The
kernel trick allows to work as if we have chosen the subspace spanned by {e1, . . . , e`}, the
eigenvectors of the matrix KY` as a feature space with an associated feature map that
verifies:

∀i ∈ {1, . . . , `}, ϕy(ui) = [
√
γ1e

i
1, . . . ,

√
γ`e

i
`]
T .

The kernel κy : U × U → R, also verifies:

∀i, j ∈ {1, . . . , `}, κy(ui, uj) = (KY`)i,j .

In practise, we only need to know KY` . Regarding the operator-valued kernel, we consider
here the identity decomposable kernel:

∀(u, u′) ∈ U × U , Kx(u, u′) = κx(u, u′)I.

We underline that even if this kernel may seem simple, we must be aware that in this
task, we do not have the explicit expressions of outputs ϕy(u) and prediction in Fy is not the
final target. Therefore this operator-valued kernel allows us to work properly with output
Gram matrix values.

Of particular interest for us is the expression of the scalar product which is the only one
we need for link prediction. When using the identity decomposable kernel, the approxima-
tion of the output kernel can be written as follows:

κ̂y(u, u
′) = 〈ĥ(u), ĥ(u′)〉Fy = (κux,U`)

TBTKY`B κu
′
x,U`

, (13)

where B is a matrix of size `× ` that depends of the loss function used (see Table 2). In the
semi-supervised setting, the approximated output kernel has a similar expression, where
κux,U` ,κ

u′
x,U`

are replaced by κux,U`+n ,κ
u′
x,U`+n

and B is a matrix of size (` + n) × `. We can

notice that we do not need to know the explicit expressions of outputs ϕy(u) to compute
this scalar product. Besides, the approximation of the scalar product 〈ϕy(u), ϕy(u

′)〉Fy can
be interpreted as a modified scalar product between the inputs ϕx(u) and ϕx(u′).

5.2 Multi-Task Learning

Multi-task learning has been developed based on the observation that it may happen that
several learning tasks are not disjoint and are characterized by a relationship such as inclu-
sion or similarity. Learning simultaneously such related tasks has been shown to improve
the performance comparing to learning the different tasks independently from each other
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(Caruana, 1997; Evgeniou et al., 2005). Examples of multi-task learning problems can be
found in document categorization as well as in protein functional annotation prediction.
Dependencies among target variables can also be encountered in the case of multiple re-
gression.

We consider here the case of learning d tasks having the same input and output domains.
Evgeniou et al. (2005) have shown that this problem is equivalent to learning a vector-valued
function h : X → Y with d components hi : X → Yi using the vector-valued RKHS theory.
A natural way to integrate the task relatedness with operator-valued kernels is to use the
decomposable kernels introduced in Subsection 3.4: Kx(x, x′) = κx(x, x′)A. Several values
for the matrix A have been proposed (Evgeniou et al., 2005; Sheldon, 2008; Baldassarre
et al., 2012) based on the fact that the regularization term in the RKHS associated to a
decomposable OVK can be expressed in function of A:

‖h‖2H =

d∑
i,j=1

A†i,j〈hi, hj〉Hκx ,

where † denotes the pseudoinverse and Hκx the RKHS associated to the scalar kernel κx.
In the IOKR framework, the task structure can be encoded in two different ways. We

can use a decomposable OVK in input as described previously and define a regularization
term that will penalize the d components of the function h according to the task structure.
Another way is to modify the output representation by defining an output kernel that will
integrate the task structure. We propose to compare the three following models to solve
multi-task learning with our framework:

• Model 0: κy(y,y
′) = yTy′, with the identity kernel Kx(x, x′) = κx(x, x′) I,

• Model 1: κy(y,y
′) = yTA1y

′, with the identity kernel Kx(x, x′) = κx(x, x′) I,

• Model 2: κy(y,y
′) = yTy′, with the decomposable kernel Kx(x, x′) = κx(x, x′)A2.

In the first case, the different tasks are learned independently :

∀x ∈ X , ĥ0(x) = Y`J
(
λ1I`+n +KX`+n(JTJ + 2λ2L)

)−1
κxX`+n ,

while in the other cases, the tasks relatedness is taken into account :

∀x ∈ X , ĥ1(x) =
√
A1Y`J

(
λ1I`+n +KX`+n(JTJ + 2λ2L)

)−1
κxX`+n ,

∀x ∈ X , ĥ2(x) =
d∑
j=1

γjeje
T
j Y`J(λ1I`+n + γjKX`+n(JTJ + 2λ2L))−1κxX`+n ,

where γj and ej are the eigenvalues and eigenvectors of A2.
We consider a matrix M of size d × d that encodes the relations existing between the

different tasks. This matrix can be considered as the adjacency matrix of a graph between
tasks. We note LM the graph Laplacian associated to this matrix. The matrices A1 and
A2 are defined as follow:

A1 = µM + (1− µ)Id,

A2 = (µLM + (1− µ)Id)
−1,
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where µ is a parameter in [0, 1].
The matrix A2 was proposed by Evgeniou et al. (2005) and Sheldon (2008) for multi-task

learning from the following regularizer:

‖h2‖2H =
µ

2

d∑
i,j=1

Mij‖hi2 − hj2‖2 + (1− µ)

d∑
i=1

‖hi2‖2.

This regularization term forces two tasks hi2 and hj2 to be close to each other when the
similarity value Mij is high and conversely.

6. Numerical Experiments

In this section, we present the performances obtained with the IOKR approach on two differ-
ent problems: link prediction and multi-task regression. In these experiments, we examine
the effect of the smoothness constraint through the variation of its related hyperparameter
λ2, using supervised method as a baseline. We evaluate the method in the transductive
setting, in which the goal is to predict the correct outputs for the unlabeled examples, as
well as in the semi-supervised setting.

6.1 Link Prediction

For the link prediction problem, we considered experiments on three datasets: a collection
of synthetic networks, a co-authorship network and a protein-protein interaction (PPI)
network.

6.1.1 Protocol

For different percentages of labeled nodes, we randomly selected a subsample of nodes as
labeled nodes. We split the remaining nodes in two subsets: one containing the unlabeled
nodes and another containing the test nodes. Labeled interactions correspond to interac-
tions between two labeled nodes. This means that when 10% of labeled nodes are selected,
it corresponds to only 1% of labeled interactions. The performances were evaluated by av-
eraging the areas under the ROC curve and the precision-recall curve (denoted AUC-ROC
and AUC-PR) over ten random choices of the labeled set. A Gaussian kernel was used for
the scalar input kernel κx. Its corresponding bandwidth σ was selected by a leave-one-out
cross-validation procedure on the training set to maximize the AUC-ROC, jointly with the
hyperparameter λ1. In the case of the least-squares loss function, we used the leave-one-out
estimates approach introduced in Section 4. The output kernel used is a diffusion kernel
of parameter β. Another diffusion kernel of parameter β2 was also used for the smoothing

penalty: exp(−β2L) =
∑∞

i=0
(−β2L)i

i! , where L is the Laplacian of W . Preliminary runs have
shown that the values of β and β2 have a limited influence on the performances, we then
have set both parameters to 1. Finally we set W to KX`+n .

6.1.2 Synthetic Networks

We first illustrate our method on synthetic networks where the input kernel was chosen as a
very good approximation of the output kernel. In these experiments we wanted to measure
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the improvement brought by the semi-supervised method in extreme cases, i.e. when the
percentage of labeled nodes is very low.

The output networks were obtained by sampling random graphs containing 700 nodes
from a Erdős-Renyi law with different graph densities. The graph density corresponds to
the probability of presence of edges in the graph. In this experiment we chose three densities
that are representative of real network densities: 0.007, 0.01 and 0.02. For each network, we
used the diffusion kernel on the full graph as output kernel and chose the diffusion parameter
such that it maximizes an information criterion. To built an input kernel corresponding to
a good approximation of the output kernel, we applied kernel PCA on the output kernel
and derived input vectors from the truncated basis of the first components. We can control
the quality of the input representation by varying the relative inertia captured by the first
components. We then build a Gaussian kernel based on these inputs.

Figures 3 and 4 report respectively the averaged values and standard deviations for the
AUC-ROC and AUC-PR obtained for different network densities and different percentages
of labeled nodes in the transductive setting. IOKR-ridge corresponds to IOKR with a least-
square loss and IOKR-margin to the hinge loss used in MMR. For these results, we used the
components capturing 95% of the variance for defining the input vectors. We observe that
IOKR-ridge outperforms IOKR-margin in the supervised and in the semi-supervised cases.
This improvement is particularly significant for AUC-PR, especially when the network den-
sity is strong and the percentage of labeled data is high. It is thus very significant for 10%
and 20% of labeled data. In the supervised case, this observation can be explained by the
difference between the complexities of the models. As shown in Equation (13), the solution
obtained in the supervised case writes as: κ̂y(u, u

′) = (κux,U`)
TBTKY`B κu

′
x,U`

. In Table 2,
we can see that the matrix B is only a diagonal matrix in the case of IOKR-margin while B
is a full matrix for IOKR-ridge. This can also be seen in the dual optimization problem for
a general loss function (see Appendix B), where we observe that the dual variables αi are
simply collinear to the vector ỹi for IOKR-margin. The synthetic networks may therefore
require a more complex predictor.

We observe an improvement of the performances in terms of AUC-ROC and AUC-PR
for both approaches in the semi-supervised setting compared to the supervised setting. This
improvement is more significant for IOKR-margin. This can be explained by the fact that
the IOKR-margin models obtained in the supervised and in the semi-supervised cases do not
have the same complexity. As shown in Table 2, the matrix B of the IOKR-margin model
is a much richer matrix in the semi-supervised setting than in the supervised setting where
it corresponds to a diagonal matrix. For IOKR-ridge, the improvement of the performance
is only observed for low percentages of labeled data. We can therefore make the assumption
that for this model, using unlabeled data increases the AUCs for low percentages of labeled
data. But when enough information can be found in the labeled data, semi-supervised
learning does not improve the performance. Based on these results, we can also formulate
the assumption that link prediction is harder in the case of dense networks.

In Appendix C we experimented how the method behaves with perfect to noisy input
features. We chose different levels of inertia (75%, 85%, 95% and 100%) for defining the
input features. The results obtained with IOKR-ridge and IOKR-margin are shown in Table
8. We also include results on synthetic networks generated using mixtures of Erdős-Renyi
random graphs in Table 9.
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Figure 3: Averaged AUC-ROC for the reconstruction of three synthetic networks with
IOKR-margin (left) and IOKR-ridge (right) in the transductive setting. The
rows correspond to different graph densities (denoted pdens), which are 0.007,
0.01 and 0.02 respectively.
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Figure 4: Averaged AUC-PR for the reconstruction of three synthetic networks with IOKR-
margin (left) and IOKR-ridge (right) in the transductive setting. The rows cor-
respond to different graph densities (denoted pdens), which are 0.007, 0.01 and
0.02 respectively.
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6.1.3 NIPS Co-authorship Network

We applied our method on a co-authorship network containing information on publications
of the NIPS conferences between 1988 to 2003 (Globerson et al., 2007). In this network,
vertices represent authors and an edge connects two authors if they have at least one NIPS
publication in common. Among the 2865 authors, we considered the ones with at least two
links in the co-authorship network in order to have a significant density and try to keep
close to the original data. We therefore focused on a network containing 2026 authors with
an empirical link density of 0.002. Each author was described by a vector of 14036 values,
corresponding to the frequency with which he uses each given word in his papers.

Figure 5 reports the averaged AUC-ROC and AUC-PR obtained on the NIPS co-
authorship network in the transductive setting for different values of λ2 and different per-
centages of labeled nodes. As previously, we observe that the semi-supervised approach
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Figure 5: AUC-ROC and AUC-PR obtained for the NIPS co-authorship network inference
with IOKR-margin (left) and IOKR-ridge (right) in the transductive setting.
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AUC-ROC AUC-PR
p 5% 10% 20% 5% 10% 20%

Transductive setting

EM 87.3± 2.4 92.9± 1.7 96.4± 0.8 13.8± 4.5 22.5± 6.6 41.1± 2.5
PKMR 85.7± 4.1 92.4± 1.6 96.4± 0.4 9.7± 2.8 20.0± 4.8 38.8± 2.0
IOKR 83.6± 5.9 93.6± 1.0 96.5± 0.4 12.0± 3.0 24.5± 2.9 43.7± 1.9

Semi-supervised setting

IOKR 86.0± 2.7 93.3± 0.7 95.7± 1.4 7.6± 2.3 13.8± 1.7 25.3± 3.0

Table 3: AUC-ROC and AUC-PR obtained for the NIPS co-authorship network inference
with EM, PKMR, IOKR in the transductive setting, and with IOKR in the semi-
supervised setting. p indicates the percentage of labeled examples.

improves the performances compared to the supervised one for both models. For AUC-
ROC values, this improvement is especially important when the percentage of labeled nodes
is low. Indeed, with 2.5% of labeled nodes, the improvement can reach in average up to
0.14 points of AUC-ROC for IOKR-margin and up to 0.11 points for IOKR-ridge. As for
the synthetic networks, the IOKR-ridge model outperforms IOKR-margin model in terms
of AUC-ROC and AUC-PR, especially when the proportion of labeled examples is large.
The explanation provided for the synthetic networks regarding the complexity of the solu-
tions for IORK-margin and IOKR-ridge holds here also. In the following, we will focus on
IOKR-ridge only.

We compared IOKR-ridge with two transductive approaches: the EM-based approach
(Tsuda et al., 2003; Kato et al., 2005) and Penalized Kernel Matrix Regression (PKMR)
(Yamanishi and Vert, 2007). These two methods regard the link prediction problem as a
kernel matrix completion problem. The EM method fills the missing entries of the output
Gram matrix KY by minimizing the information geometry, as measured by the Kullback-
Leibler divergence, with the input Gram matrix KX . The PKMR approach considers the
kernel matrix completion problem as a regression problem between the labeled input Gram
matrix KX` and the labeled output Gram matrix KY` . We did not compare our method with
the Link Propagation framework (Kashima et al., 2009) because this framework assumes
that arbitrary interactions may be considered as labeled while IOKR requires a known
subgraph. 500 examples were used for the test set and the remaining 1526 examples for
the training set, which corresponds to the union of the labeled and unlabeled sets. For
the labeled set we used 5%, 10% and 20% of the training examples and the left examples
for the unlabeled set. We averaged the AUC over ten random partitions of the examples
in labeled/unlabeled/test sets. The hyperparameters were selected by a 5-CV experiment
on the labeled set for the three methods. The hyperparameters were selected separately
for the AUC-ROC and the AUC-PR. For IOKR, we selected also the λ2 parameter in this
experiment, and we sparsified the matrix W in the semi-supervised constraint using 10% of
the k-nearest-neighbors.

The results obtained for the comparison in the transductive and semi-supervised setting
are reported in Table 3. Only the results for IOKR-ridge are reported in the semi-supervised
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setting as the other methods are transductive. We observe that IOKR obtains better AUC-
ROC and AUC-PR than EM and PKMR when the percentage of labeled data is greater
or equal than 10%. For 5% the best performing method is the EM approach. Regarding
the results of IOKR in the semi-supervised setting, we observe that the AUC-ROC results
stay relatively similar compared to the transductive setting. However the AUC-PR values
decrease significantly between the transductive and the semi-supervised settings. Consider-
ing the proteins for which we want to predict the interactions in the continuity constraint
seems to help a lot the performances in term of AUC-PR.

6.1.4 Protein-Protein Interaction Network

We also performed experiments on a protein-protein interaction (PPI) network of the yeast
Saccharomyces Cerevisiae. This network was built using the DIP database (Salwinski et al.,
2004), which contains protein-protein interactions that have been experimentally deter-
mined and manually curated. We used more specifically the high confidence DIP core
subset of interactions (Deane et al., 2002). For the input kernels, we used the annotations
provided by Gene Ontology (GO) (Ashburner et al., 2000) in terms of biological processes,
cellular components and molecular functions. These annotations are organized in three
different ontologies. Each ontology is represented by a directed acyclic graph, where each
node is a GO annotation and edges correspond to relationships between the annotations,
like sub-class relationships for example. A protein can be annotated to several terms in an
ontology. We chose to represent each protein ui by a vector si, whose dimension is equal to
the total number of terms in the considered ontology. If a protein ui is annotated by the
term t, then :

s
(t)
i = − ln

(
number of proteins annotated by t

total number of proteins

)
.

This encoding allows to take into account the specificity of a term in the ontology.
We then used these representations to built a Gaussian kernel for each GO ontology. By
considering the set of proteins being annotated for each input kernel and being involved in
at least one physical interaction, we obtained a PPI network containing 1242 proteins.

Based on the previous numerical results, we chose to consider only IOKR-ridge in the
following experiments. We compared our approach to several supervised methods proposed
for biological network inference:

• Naive (Yamanishi et al., 2004): this approach predicts an interaction between two
proteins u and u′ if κx(u, u′) is greater than a threshold θ.

• kCCA (Yamanishi et al., 2004): kernel CCA is used to detect correlations existing
between the input kernel and a diffusion kernel derived from the adjacency matrix of
the labeled PPI network.

• kML (Vert and Yamanishi, 2005): kernel Metric Learning consists in learning a new
metric such that interacting proteins are close to each other, and conversely for non
interacting proteins.

• Local (Bleakley et al., 2007): a local model is built for each protein in order to learn the
subnetwork associated to each protein and these models are then combined together.
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• OK3+ET (Geurts et al., 2006, 2007a): Output Kernel Tree with extra-trees is a tree-
based method where the output is kernelized and is combined with ensemble methods.

The pairwise kernel method (Ben-Hur and Noble, 2005) was not considered here because
this method requires to define a Gram matrix between pairs of nodes, which raises some
practical issues in terms of computation time and storage. However we could have used an
online implementation of the pairwise kernel method like the one used in Kashima et al.
(2009) and thus avoid to store the large Gram matrix.

Each method was evaluated through a 5-fold cross-validation (5-CV) experiment and
the hyperparameters were tuned on the training fold using a 4-CV experiment. As the local
method can not be used for predicting interactions between two proteins of the test set,
AUC-ROC and AUC-PR were only computed for the prediction of interactions between
proteins in the test set and proteins in the training set. Input kernel matrices were defined
for GO ontology and an integrated kernel, which was obtained by averaging the three input
kernels, was also considered. Table 4 reports the results obtained for the comparison of the
different methods in the supervised setting. We can see that output kernel regression based
methods work better on this dataset than the other methods. In terms of AUC-ROC, the
IOKR-ridge method obtains the best results for the four different input kernels, while for
AUC-PR, OK3 with extra-trees presents better performances. We also compared the aver-

a) AUC-ROC:

Method GO-BP GO-CC GO-MF int

Naive 60.8± 0.8 64.4± 2.5 64.2± 0.8 67.7± 1.5
kCCA 82.4± 3.6 77.0± 1.7 75.0± 0.6 85.7± 1.6
kML 83.2± 2.4 77.8± 1.1 76.6± 1.9 84.5± 1.5
Local 79.5± 1.6 73.1± 1.3 66.8± 1.2 83.0± 0.5

OK3+ET 84.3± 2.4 81.5± 1.6 79.3± 1.8 86.9± 1.6
IOKR-ridge 88.8± 1.9 87.1± 1.3 84.0± 0.6 91.2± 1.2

b) AUC-PR:

Method GO-BP GO-CC GO-MF int

Naive 4.8± 1.0 2.1± 0.6 2.4± 0.4 8.0± 1.7
kCCA 7.1± 1.5 7.7± 1.4 4.2± 0.5 9.9± 0.4
kML 7.1± 1.3 3.1± 0.6 3.5± 0.4 7.8± 1.6
Local 6.0± 1.1 1.1± 0.3 0.7± 0.0 22.6± 6.6

OK3+ET 19.0± 1.8 21.8± 2.5 10.5± 2.0 26.8± 2.4
IOKR-ridge 15.3± 1.2 20.9± 2.1 8.6± 0.3 22.2± 1.6

Table 4: AUC-ROC and AUC-PR estimated by 5-CV for the yeast PPI network reconstruc-
tion in the supervised setting with different input kernels (GO-BP : GO biological
processes; GO-CC : GO cellular components; GO-MF : GO molecular functions;
int : average of the different kernels).
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Method Running time (s)

Naive 0.05± 0.01
kCCA 144.60± 70.70
kML 18.28± 0.78
Local 141.64± 14.91

OK3+ET 638.53± 69.09
IOKR-ridge 0.49± 0.02

Table 5: Averaged running time in seconds for one fold of the 5-CV for the yeast PPI
network reconstruction in the supervised setting.

aged running time for one fold of the 5-CV for the different methods. These running times
are shown in Table 5 and correspond to the times needed to perform both the training and
the prediction steps. All the algorithms were implemented in Matlab and run on a MacBook
Pro 2.4 GHz dual-core. For this computation, we fixed the values of the parameters and
we did not take into account the computation of the input kernel. In Table 5 we observe
that the running time of IOKR-ridge is relatively small compared to the other methods.
The fastest method is the naive method. It can be explained by the fact that this method
does not have a training step like the other methods. Interactions between two proteins are
simply predicted if the proteins are similar according to the input kernel function.

As for the NIPS co-authorship network, we compared IOKR-ridge with the EM and
PKMR approaches in the transductive setting. For this network, we used 300 examples for
the test set and the remaining 942 examples for the training set. We used as input kernel the
integrated kernel introduced in the supervised experiments. The results obtained for this
comparison as well as the results for IOKR-ridge in the semi-supervised setting are reported
in Table 6. Regarding the AUC-ROC, the EM approach obtains better results when the
percentage of labeled data is equal to 5%. For 10% and 20% of labeled data, the difference
between EM and IOKR-ridge is not significant. In terms of AUC-PR, EM achieves rather
good performances compared to the others, especially for 5% and 10% of labeled data.

AUC-ROC AUC-PR
p 5% 10% 20% 5% 10% 20%

Transductive setting

EM 82.2± 0.6 82.9± 0.6 84.6± 0.6 15.7± 1.4 16.5± 2.7 19.7± 0.7
PKMR 77.5± 2.3 80.8± 1.1 83.9± 1.2 6.1± 1.5 9.8± 1.8 13.8± 1.2
IOKR 80.6± 0.7 83.1± 0.5 83.9± 0.5 7.1± 1.1 11.7± 1.1 17.8± 1.5

Semi-supervised setting

IOKR 81.0± 1.1 82.9± 1.2 83.8± 1.0 6.6± 1.6 10.5± 1.3 16.0± 2.3

Table 6: AUC-ROC and AUC-PR obtained for the PPI network inference with EM, PKMR,
IOKR in the transductive setting, and with IOKR in the semi-supervised setting.
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p 5% 10% 20%

EM 0.19± 0.01 0.19± 0.00 0.22± 0.04
PKMR 0.16± 0.01 0.18± 0.00 0.19± 0.01
IOKR 1.61± 0.01 1.63± 0.01 1.76± 0.22

Table 7: Averaged running time in seconds of one repetition for the yeast PPI network
reconstruction in the transductive setting.

However we can notice that the EM-based approach is purely transductive while IOKR-
ridge learns a function and can therefore be used in the semi-supervised learning, which is
more general. Regarding the IOKR-ridge results in the semi-supervised setting, we observe
that the performances are very similar to the ones obtained in the transductive setting.
We also compared in Table 7 the averaged running time for different percentages of labeled
data. We can first observe that the three methods have a small running time (less than 2
seconds). EM and PKMR are a bit faster than IOKR-ridge as these methods require to
inverse a matrix of size `×` while IOKR-ridge needs to inverse a matrix of size (`+n)×(`+n).

6.2 Application to Multi-Task Regression

In the following, we compare the behavior of the three models proposed for multi-task
learning with IOKR in Section 5 on a drug activity prediction problem. The goal of this
problem is to predict the activities of molecules in different cancer cell lines (cancer types).
This problem has potential applications in cancer drug discovery. In this application, X
corresponds to the set of molecules and Y = Fy = Rd, where d is the number of cell lines.

6.2.1 Dataset

We used the dataset of Su et al. (2010) that contains the biological activities of molecules
against a set of 59 human cancer cell lines. These data have been extracted from the NCI-
Cancer dataset. We used the ”No-Zero-Active” version of the dataset which contains the
2303 molecules that are all active against at least one cell line. Each molecule is represented
by a graph, where nodes correspond to atoms and edges to bonds between atoms. The
Tanimoto kernel (Ralaivola et al., 2005) is used for the scalar input kernel:

κx(x, x′) =
km(x, x′)

km(x, x) + km(x′, x′)− km(x, x′)
.

In this application, km is chosen as a linear path kernel. The corresponding input feature
vectors ϕxm(x) are binary vectors that indicate the presences and absences in the molecules
of all existing paths containing a maximum of m bonds. In this experiment, the value of m
was set to 6.

6.2.2 Protocol

We evaluated the behavior of the IOKR-ridge model in the transductive setting. The
performances were measured by computing the mean squared error (MSE) on the unlabeled
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set:

MSE =
1

n

`+n∑
i=`+1

‖h(xi)− ϕy(yi))‖2Fy .

We estimated the task structure between the cancer types by comparing the molecular
activities associated to each cancer type on the training set:

Mij = exp
(
−γ‖Y i

` − Y j
` ‖2
)
, i, j = 1, . . . , d,

where Y i
` = (yi1,y

i
2, . . . ,y

i
`).

The parameter γ of the matrix M was chosen to maximize an information criterion and
the regularization parameter λ1 was set to 1. Regarding the matrix W used in the semi-
supervised term, we sparsified the Gram matrix Kx`+n of the scalar input kernel κx using a
k-nearest neighbors procedure with k = 50. We then computed the graph Laplacian of the
obtained graph and considered the Laplacian iterated to degree 5.

6.2.3 Results

The results presented in Figure 6 were obtained from ten random choices of the training set.
The performances obtained with model 1 and model 2 for different percentages of labeled
data are represented as a function of the parameters µ and λ2.

We observe on this figure that for both models, using unlabeled data helps to improve
the performances. We also observe that when µ is increased from 0 to 0.8 or 1, the mean
squared errors are decreased. The obtained results therefore show the benefit of taking into
account the relationships existing between the outputs for both models and both settings
(supervised and semi-supervised).

We reported on Figure 7 the MSE obtained with models 1 and 2 for the best parameter
µ and added the results obtained with the model 0, which corresponds to the case where
A = I. We observe on this figure that the model 2 obtains better results than the model 1
when the percentage of labeled data is small (p = 5%). For p = 10%, the two models behave
similarly, while for 20% of labeled data, the model 1 improves significantly the performances,
compared to model 2. Therefore, we observe that using the output structure information
either in the input operator-valued kernel or in the output kernel leads to different results.
And depending on the amount of labeled data, one of the two models can be more interesting
to use.

7. Conclusion and Perspectives

Operator-valued kernels and the associated RKHS theory provide a general framework to
address approximation of functions with values in some Hilbert space. When characterizing
the output Hilbert space as a feature space related to some real-valued scalar kernel, we
get an original framework to deal with structured outputs. Extending our previous work
(Brouard et al., 2011) which introduced a new representer theorem for semi-supervised
learning with vector-valued functions, we presented solutions of semi-supervised penalized
regression developed for two empirical loss functions, the square loss and the hinge loss in the
general case and in the special case of decomposable kernels using tensors. We also showed
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0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10
λ2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Model 1 (p =5%)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8
µ = 1

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10
λ2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Model 2 (p =5%)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10
λ2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Model 1 (p =10%)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8
µ = 1

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10
λ2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Model 2 (p =10%)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10
λ2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Model 1 (p =20%)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8
µ = 1

0 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10
λ2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Model 2 (p =20%)

µ = 0
µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8

Figure 6: Mean squared errors obtained with the two models for the prediction of molecular
activities. The results are averaged over ten random choices of the training set
and are given for different percentages of labeled data (5%, 10% and 20%).
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Figure 7: Mean squared errors obtained for the prediction of molecular activities for the
model 0 (corresponding to A = I), model 1 (µ = 1) and model 2 (µ = 0.8).
The results are averaged over ten random training sets and are given for different
percentages of labeled data (5%, 10% and 20%).

33



Brouard, Szafranski and d’Alché–Buc

that Generalized Cross-Validation extends in the case of the closed-form solution of IOKR-
ridge, providing an efficient tool for model selection. Perspectives to this work concern
the construction of new models by minimizing loss functions with different penalties, for
instance, penalties that enforce the parsimony of the model. For these non-smooth penalties,
proximal gradient descent methods can be applied such as in Lim et al. (2013). A more
general research direction is related to the design of new kernels and appropriate kernel
learning algorithms. Finally, although the pre-image problem has received a lot of attention
in the literature, there is still room for improvement in order to apply IOKR in other tasks
than link prediction or multiple output structured regression.
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Appendix A. Technical Proofs

In this appendix section, we provide the proofs for some theorems and propositions presented
in the paper.

A.1 Proof of Theorem 7

We derive here the solution obtained for the Maximum Margin Regression optimization
problem in the semi-supervised setting (Equation 8). We begin by writing the primal
formulation of this optimization problem:

min
h∈H, ξ∈R`

λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy +
∑̀
i=1

ξi

s.t. 〈ỹi, h(xi)〉Fy ≥ 1− ξi, i = 1, . . . , `

ξi ≥ 0, i = 1, . . . , `.

We write the corresponding Lagrangian:

La(h, ξ,α,η) = λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy +
∑̀
i=1

ξi

−
∑̀
i=1

αi(〈ỹi, h(xi)〉Fy − 1 + ξi)−
∑̀
i=1

ηiξi.

In the following we note Kx = Kx(·, x) and K∗x = Kx(x, ·). By using the reproducing
property the expression of the Lagrangian becomes:

34



Input Output Kernel Regression

La = λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈K∗xih,K∗xjh〉H −
∑̀
i=1

αi(〈ỹi,K∗xih〉H − 1) +
∑̀
i=1

(1− αi − ηi)ξi

= 〈(λ1I + 2λ2

`+n∑
i,j=1

LijKxjK
∗
xi)h, h〉H −

∑̀
i=1

αi〈Kxi ỹi, h〉H +
∑̀
i=1

αi +
∑̀
i=1

(1− αi − ηi)ξi

= 〈Bh, h〉H −
∑̀
i=1

αi〈Kxi ỹi, h〉H +
∑̀
i=1

αi +
∑̀
i=1

(1− αi − ηi)ξi,

where B ∈ B(h) is the operator defined as: B = λ1I + 2λ2
∑`+n

i,j=1 LijKxiK
∗
xj . Due to the

symmetry of the Laplacian L, this operator is self-adjoint:

B∗ = λ1I+2λ2

`+n∑
i,j=1

LijKxjK
∗
xi = λ1I+2λ2

`+n∑
i,j=1

LjiKxiK
∗
xj = λ1I+2λ2

`+n∑
i,j=1

LijKxiK
∗
xj = B.

Differentiating the Lagrangian with respect to ξi and h gives:

∂La
∂ξi

= 0⇒ 1− αi − ηi = 0

∂La
∂h

= 0⇒ 2Bh−
∑̀
i=1

αiKxi ỹi = 0⇒ h =
1

2
B−1

(∑̀
i=1

αiKxi ỹi

)
.

B is invertible as it is a positive definite operator:

∀h ∈ H, 〈h,Bh〉H = λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h,KxjK
∗
xih〉H

= λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xj), h(xi)〉Fy

= λ1‖h‖2H + λ2

`+n∑
i,j=1

Wij‖h(xj)− h(xi)‖2Fy

> 0 for all non-zero function h.

The last inequality is deduced from the assumption that the values of W are non-negative.
We formulate a reduced Lagrangian :

Lr(α) =
1

4

∑̀
i,j=1

αiαj〈BB−1Kxi ỹi, B
−1Kxj ỹj〉H −

1

2

∑̀
i,j=1

αiαj〈Kxi ỹi, B
−1Kxj ỹj〉H +

∑̀
i=1

αi

= −1

4

∑̀
i,j=1

αiαj〈Kxi ỹi, B
−1Kxj ỹj〉H +

∑̀
i=1

αi.
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The dual formulation of the optimization problem (8) can thus be expressed as:

min
α∈R`

1

4

∑̀
i,j=1

αiαj〈Kxi ỹi, B
−1Kxj ỹj〉H −

∑̀
i=1

αi

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , `.

This concludes the proof.

A.2 Proof of Proposition 9

We start from the expression of vec(C`+n) given in Section 3.3 for the least-squares loss and
replace A by its eigendecomposition:

vec(C`+n) =
(
λ1I(`+n)d +M ⊗A

)−1
vec(Ỹ`J),

where M = (JTJ + 2λ2L)KX`+n .
We introduce the vec-permutation matrices Pmn and Pnm defined as:

∀A ∈ Rm×n, vec(AT ) = Pmn vec(A) and vec(A) = Pnm vec(AT ).

For any m× n matrix A and p× q matrix B,

B ⊗A = Ppm(A⊗B)Pnq.

Using these properties, we can write:

vec(CT`+n) = Pd(`+n) vec(C`+n)

= Pd(`+n)

(
λ1I(`+n)d + P(`+n)d(A⊗M)Pd(`+n)

)−1
vec(Ỹ`J)

=
(
λ1I(`+n)d + Pd(`+n)P(`+n)d(A⊗M)

)−1
Pd(`+n) vec(Ỹ`J)

=
(
λ1I(`+n)d +A⊗M

)−1
vec(JT Ỹ T

` )

=
(
λ1I(`+n)d + EΓET ⊗M

)−1
vec(JT Ỹ T

` ).

We multiply each side by (ET ⊗ I`+n)

(ET ⊗ I`+n) vec(CT`+n) =

(ET ⊗ I`+n)
(
λ1I(`+n)d + (E ⊗ I`+n)(Γ⊗M)(ET ⊗ I`+n)

)−1
vec(JT Ỹ T

` ).

We use the facts that vec(AXB) = (BT ⊗ A) vec(X) and that ETE = Id to obtain the
following equation:

vec(CT`+nE) = (λ1I(`+n)d + Γ⊗M)−1 vec(JT Ỹ T
` E).

The matrix (λ1I(`+n)d + Γ⊗M) being block-diagonal, we have

CT`+nei = (λ1I`+n + γiM)−1 JT Ỹ T
` ei, for i = 1, . . . , `+ n.
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Then, we can express the model h as:

∀x ∈ X , h(x) = AC`+nκ
x
x`+n

=
d∑
j=1

γjeje
T
j C`+nκ

x
x`+n

=
d∑
j=1

γjeje
T
j Ỹ`J(λ1I`+n + γjKX`+n(JTJ + 2λ2L))−1κxX`+n .

In the supervised setting (λ2 = 0), the model h writes as:

∀x ∈ X , h(x) =
d∑
j=1

γjeje
T
j Ỹ`(λ1I` + γjKX`)

−1κxX` .

This completes the proof.

A.3 Proof of Proposition 10

Let Z` = Ỹ` diag (α)J . We start from the expression of the Lagrangian in the case of a
general operator-valued kernel (Equation 10) and replace A by its eigendecomposition:

La(α) =− 1

4
vec (Z`)

T (
λ1I(`+n)d + 2λ2KX`+n

L⊗A
)−1

(KX`+n
⊗A) vec(Z`) + αT1

=− 1

4
vec(Z`)

T
(
λ1I(`+n)d + 2λ2(I`+n ⊗ E)(KX`+n

L⊗ Γ)(I`+n ⊗ ET )
)−1

(I`+n ⊗ E)(KX`+n
⊗ Γ)(I`+n ⊗ ET ) vec(Z`) + αT1.

=− 1

4
vec
(
ETZ`

)T (
λ1I(`+n)d + 2λ2KX`+n

L⊗ Γ
)−1

(KX`+n
⊗ Γ) vec(ETZ`) + αT1.

Using the vec-permutation matrices, we can show that:

La(α) = −1

4
vec
(
ZT
` E
)T (

λ1I(`+n)d + 2λ2Γ⊗KX`+n
L
)−1

(Γ⊗KX`+n
) vec

(
ZT
` E
)

+ αT1.

As (λ1I(`+n)d + 2λ2Γ⊗KX`+nL) is a block diagonal matrix, we can write:

La(α) =− 1

4

d∑
i=1

eT
i Z`(λ1I`+n + 2λ2γiKX`+n

L)−1γiKX`+n
ZT
` ei + αT1

=− 1

4

d∑
i=1

γi trace
(
Ỹ T
` eie

T
i Ỹ` diag (α)J(λ1I`+n + 2λ2γiKX`+n

L)−1KX`+n
JT diag (α)

)
+ αT1.

Using the fact that yT (A ◦ B)x = trace( diag (y)TAdiag (x)BT ), the Lagrangian can be
written as:

La(α) = −1

4

d∑
i=1

γi α
T (Ỹ T

` eie
T
i Ỹ` ◦ J(λ1I`+n + 2λ2γiKX`+n

L)−1KX`+n
JT )α + αT1.
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In the supervised setting (λ2 = 0), the Lagrangian becomes:

La(α) = − 1

4λ1

d∑
i=1

γi α
T (Ỹ T

` eie
T
i Ỹ` ◦KX`)α + αT1

= − 1

4λ1
αT (Ỹ T

` AỸ` ◦KX`)α + αT1,

which concludes the proof.

Appendix B. Dual Optimization Problem for a General Convex Loss
Function

In this appendix we derive the dual optimization problem for a general convex loss function
in the supervised and semi-supervised settings using the Fenchel duality.

B.1 Supervised Setting

We consider the following optimization problem where the cost function L : Fy × Fy → R
is convex in its first variable:

min
h∈H

∑̀
i=1

L(h(xi), ỹi) + λ‖h‖2H.

It can be rewritten by introducing the constraint ui = h(xi) and the function Li : Fy →
R defined as Li(ui) = L(ui, ỹi) for i ∈ [1, `]:

min
h∈H,{ui∈Fy}`i=1

∑̀
i=1

Li(ui) + λ‖h‖2H

s.t. ui = h(xi), i = 1, . . . , `.

We write the expression of the Lagrangian:

La(h,ui,αi) =
∑̀
i=1

Li(ui) + λ‖h‖2H +
∑̀
i=1

〈αi,ui − h(xi)〉Fy

=
∑̀
i=1

Li(ui) + λ‖h‖2H +
∑̀
i=1

〈αi,ui〉Fy −
∑̀
i=1

〈Kx(·, xi)αi, h〉H.
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The dual function can be written:

g(α) = inf
h∈H,{ui∈Fy}`i=1

(∑̀
i=1

Li(ui) + λ‖h‖2H +
∑̀
i=1

〈αi,ui〉Fy −
∑̀
i=1

〈Kx(·, xi)αi, h〉H
)

=
∑̀
i=1

inf
ui∈Fy

(
Li(ui) + 〈αi,ui〉Fy

)
+ inf

h

(
λ‖h‖2H −

∑̀
i=1

〈Kx(·, xi)αi, h〉H
)

= −
∑̀
i=1

sup
ui∈Fy

(
−Li(ui) + 〈−αi,ui〉Fy

)
+ inf

h

(
λ‖h‖2H −

∑̀
i=1

〈Kx(·, xi)αi, h〉H
)

g(α) = −
∑̀
i=1

L∗i (−αi)−
1

4λ

∑̀
i,j=1

〈αi,Kx(xi, xj)αj〉Fy ,

where L∗i denotes the convex conjugate, also called Fenchel conjugate, of the function Li:

L∗i (αi) = sup
ui∈Fy

〈αi,ui〉Fy − Li(ui)

and h = 1
2λ

∑`
i=1Kx(·, xi)αi.

The dual optimization problem for a general convex loss function writes as follows:

max
{αi∈Fy}`i=1

−
∑̀
i=1

L∗i (−αi)−
1

4λ

∑̀
i,j=1

〈αi,Kx(xi, xj)αj〉Fy . (14)

In the following, we derive it for the least-squares and the MMR loss functions.

B.1.1 Least-squares loss

We compute the convex conjugate of the least-squares loss:

L∗i (−αi) = sup
ui∈Fy

−〈αi,ui〉Fy − ‖ui − ỹi‖2Fy .

By setting the derivative
∂L∗i
∂ui

to 0 we find that ui = ỹi − 1
2αi. By substituting we see

that:

L∗i (−αi) =
1

4
‖αi‖2Fy − 〈αi, ỹi〉Fy .

We replace the expression of L∗i (−αi) in the dual problem:

max
{αi∈Fy}`i=1

−1

4

∑̀
i=1

‖αi‖2Fy +
∑̀
i=1

〈αi, ỹi〉Fy −
1

4λ

∑̀
i,j=1

〈αi,Kx(xi, xj)αj〉Fy .

We derive with respect to αi, i = 1, . . . , ` and find that the solution of the dual opti-
mization problem satisfy the following equations:

∑̀
j=1

(Kx(xi, xj) + λδij)αj = 2λỹi, i = 1, . . . , `.
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B.1.2 Maximum Margin Regression

We compute the convex conjugate function of the MMR loss using the Lagrange technique:

−L∗i (−αi) = − sup
ui∈Fy

{
−〈αi,ui〉Fy −max(0, 1− 〈ỹi,ui〉Fy)

}
= inf

ui∈Fy ,ξi∈R
ξi≥0,ξi≥1−〈ỹi,ui〉Fy

{
〈αi,ui〉Fy + ξi)

}

= sup
βi,ηi≥0

{
inf

ui∈Fy ,ξi∈R

{
〈αi,ui〉Fy + ξi + βi(1− 〈ỹi,ui〉Fy − ξi)− ηiξi

}}
= sup

βi,ηi≥0

{
inf

ui∈Fy

{
〈αi,ui〉Fy − βi〈ỹi,ui〉Fy

}
+ inf
ξi∈R
{ξi − βiξi − ηiξi}+ βi

}
= sup

0≤βi≤1

αi=βiỹi

βi.

This means that −L∗i (−αi) = βi at the condition that αi = βiỹi and 0 ≤ βi ≤ 1.
Otherwise it is unbounded. We replace in the dual problem in Equation (14):

max
β∈R`

∑̀
i=1

βi −
1

4λ

∑̀
i,j=1

βiβj〈ỹi,Kx(xi, xj)ỹj〉Fy

s.t. 0 ≤ βi ≤ 1, i = 1, . . . , `.

B.2 Semi-supervised Setting

In the semi-supervised setting, the optimization problem can be written as:

min
h∈H,{ui∈Fy}`i=1

∑̀
i=1

L(ui, ỹi) + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy

s.t. ui = h(xi), i = 1, . . . , `.

We write the expression of the dual function:

g(α) = inf
h∈H
ui∈Fy

∑̀
i=1

L(ui, ỹi) + λ1‖h‖2H + 2λ2

`+n∑
i,j=1

Lij〈h(xi), h(xj)〉Fy +
∑̀
i=1

〈αi,ui − h(xi)〉Fy

= −
∑̀
i=1

L∗i (−αi) + inf
h∈H

(
〈Bh, h〉H −

∑̀
i=1

〈Kxiαi, h〉H
)
,

where B ∈ B(h) is the operator defined as: B = λ1I + 2λ2
∑`+n

i,j=1 LijKx(·, xj)Kx(xi, ·).
By setting the derivative of the second term with respect to h to zero we find that:

h = 1
2B
−1
(∑`

i=1Kx(·, xi)αi

)
. The proof that B can be inverted was already given in

Appendix A.1.
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We replace in the dual function and obtain the following dual optimization problem:

max
{αi∈Fy}`i=1

−
∑̀
i=1

L∗i (−αi)−
1

4

∑̀
i,j=1

〈
Kxiαi, B

−1Kxjαj

〉
H .

Appendix C. Additional Results on Synthetic Networks

This appendix contains additional results on synthetic networks.

C.1 Influence of the Level of Inertia

We experimented how IOKR behaves with perfect to noisy input features on the synthetic
networks. We modified the quality of the input representation by varying the relative inertia
captured by the first components. We chose four different levels of inertia: 75%, 85%, 95%
and 100%. The results obtained with IOKR-ridge and IOKR-margin are shown in Table 8.

For both methods we observe small differences in term of AUC-ROC when the inertia
varies between 75% and 100%. On the other hand, there is more variation in the AUC-PR
results, especially for a low graph density. The difference between the AUC-PRs for 75%
and 100% of inertia increases when the percentage of labeled nodes is increased. Overall
IOKR is robust to the noise level of the input data in all the cases for the AUC-ROC, and
in the networks of density 0.01 and 0.02 for the AUC-PR.

C.2 Mixture of Erdős-Renyi Random Graphs

We generated synthetic networks using mixtures of Erdős-Renyi random graphs. The 700
nodes of the graphs were divided equally in three classes. We considered that the connection
probability between a node belonging to the class i and a node in the class j can take two
values:

∀i, j ∈ {1, . . . , 3}, pi,j =

{
pintra if i = j,

pinter if i 6= j.

We evaluated the performances of IOKR-ridge and IOKR-margin on these random net-
works for pintra ∈ {0.02, 0.03} and pinter ∈ {5 ∗ 10−4, 10−3}. The input vectors were derived
from the diffusion kernel applied on the network as described in Section 6.1.2. These results
are reported in Table 9. For IOKR-margin, we observe that the AUC values stay rela-
tively similar for the different networks and also for the different percentage of labeled data.
On the opposite, IOKR-ridge presents better performances when the inter-class connection
probability is higher. As in Section 6.1.2, in which we noted that denser networks are more
difficult to predict, we observe here that the AUC values decrease when the intra-class
connection probability increases.

In Figure 8, we illustrate the fact that IOKR is able to recover the clusters present in
a synthetic network (pintra = 0.02, pinter=5e-4). The true network is shown on the left
and the network predicted with IOKR-ridge is shown on the right. The predicted network
was obtained by thresholding the values in the predicted output kernel. The value of the
threshold was selected with the other parameters on the training set such that it maximizes
the F1-score value.
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a) IOKR-ridge:

pdens var nc AUC-ROC AUC-PR
% p=5% p=10% p=20% p=5% p=10% p=20%

0.007

75 69 92.3± 0.4 95.9± 0.2 97.7± 0.2 12.9± 0.9 21.9± 0.8 30.0± 1.8
85 100 92.1± 0.9 95.6± 0.3 97.9± 0.2 14.2± 0.9 22.7± 1.0 35.3± 1.5
95 159 92.2± 1.2 95.6± 0.3 97.8± 0.2 15.4± 1.5 24.7± 1.7 36.1± 1.5
100 700 92.1± 1.2 95.6± 0.3 97.7± 0.2 15.5± 1.5 25.0± 1.5 36.2± 1.5

0.01

75 104 90.3± 1.3 94.8± 0.9 97.1± 0.9 14.1± 1.4 22.8± 2.3 32.5± 3.6
85 145 90.5± 1.3 94.9± 0.5 97.6± 0.1 15.0± 1.5 23.6± 1.1 35.1± 0.9
95 227 90.6± 1.0 95.4± 0.4 98.0± 0.3 15.7± 1.0 25.6± 1.2 39.2± 1.6
100 700 90.5± 1.0 95.6± 0.4 98.1± 0.1 15.7± 1.0 26.0± 1.0 39.5± 0.8

0.02

75 201 82.6± 1.4 91.2± 0.8 95.4± 0.4 15.3± 0.8 26.7± 1.9 38.2± 2.0
85 274 83.0± 1.7 90.6± 0.6 94.6± 0.5 16.1± 0.8 26.3± 1.3 36.3± 1.8
95 411 82.8± 1.8 91.2± 0.7 95.1± 0.4 16.0± 0.8 28.0± 1.5 40.8± 1.7
100 700 82.8± 1.8 91.1± 0.7 95.0± 0.4 16.0± 0.8 27.9± 1.5 40.5± 1.7

b) IOKR-margin:

pdens var nc AUC-ROC AUC-PR
% p=5% p=10% p=20% p=5% p=10% p=20%

0.007

75 69 91.3± 0.7 93.4± 0.7 94.7± 0.6 10.5± 1.1 12.5± 1.2 14.4± 1.5
85 100 91.0± 0.8 93.5± 0.8 95.2± 0.7 12.0± 0.8 15.2± 2.6 19.6± 4.4
95 159 90.5± 0.9 93.1± 0.5 95.3± 0.3 12.5± 0.9 18.9± 2.5 26.5± 1.0
100 700 90.5± 0.8 93.1± 0.4 95.3± 0.3 13.0± 0.8 19.8± 0.9 26.9± 1.0

0.01

75 104 87.9± 0.9 91.0± 0.8 93.5± 0.4 12.1± 1.2 16.5± 1.0 22.8± 1.0
85 145 87.7± 1.0 91.1± 1.2 92.9± 0.5 12.5± 1.0 16.9± 0.9 23.3± 1.1
95 227 87.3± 1.6 91.3± 0.8 94.1± 0.5 12.5± 1.6 17.9± 1.3 24.7± 1.0
100 700 87.2± 1.6 91.2± 0.8 94.1± 0.5 12.4± 1.6 17.9± 1.3 24.9± 1.1

0.02

75 201 78.4± 2.1 83.2± 1.2 88.4± 0.7 12.0± 1.0 17.3± 0.7 24.0± 0.9
85 274 77.6± 2.1 81.9± 1.6 87.5± 0.8 12.5± 1.0 17.3± 1.0 24.3± 0.8
95 411 77.3± 2.3 81.7± 1.6 87.0± 0.9 12.8± 1.0 17.8± 1.2 24.4± 0.7
100 700 77.3± 2.3 82.0± 1.6 87.1± 0.9 12.8± 1.0 18.3± 1.1 24.5± 0.7

Table 8: Averaged AUCs obtained with IOKR for the reconstruction of three synthetic
networks. The first column indicates the link probability between two nodes, var
corresponds to the percentage of variance, or inertia, used to truncate the principal
components and nc indicates the corresponding number of principal components.
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a) IOKR-ridge:

pintra pinter var AUC-ROC AUC-PR
% p=5% p=10% p=20% p=5% p=10% p=20%

0.02 5e-4

75 85.0± 0.7 86.8± 0.9 93.1± 2.2 2.8± 0.4 3.5± 0.5 10.3± 2.7
85 85.7± 0.7 90.4± 3.5 95.5± 0.3 3.0± 0.4 7.3± 3.8 15.9± 1.2
95 86.6± 1.8 93.2± 2.8 96.6± 0.3 3.8± 1.9 12.7± 4.7 21.2± 1.8
100 87.0± 2.3 93.3± 2.8 96.6± 0.3 4.5± 2.7 13.1± 4.8 22.1± 1.9

1e-3

75 87.1± 2.2 93.4± 2.7 96.9± 0.2 5.3± 2.5 15.1± 5.2 23.9± 1.3
85 88.4± 2.1 93.2± 2.6 97.2± 0.2 7.7± 3.7 16.2± 5.7 27.1± 1.4
95 88.8± 1.7 93.1± 2.6 97.4± 0.5 8.9± 3.7 17.0± 5.8 31.3± 4.0
100 89.2± 1.6 93.1± 2.5 97.9± 0.4 9.8± 3.6 17.1± 5.8 34.5± 3.1

0.03 5e-4

75 83.5± 0.1 83.6± 0.1 84.5± 1.2 3.2± 0.0 3.2± 0.0 3.7± 0.5
85 83.7± 0.1 83.8± 0.1 86.4± 1.4 3.3± 0.0 3.3± 0.0 4.6± 0.7
95 84.2± 1.3 84.5± 1.4 88.8± 1.0 3.6± 0.6 3.8± 0.9 6.1± 1.0
100 84.2± 1.3 84.7± 1.7 89.7± 1.6 3.6± 0.6 3.9± 1.0 7.2± 1.9

1e-3

75 86.2± 1.9 91.1± 1.7 93.7± 0.3 5.9± 2.2 12.1± 2.4 16.5± 1.3
85 86.3± 1.8 91.8± 0.6 94.3± 0.3 6.3± 2.3 14.3± 1.3 19.4± 1.6
95 86.8± 2.2 91.7± 0.6 94.8± 0.7 6.9± 3.1 14.8± 1.4 22.3± 3.1
100 86.8± 2.2 92.1± 1.1 95.2± 1.0 7.0± 3.1 15.7± 2.5 23.9± 4.2

b) IOKR-margin:

pintra pinter inertia AUC-ROC AUC-PR
p=5% p=10% p=20% p=5% p=10% p=20%

0.02 5e-4

0.75 84.5± 0.6 84.6± 0.4 84.5± 0.3 2.6± 0.1 2.5± 0.1 2.5± 0.1
0.85 84.8± 0.7 84.9± 0.5 84.9± 0.4 2.7± 0.1 2.6± 0.1 2.6± 0.2
0.95 85.1± 0.9 85.2± 0.5 85.2± 0.5 2.8± 0.1 2.8± 0.1 2.7± 0.2

1 85.2± 0.9 85.3± 0.5 85.3± 0.5 2.9± 0.2 2.8± 0.1 2.8± 0.2

1e-3

0.75 84.8± 0.6 85.0± 0.3 84.7± 0.6 3.4± 0.4 3.3± 0.3 3.0± 0.2
0.85 85.1± 0.6 85.3± 0.3 85.3± 0.4 3.6± 0.4 3.7± 0.3 3.4± 0.3
0.95 85.2± 0.7 85.5± 0.4 85.6± 0.2 3.8± 0.4 3.9± 0.3 3.9± 0.1

1 85.5± 0.4 85.6± 0.4 85.7± 0.2 3.9± 0.4 3.9± 0.3 3.9± 0.1

0.03 5e-4

0.75 83.4± 0.2 83.5± 0.2 83.5± 0.2 3.2± 0.0 3.2± 0.0 3.2± 0.0
0.85 83.6± 0.2 83.7± 0.2 83.6± 0.2 3.3± 0.0 3.3± 0.0 3.3± 0.0
0.95 83.6± 0.2 83.7± 0.2 83.7± 0.2 3.3± 0.0 3.4± 0.0 3.3± 0.0

1 83.6± 0.2 83.8± 0.2 83.7± 0.2 3.3± 0.0 3.4± 0.0 3.3± 0.0

1e-3

0.75 84.0± 0.6 83.9± 0.4 84.0± 0.1 3.8± 0.2 3.7± 0.2 3.7± 0.1
0.85 84.2± 0.6 84.1± 0.4 84.1± 0.1 4.0± 0.3 3.9± 0.2 3.9± 0.1
0.95 84.3± 0.7 84.2± 0.4 84.2± 0.1 4.1± 0.3 4.0± 0.2 4.0± 0.1

1 84.3± 0.7 84.2± 0.4 84.2± 0.1 4.2± 0.3 4.0± 0.2 4.0± 0.1

Table 9: Averaged AUCs obtained with IOKR on different mixtures of Erdős-Renyi random
graphs. pintra and pinter denote respectively the intra- and inter-class connection
probabilities. The third column indicates the percentage of variance used to define
the input vectors from the principal components.
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Figure 8: Prediction of a mixture of Erdős-Renyi random graphs with IOKR. The true
network is shown on the left and the network predicted with IOKR-ridge on the
right. The respective adjacency matrices are displayed under the two networks.
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