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Visualization of mass transfer is a powerful tool to improve understanding of local phenomenon. The use of an oxygen-sensitive dye (colorimetric technique 1 ) has showed its relevancy for locally visualizing and characterizing gas-liquid mass transfer at different scales 2,3 . At present, the occurrence of a possible enhancement of the gas-liquid mass transfer by this reaction has not been yet demonstrated. This paper aims at filling this gap by evaluating the Hatta number Ha and the enhancement factor E associated with the oxygen colorimetric reaction when implementing in milli/micro channels. For that, as data on the kinetic of the colorimetric reaction are seldom in the literature, the reaction characteristic time was firstly estimated by carrying out experiments in a microchannel equipped with a micromixer. The diffusion coefficients of dihydroresorufin and O 2 were then determined by implementing two original optical methods in a specific coflow microchannel device, coupled with theoretical modelling. The knowledge of these parameters enabled at last to demonstrate that no enhancement of the gas-liquid mass transfer by this colorimetric reaction existed.

Complementary information about the reliability of the colorimetric technique to characterize the gasliquid mass transfer in milli/micro systems was also given.

Introduction

Due to various advantages (controlled flow structure, high surface-to-volume ratio and enhanced heat and mass transfer), microstructured technologies have received more and more attentions as being promising process intensification technologies enabling to carry out chemical reactions under controlled and safe conditions with high yield and selectivity. Gas/liquid reactions play an important role in scientific research and industrial application fields dealing with flow chemistry: for example one can cite oxidation [START_REF] Leclerc | Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor[END_REF][START_REF] Vanoye | Continuous, Fast, and Safe Aerobic Oxidation of 2-Ethylhexanal: Pushing the Limits of the Simple Tube Reactor for a Gas/Liquid Reaction[END_REF] , catalytic hydrogenation [START_REF] Darvas | Flow Chemistry[END_REF] and photocatalytic oxidation [START_REF] Su | A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations[END_REF][START_REF] Shvydkiv | Synthesis of Juglone (5-Hydroxy-1,4-Naphthoquinone) in a Falling Film Microreactor[END_REF] . When implementing such reactions, it is essential to perfectly characterize and control the mass transfer between both phases insofar as, depending on the chemical kinetics, it can become the limiting step and thus induce a decrease of the reaction performances.

Recently, the investigation of gas-liquid mass transfer in microreactors has been the subject of a growing literature [START_REF] Roudet | Hydrodynamic and mass transfer in inertial gas-liquid flow regimes through straight and meandering millimetric square channels[END_REF][START_REF] Sobieszuk | Hydrodynamics and Mass Transfer in Gas-Liquid Flows in Microreactors[END_REF][START_REF] Ganapathy | Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors[END_REF][START_REF] Yang | Mass transfer characteristics of bubbly flow in microchannels[END_REF][START_REF] Mikaelian | Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model[END_REF] . Roudet et al. [START_REF] Su | A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations[END_REF] proposed an original method to characterize the benefits of a meandering geometry with respect to straight channels; for that, the dissolved oxygen concentrations were measured, by using micro sensors, at different locations along the channel length and, thanks to a modelling approach, the overall volumetric gas-liquid mass transfer coefficients were accurately determined. Mikaelian et al. 11 established a model to describe the dissolution of a chain of spherical pure gas bubbles into a non-volatile liquid along square and circular microchannels. Amongst these works, the gas-liquid mass transfer characteristics were classically measured by analyzing the solute concentration of samples collected at the inlet and outlet of microreactors, or the time-dependent variations of the bubble sizes [START_REF] Sobieszuk | Hydrodynamics and Mass Transfer in Gas-Liquid Flows in Microreactors[END_REF][START_REF] Yang | Mass transfer characteristics of bubbly flow in microchannels[END_REF] . The latter methods might lead to an inaccurate characterization as the sample collection and phase separation times are not usually taken into account. In addition, they do not enable to distinguish the contributions to mass transfer of the bubble formation, bubble flow and phaseseparation as no local information of the gas-liquid mass transfer is acquired. To overcome these limitations, it is therefore necessary to implement online and local approach. In this perspective, Dietrich et al. [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF] proposed a colorimetric technique, based on the use of an oxygen-sensitive dye, to locally visualize and characterize the gas-liquid mass transfer associated with bubbles flowing in a millimetric square channel. The oxygen-sensitive dye used was resazurin which is a phenoxazin-3-one dye widely used for testing bacterial or yeast contamination in biological fluids and milk, and also identifying the semen quality by colorimetry since 1950s [START_REF] Mikaelian | Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model[END_REF][START_REF] Tan | Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[END_REF] . Afterwards, this technique has been successfully implemented in other geometries [START_REF] Kherbeche | Multi-scale analysis of the influence of physicochemical parameters on the hydrodynamic and gas-liquid mass transfer in gas/liquid/solid reactors[END_REF][START_REF] Yang | Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[END_REF] , thus demonstrating its reliability to characterize the oxygen mass transfer and to elucidate the complex mechanism of gas-liquid mass transfer. Nevertheless, it should be pointed out that the kinetics data about the colorimetric reaction between oxygen and dihydroresorufin remain rare [START_REF] Erb | Resazurin Reducing Time as an Indicator of Bovine Semen Fertilizing Capacity[END_REF] and that the occurrence of a possible enhancement of the gas-liquid mass transfer by this reaction has not been rigorously demonstrated. Dietrich et al. [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF] has admittedly showed that the liquid-side mass transfer coefficients obtained by this method and the ones measured by oxygen microsensors were identical, but any enhancement factor was calculated. This lack of knowledge necessitates an in-depth characterization of this oxygen-sensitive colorimetric reaction, with the aim of better defining the conditions required to implement accurately this colorimetric technique.

With this in mind, the objective of the present study is to rigorously determine the enhancement factor E associated with the oxygen-sensitive colorimetric reaction when implementing in micro/millichannels. For that, the knowledge of the kinetics of the reaction and of the diffusion coefficients of both oxygen and dihydroresorufin into the liquid under test, is a prerequisite. As these parameters are unknown, original methods will be proposed to determine them: they will be based on specific experiments in microfluidic devices, coupled with modeling approaches. The paper will be composed of four main sections. The first section will remind the knowledge available on the kinetics of the colorimetric reaction and the theoretical background associated with the enhancement factor concept.

Section "Material and methods" will be mainly devoted to the description of the three experimental setup designed for measuring on the one hand the reaction characteristic time (experiments in a microchannel equipped by a micromixer) and on the other hand, the diffusivity coefficients of dihydroresorufin and O 2 (optical methods in a specific coflow microchannel device). Section "Modeling methods" will focus on the modelling methods used to analyze the experimental data so as to access the diffusion coefficients of dihydroresorufin and O 2 . The results will be presented and discussed in Section "Results and discussion": they will concern the reaction characteristic time, the diffusion coefficients and the calculation of the Hatta number and the enhancement factor ; such findings will at last enable to identify the conditions whether the colorimetric reaction can enhance the oxygen mass transfer.

Background

This section will describe firstly the data at present available on the kinetics of the colorimetric reaction and secondly the theoretical background associated to the enhancement factor concept, especially in the case of fast gas-liquid reactions. In a last time, the basic conditions required to experimentally acquire the characteristic time of gas-liquid reactions will be reminded as well as a brief state-of-art about the various optical methods existing to measure diffusion coefficients.

About the kinetics of the colorimetric reaction

The colorimetric technique proposed by Dietrich et al. [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF] is based on the use of an oxygen-sensitive dye (resazurin, noted as R) which can react with oxygen in the presence of sodium hydroxide and glucose. In the reduced form, named dihydroresorufin (noted as B), the solution is colorless, while in presence of oxygen, the oxidized form, named resorufin (noted as C), is characterized by an intense pink color. The reaction scheme is reminded in Fig. 1. As shown by previous works [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF][START_REF] Yang | Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[END_REF] , one of the main interest of this technique is that the extent of the oxidation reaction and so the amount of transferred (or dissolved) oxygen, are directly proportional to the color intensity (grey value), for a given concentration of resazurin. To make possible the visualization and the post-treatment of the colored fields in a given geometry, an optimal composition of the sodium hydroxide and glucose solution should be determined.

It results from a balance between the reaction kinetic rates and the requirement in terms of adequate color intensity levels: indeed, the kinetics for the oxidation reaction (B + O 2 C) should be quasiinstantaneous whereas the kinetics of the back reaction (C B) should be slow (few minutes).

In the present study, one focuses on the colorimetric reaction between dihydroresorufin (B) and

oxygen (O 2 ): O H 2 Resorufin 2 orufin Dihydrores 2 2 2 × + × → × + O (1) (colorless) (pink)
Based on the literature background [START_REF] Erb | Resazurin Reducing Time as an Indicator of Bovine Semen Fertilizing Capacity[END_REF][START_REF] O'brien | Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity[END_REF] , one can assume that this colorimetric reaction is of a global order 2, with respect to the oxygen and to the dihydroresorufin. The rate of consumption of dihydroresorufin, B r (or the rate of consumption of oxygen 2 O r ) is then expressed as:

2 2 2 O B O B r C C k r ⋅ = ⋅ ⋅ ⋅ - = ν ν (2)
where 2 k is the reaction rate constant (m 3 •mol -1 •s -1 ) and ν the stoichiometric coefficient equal to 2.

Theoretical considerations on Hatta number and enhancement factor

In presence of a chemical reaction, the mass flux of oxygen 2 O ϕ transferred from the gas phase to the liquid phase is expressed, as below:

) ( 2 2 2 * O O L O C C E a k - ⋅ ⋅ ⋅ = ϕ (3)
where L k is the liquid-side mass transfer coefficient (m•s -1 ), a the interfacial area (m -1 ); * 2 O C the dissolved oxygen concentration at saturation (kg•m -3 ), and E the enhancement factor (-). The latter is defined by the ratio between the average fluxes of absorption with reaction and without reaction, thus it represents in a way the effect of "pumping" by the chemical reaction.

To determine E , the mass balances in the liquid film for both oxygen and dihydroresorufin (B) should be written [START_REF] Van Krevelen | Kinetics of gas-liquid reactions part I. General theory[END_REF] , using the expression of the second-order reaction kinetics (Eq. 2). It leads to: 

B O O O O C C k dy C d D r ⋅ ⋅ = ⋅ = - 2 2 2 2 2 2 2 (4) B O B B B C C k dy C d D r ⋅ ⋅ ⋅ = ⋅ = -
-at the limit of the film ( δ = y ), δ being the film thickness, the concentrations of both O 2 and B are the ones in the liquid bulk, which depend on the hydrodynamics of the reactor and on the transport phenomena through the liquid film. By assuming that the liquid bulk can be considered as perfectly mixed and that the liquid does not contain any dissolved oxygen, the boundary conditions are given by the mass balances in the liquid bulk when considering the chemical reaction and the fluxes transferred from the film by diffusion only towards the liquid bulk:

2 2 2 2 ) ( O L b O y O O r V C Q dy dC S D ⋅ + ⋅ = ⋅ ⋅ - =δ (7) B L Bi Bb y B B r V C C Q dy dC S D ⋅ + - ⋅ = ⋅ ⋅ - = ) ( ) ( δ ( 8 
)
where S is the gas-liquid interfacial area (m 2 ) , Q the volumetric flow rate of the liquid dye solution (m 3 •s -1 ), V L the liquid volume (m 3 ), By making these equations dimensionless, one can demonstrate that the concentration profiles, the absorption flux of oxygen and thus the enhancement factor depend on the following dimensionless numbers: the Hatta number Ha, the parameter Z, the Damköhler number Da and the parameter R, defined as below:

2 2 2 2 * * 2 2 2 2 2 2 2 0 L O Bb O Bb O O Bb O k D C k D C k C D C C k Ha ⋅ ⋅ = ⋅ ⋅ = - ⋅ ⋅ ⋅ ⋅ = δ δ δ (9) * 2 2 O O Bb B C D C D Z ⋅ ⋅ ⋅ = ν (10) Q V a k a k Da R L L ⋅ ⋅ = ⋅ ⋅ = τ (11) a k C k C a k C C k R L L Bb O L L Bb O ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = ε ε 2 * * 2 2 2 (12)
The Hatta number Ha represents the ratio between the maximal rate of reaction in the liquid film and the mass flux crossing the film by diffusion; the parameter Z contains the ratio between the diffusion coefficients; the Damköhler number Da (also called the Number of Transfer Units) represents the ratio between the residence time and the characteristic time of gas-liquid mass transfer; R compares the maximum reaction rate of O 2 that can be achieved within the liquid with the maximum O 2 physical absorption rate, and L ε the liquid hold-up.

In the case of a fast reaction regime in the diffusional film, for which Ha is higher than 3, Van Krevelen and Hoftijzer [START_REF] Van Krevelen | Kinetics of gas-liquid reactions part I. General theory[END_REF] have shown that the enhancement factor becomes only a function of Ha and of the enhancement factor for instantaneous regime (also called the limit enhancement factor), noted i E and defined as:

* 2 2 1 1 O O Bb B i C D C D Z E ⋅ ⋅ ⋅ + = + = ν (13)
In this case, these authors proposed the following approximated solution for the enhancement factor E :

) 1 tanh( 1 - - ⋅ - - ⋅ = i i i i E E E Ha E E E Ha E ( 14 
)
The latter developments reveal that the calculation of the enhancement factor requires the knowledge of the kinetics constant 2 k , and of both diffusion coefficients, 2 O D and B D . As these parameters are unknown in the present case, the following two subsections will present some theoretical considerations that need to be taken into account for determining a reaction characteristic time and a brief state-of-art about the methods for measuring diffusion coefficients respectively.

Conditions required to determine the characteristic time of gas-liquid reactions

When carrying out a gas-liquid reaction, two distinct phenomena simultaneously exist in a given experimental device: the transfer of the reactant from the gas phase to the liquid phase and the reaction itself that can occur in the liquid film, in the liquid bulk or in both locations. For experimentally determining the associated reaction characteristic time, it is essential to firstly eliminate the influence of the gas-liquid mass transfer. For that, one of the most commonly used method consists in previously dissolving the reactant contained in the gas phase in the solvent present in the other phase [START_REF] Hikita | The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method[END_REF][START_REF] Astaria | Gas Treating with Chemical Solvents[END_REF] .

To use it as a method to characterize gas-liquid mass transfer, the colorimetric reaction between dihydroresorufin (B) and oxygen must be fast [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF][START_REF] Yang | Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[END_REF] , thus making quite difficult the acquisition of the associated kinetic parameters, in particular in conventional batch reactors. Indeed, such technologies do not often guarantee that the time required by the reagents to be perfectly mixed (mixing time, t m ) is sufficiently shorter than the reaction characteristic time (t r ), here typically below 1s. Recently, the use of micromixers in microfluidic devices has been proven to be an interesting solution for kinetic data acquisition, as overcoming the conventional mixing limitations [START_REF] Yoshida | Basics of Flow Microreactor Synthesis[END_REF][START_REF] Hecht | Microstructured mixing devices: an efficient tool for the determination of chemical kinetic data? AIChE Spring Meet Houston[END_REF][START_REF] Hecht | Microstructured mixing devices: an efficient tool for the determination of chemical kinetic data? AIChE Spring Meet Houston[END_REF] .

Consequently, in the present study, it has been thus chosen to carry out the fast colorimetric reaction between oxygen and dihydroresorufin solution in a microchannel equipped with a micromixer. In addition, the experiments will be performed by using deionized water previously saturated with O 2 to avoid any gas-liquid mass transfer limitations. The associated experimental set-up will be described in the section "Material and methods", in the sub-section "Experimental set-up for measuring the reaction characteristic time".

Brief state-of-art about the optical methods for measuring diffusion coefficients

Due to their advantages, such as quick response, real-time analysis of regions, non-invasive and high-resolution, the optical methods have been widely developed to study the diffusion process since the pioneering work of Hauf [START_REF] Hauf | Optical methods in heat transfer[END_REF] . Qualitative and quantitative data could be acquired by optical methods, and then compared with analytical or numerical investigations in order to develop more complete phenomenological models for the diffusive mechanisms [START_REF] Ambrosini | Overview of diffusion measurements by optical techniques[END_REF] . Traditional optical approaches such as

Taylor's method [START_REF] Taylor | Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube[END_REF] has been commonly developed and employed to measure diffusion coefficients in liquids. The principle of Taylor's method is to inject a sharp pulse of solute into a slow and steady laminar flow of solvent in a tube of circular section and suitable length; the solute then flows with the mean velocity of the solvent flow and shows much pronounced axial dispersion by the combined action of the parabolic solvent velocity profile and the radial molecular diffusion. The main limitation of this method is to require relatively long capillary and so long time experiments (several hours). In the last decade, the development of lasers and electronic cameras has enabled to make a considerable progress in the development of new optical measurement techniques, for example holographic interferometry [START_REF] Ruiz-Bevia | Liquid diffusion measurement by holographic interferometry[END_REF] , speckle technique [START_REF] Mohan | Recent developments in digital speckle pattern interferometry[END_REF] and planar laser-induced fluorescence (PLIF) system [START_REF] Jimenez | Experimental study of O 2 diffusion coefficient measurement at a planar gas-liquid interface by planar laser-induced fluorescence with inhibition[END_REF] . Such laser-based methods have the same common limitations, such as requirement of specific light source, and not easy to conduct.

In the present study, an original optical technique will be proposed to measure the diffusion coefficients. It is based on the laminar diffusion of molecules in a coflow microfluidic device and on the visualization of the change of colors occurring when the diffusion and the colorimetric reaction take place. The main advantages of this method are to avoid the use of laser and to be less time-consuming compared with conventional optical approaches. The experimental set-up for implementing the technique will be described in the section "Material and methods".

Material and methods

As highlighted in Section "Background", three parameters have to be determined to calculate the D . In this section, the three experimental set-ups used to determine these parameters will be described as well as the operating conditions and the image acquisition and post-treatment methods implemented.

Fluid properties

All the experiments were performed at 293.15 K and atmospheric pressure. The dye solution consisted of D-glucose anhydrous (Fischer Scientific ® , CAS 50-99-7), sodium hydroxide (VWR ® , CAS 1310-73-2), both diluted at 20 g•L -1 in deionized water (conductivity: 51.2 µS•m -1 ), and resazurin (Sigma Aldrich ® , CAS 62758-13-8, molecular mass: 229.19 g•mol -1 ) which concentration was fixed at 0.117 g L -1 (5.10×10 -4 mol•L -1 ). The concentration of resazurin was chosen with respect to the reaction stoichiometry and to the oxygen concentration at saturation * [START_REF] Winkler | Die Bestimmung des im Wasser gelösten Sauerstoffes[END_REF] and by means of optical oxygen probes (Hach-Lange ® ). All the physicochemical properties are reported in Table 1.

Experimental set-up for measuring the reaction characteristic time

The experimental set-up implemented to measure the reaction characteristic time is illustrated in Fig. The associated liquid velocities inside the micromixer were defined by

A Q Q u R W / ) ( + = (15) 
They varied from 4.94 to 123.46 m•s -1 , and the corresponding Reynolds number Re

( L h L u d µ ρ / ⋅ ⋅ =
, h d : hydraulic diameter of the micromixer, m) from 326 to 8152. A LED light source (Rosco ® , LitePad HO90) and a camera (dnt ® , DigiMicro 2.0 Scale) were set at the outlet of the micromixer to acquire images of the solution leaving the micromixer.

Experimental set-up for the measuring the diffusion coefficient of dihydroresorufin B D

Since dihydroresorufin (noted as B) is colorless, it is impossible to visualize it experimentally, whereas for the pink resorufin (noted as C), it is possible. Note that the molecular formula of dihydroresorufin being quite similar to that of resorufin apart from the hydrogen ion (see in Fig. 1), it can hereafter be assumed that the diffusion coefficient of dihydroresorufin B D is equal to the one of

resorufin C D .
The experimental set-up for measuring B D was based on the concept of the two-liquid phase quasisteady laminar coflow dispersion [START_REF] Galambos | Micro-Fluidic Diffusion Coefficient Measurement[END_REF][START_REF] Kamholz | Optical Measurement of Transverse Molecular Diffusion in a Microchannel[END_REF] . A T-junction 3 way connector was used to generate the laminar coflow. The experimental set-up is illustrated in Fig. 3 

Experimental set-up for measuring the diffusion coefficient of oxygen

Image acquisition and post-treatment

For all the experiments, the digital micro camera (dnt ® , DigiMicro 2.0 Scale) was used to record the images after the establishment of the steady state (around 15 min). The acquired images were colorful.

In a first step, a background image was subtracted from the raw images to eliminate the eventual effect of a non-uniform distribution of backlight. The images were then converted to greyscale images using Matlab (R2011b) software, thus enabling to extract a grey value (noted as GV ) for each pixel of the image. Due to the established linear relationship between GV and the extent of the colorimetric reaction for a given concentration of resazurin (i.e. the amount of the reacted oxygen) [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF][START_REF] Yang | Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[END_REF] , these grey values GV measured were directly proportional to the concentrations of dihydroresorufin or to the equivalent concentration of dissolved oxygen. Note that in this study, as being not necessary, the calibration curve enabling to transform GV to the corresponding equivalent concentration of O 2 (i.e. calculation of the linear proportionality coefficient) was not determined.

For the micromixer experiment, an average grey value, noted as GV , was calculated by averaging the grey values GV at each pixel of the image taken at the outlet of the micromixer under each operating condition. Almost ten images were used to calculate GV . -(i) in the central zone of the colored flow corresponding to radial positions r* below 0.3, the normalized grey value remains almost unchanged (approximately to be 1) whatever the axial position. This value of 0.3 does not exactly correspond to the diameter of the inner capillary, 0.25 mm; this can be explained by the fact that for the high concentration zone, the color intensity is more sensitive to the concentration of the resorufin. Thus it is reasonable to have a higher ) , ( z r GV (close to max GV ) at the position near the outlet of the capillary.

-(ii) a high gradient area exists close to the edge of the colored flow, thus illustrating the occurrence of the diffusion process. It is precisely this high gradient area that will be used in the modelling section afterwards (see section "Diffusion coefficient of dihydroresorufin B D in deionized water").

For the experiments related to the measurement of the diffusion coefficient of 

Modeling methods

The diffusion coefficients of both dihydroresorufin and oxygen will be determined by identification of the experimental radial profiles of concentrations (grey values) with the theoretical ones.

To predict the concentration fields resulting from a purely diffusion mechanism, the classical diffusion equation based on a material balance should be considered. In cylindrical coordinates, it is written as [START_REF] Fick | Ueber Diffusion[END_REF] 

: ] 1 ) ( 1 [ 2 2 2 2 2 z C C r r C r r r D t C ∂ ∂ + ∂ ∂ ⋅ + ∂ ∂ ⋅ ∂ ∂ ⋅ ⋅ = ∂ ∂ θ (16)
where z r , ,θ are the radial, angular and axial positions in the tube (m) depicted as in Fig. 4 (a); t the diffusion time (s) which is, using the equivalence time-space in the tube, equal to:

' / u z t = (17) 
Where ' u is the mean velocity of the dye solution in the tube, m•s -1 .

From Fig. 4 (a), it could be known that the pink zone after the outlet of the capillary presents the colored flow of resorufin by the pressure-driven flow at the capillary outlet. Due to the operations at low Reynolds numbers and low concentrations (convective mass transfer negligible), the two flows were considered as pure laminar, and the transport between them should be diffusive: along the r direction, there should exist only molecular diffusion. As a consequence, for the modelling, it was assumed that (i) the color intensity gradient only appears along the r-direction, (ii) the diffusion along r-direction was axisymmetric (independent of θ ), and (iii) the diffusion along the z-direction is negligible. Eq. ( 16)

was then reduced to:

2 2 )] ( 1 [ r C D r C r D r C r r r D t C ∂ ∂ ⋅ + ∂ ∂ ⋅ = ∂ ∂ ⋅ ∂ ∂ ⋅ ⋅ = ∂ ∂ (18) 
In the conditions implemented in this paper, it can be shown that the first term r C r D ∂ ∂ ⋅ could be neglected. Eq. ( 18) was further reduced to:

2 2 r C D t C ∂ ∂ ⋅ = ∂ ∂ (19) 
Two methods were investigated to solve this equation, as presented below.

Markov Chain Monte Carlo (MCMC) method

Eq. ( 19) admits an analytical solution in the cases where the following of boundary and initial conditions are verified:

Boundary condition 1: ).

C(r, t) = C max (r, t) at r = d c,
Under these conditions, Eq. ( 19) admits the following analytical solution [START_REF] Culbertson | Diffusion coefficient measurements in microfluidic devices[END_REF] :

For r > d c,in /2 : ] 2 [ 1 * ) , ( ) , ( ) , ( ) , ( 0 max 0 Dt r erf GV t r C t r C t r C t r C - = = - - (20) 
where the error function erf (•) is defined as:

∫ ⋅ - ⋅ = u d u erf 0 2 ) exp( 2 ) ( η η π (21)
In a first step, a Markov Chain Monte Carlo (MCMC) method was implemented on Matlab ® software in order to solve Eq. ( 19) [START_REF] Jimenez | Oxygen mass transfer and hydrodynamic behaviour in wastewater: Determination of local impact of surfactants by visualization techniques[END_REF] under the relevant initial and boundary conditions. The associated objective was to compare the experimental and theoretical concentration profiles at different times (i.e. z axial positions) and to efficiently optimize the different parameters in order to find the best fit between experimental and theoretical data.

For the measurement of the diffusion coefficient of dihydroresorufin B D (see Fig. 3. b and Fig. 4. a), the calculation was firstly done by considering the radial profile of grey value obtained at an axial position close to the outlet of the capillary (z = 0.2 mm). It was then observed that the MCMC method provided a highly accurate estimation of the diffusive front (i.e. grey value displacement) with a very good agreement with experimental results (deviation less than 3%, results not shown here). However, the predicted diffusion coefficient B D , was found to be equal to 3×10 -6 m²•s -1 , which is not at all the order of magnitude of the expected diffusion coefficient of macromolecules into liquids (10 -11 to 10 -10 m²•s - 1 25,42,38 ). This result suggested that at the outlet of the capillary, (i.e. during the first stages of the diffusion process), some convective effects existed and were dominating over the diffusion process. As a consequence, Eq. ( 20) and the associated initial and boundary conditions could not be applied with the experimental conditions imposed. For these reasons, another method was implemented to solve Eq. ( 19)

and fit accurately B D .

Finite difference element scheme

In order to escape from the convective effects occurring at the outlet of the capillary, an alternative calculation method, the explicit FTCS (Forward-Time Central-Space) finite difference element scheme [START_REF] Kuzmin | A Guide to Numerical Methods for Transport Equations[END_REF] , was employed: it enabled to directly solve Eq. ( 19) without imposed initial conditions, but with using an experimental normalized concentration profile.

As the diffusion process could be considered with an instantaneous plane source (round) and in a semi-infinite medium, Eq. ( 19) was then reduced to [START_REF] Crank | The Mathematics of Diffusion[END_REF] :

] [ 2 2 2 2 y C x C D t C ∂ ∂ + ∂ ∂ ⋅ = ∂ ∂ ( 22 
)
where

θ cos ⋅ = r x and π θ θ 2 0 , sin ≤ ≤ ⋅ = r y .
The diffusion process was simulated in Matlab ® (R2011b) software starting from an experimental concentration field associated with a time t 0 after a time t 1 under a given D. This time t 0 corresponded to the axial position z for which the edge of the colored flow began to be parallel to the wall of the tube.

The resulted simulated profile was then compared to the corresponding experimental profile when diffusion time equal to (t 0 + t 1 ).

It is important to note that for both the diffusions of dihydroresorufin and oxygen, the experimental profiles of grey values were in reality the result of the superposition of all the diffused amount of the molecule at each slice along r axis. As a consequence, it was necessary to sum up and then average all the concentration profiles predicted by the simulation (i.e. integration over all the radial positions) before comparison with the experimental profiles. Thus by changing the value of D, the simulated diffused results varied, and then the numerical results were compared with the experimental ones in order to determine the optimal D.

Results and discussion

Reaction characteristic time

Fig. 5 represents the variation of the average grey value GV as a function of the residence time r t inside the micromixer, the latter being calculated according to

R w m t m r Q Q V Q V t + = = (23) 
It can be observed that when r t >130.9 ms (at very small flow rates), a segregation phenomenon occurs, characterized by two distinct parallel flows corresponding to the deionized water saturated with oxygen (colorless) and the dye solution (pink). This phenomenon is due to the fact that the flow rates related to r t >130.9 ms are too small and below the minimum flow rate recommended by the supplier for using the micromixer. In these conditions, the micromixer is not able to mix efficiently both solutions.

When r t <130.9 ms, a plateau is reached, which indicates that the mixing is now efficient. The mixing time m t associated with this kind of micromixer has been determined by Falk and Commenge 40 :

it is almost two orders of magnitude smaller than the residence time (0.04-0.68 ms compared to 7.2-180 ms). This shows that the ability to determine the kinetics of the colorimetric reaction by using this microfluidic device will be imposed by the time r t spent by the solution inside the micromixer. In other words, the color intensity fields observed at the outlet of the micromixer are related to the extent of the reaction at a time equal to r t inside the micromixer, even if the fluids are in reality mixed in a significantly smaller time. For technical reasons (too high pressure drop), the minimum r t that could achieve in the present device is 7.2 ms, this value can be thus associated to a maximum value of the reaction characteristic time, noted (t react ) max , that is here experimentally accessible.

This value of (t react ) max will be used later for the calculation of the Hatta number (see section "Hatta number Ha and enhancement factor E").

Diffusion coefficient of dihydroresorufin B D in deionized water

As depicted in Fig. 4 (a), the edge of the colored flow is not parallel to the wall of the tube close to the outlet of the capillary due to the axial dispersion generated by some convective mechanisms along the r axis direction. Afterwards (i.e. at higher axial locations), the edge of the colored flow becomes parallel to the walls of the tube, thus meaning that the diffusion mechanism of resorufin from the inner flow to the surrounding one is purely radial. For this reason, the radial profile of normalized grey value (proportional to normalized concentration of resorufin) at z = 2.2 mm has been used as an initial condition in the explicit FTCS finite difference element scheme (corresponding to t 0 ) to simulate the dye concentration profile at z = 2.6 mm (corresponding to t 1 ). The best fitting between experimental and theoretical profiles has been obtained for B D = 2.25×10 -9 m²•s -1 . The comparison between the predicted and experimental profiles at this axial position, is reported in Fig. 6 for '

R Q = 3 mL•h -1 , ' W Q = 6 mL•h -1 ;
a very good agreement is observed between theses profiles. It can be noted that the optimization process has been performed considering the higher gradient area depicted in to 5×10 -7 m 2 s -1 ; it is two orders of magnitude larger than the one in literature [START_REF] Galambos | Micro-Fluidic Diffusion Coefficient Measurement[END_REF] , this indicating that, at this axial location (z = 2.30 mm), the mechanism is not purely diffusive. D . It can be observed that the impact of these latter is not the same, depending on that whether the peak areas or the plateau area is considered. Given that the peaks represent the main contribution to the diffusion process, a compromise amongst the fitting qualities of the three parts has to be found. For that, the peak thickness, noted as δ 0.9 , corresponding to a normalized grey value 9 . 0 *'= GV , has been chosen for a comparison purpose. Their experimental and predicted values are reported in Table 2a at an axial position z of 4.59 mm. It can be seen that the deviation between the experimental δ 0.9 and the simulated one is minimal when

2 O D = 3.2×10 -9 m 2 •s -1 .
To further verify the reliability of this value of 

' ' = R Q mL•h -1 , 9 ' ' = W Q mL•h -1 .
As depicted in Fig. 10, the best fitting quality between experimental and predicted profiles is obtained for the highest axial location (z = 4.59 mm). This confirms that the procedure should be applied relatively far from the outlet of the capillary, to avoid any distortion due to convective effects.

For this optimal axial location z of 4.59 mm, the same fitting procedure has been applied for two other operating conditions, ( ' '

R Q = 4.5 mL•h -1 , ' ' W Q = 9 mL•h -1 ) and ( ' ' R Q = 3 mL•h -1 , ' ' W Q = 6 mL•h -1 )
; the results are presented in terms of peak thickness δ 0.9 in Table 2b and2c. For both conditions, the best fitting is obtained for To verify that the approximated solution proposed by Van Krevelen and Hoftijzer (Eq. 14) for fast reaction in the diffusional film can be applied in the present conditions, the Hatta number should be calculated. The use of Eq. ( 14 

× = ⋅ ⋅ = O react C t k ν L• (mol•s) -1 (25) 
The liquid side mass transfer coefficient L k depends on the system scale under study. For micro/milli reactors, an order of magnitude of 10 -4 m•s -1 can be reasonably considered [START_REF] Su | A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations[END_REF][START_REF] Shvydkiv | Synthesis of Juglone (5-Hydroxy-1,4-Naphthoquinone) in a Falling Film Microreactor[END_REF] . At last, one finds a minimal value of the Hatta number equals to:

66 . 6 ) ( ) ( 2 min 2 min = ⋅ ⋅ = L O Bb k D C k Ha ( 26 
)
The value being higher than 3, Ha >3, the approximated solution proposed by Van Krevelen and Hoftijzer [START_REF] Van Krevelen | Kinetics of gas-liquid reactions part I. General theory[END_REF] (see Eq. 14) can be rigorously applied. It leads to a value of the enhancement factor close to the unity, E =1.03.This demonstrates that even if the colorimetric reaction is fast, and even quasiinstantaneous, there is no enhancement of the gas-liquid mass transfer by the reaction in the conditions ( Bb C , milli/microreactors) for which it has been implemented. Such a result is opposite to the general knowledge that high Ha lead to high E ; it is the consequence of the fact that the diffusion of the dye (dihydroresorufin) in the liquid film is too slow ( B D =8.65×10 -11 m 2 •s -1 ) compared to the diffusion of oxygen ( 2O D = 3.2×10 -9 m 2 •s -1 ), and thus prevents the reaction to occur in the liquid film.

At last, it is interesting to define some guidelines enabling to evaluate the conditions required to implement the colorimetric method at other scales or in other gas-liquid systems. For that, one should guarantee that no enhancement of the gas-liquid mass transfer occurs. This implies that the initial concentration of resazurin Bb C to be used should be carefully chosen. occurred as E was found equal to 1.03 ± 0.01. This result, opposite to the general knowledge, can be explained by the fact that the relative large molecular structure of dihydroresorufin limits its diffusion into the film, and thus prevent the reaction to occur in the liquid film. Some guidelines enabling to evaluate the conditions required to implement the colorimetric method at other scales or in other gasliquid systems were also given. In the future, specific effort should be paid to determine more precisely the real characteristic time of this fast reaction, as this parameter has a strong effect on the enhancement factor.

Conclusion

The financial assistance provided by the China Scholarship Council for L. Yang is gratefully acknowledged. δ 0.9,exp (mm) δ 0.9 (mm) 

Notations

  2 and B at a given location y in the film respectively (mol•m -3 ); y the distance from the gas-liquid interface to the bulk liquid phase (m), where none convection and accumulation is assumed to occur.The associated boundary conditions are:

  of O 2 in the liquid bulk, Bi C and Bb C the concentrations of B at the inlet of the reactor and in the liquid bulk respectively (mol•m -3 ).

2 O

 2 Hatta number Ha and the enhancement factor E associated with the O 2 colorimetric reaction: the kinetics constant 2 k , and both diffusion coefficients of dihydroresorufin and O 2 , B D and

2 .

 2 It consisted of a microfluidic device composed by a transparent PTFE tube (inner diameter d = 1 mm) fixed at the outlet of a micromixer. The SIMM-V2 micromixer (Slit Interdigital Micromixer, IMM Germany) was chosen to efficiently mix the two liquid phases. The cross-sectional area of its standard mixing channel A was 45×200 µm 2 and its inner volume V m was 8 µL. Two high pressure syringe pumps (neMESYS high pressure syringe pump module, highest pressure up to 510 bar, Cetoni © GmbH, Germany) were used to deliver the deionized water saturated with O 2 and the dye solution from two 20 mL syringes, each connected to the micromixer by a transparent PTFE tube (inner diameter d = 1 mm).The dye solution (B) was previously flushed with nitrogen and was thus colorless when entering in the micromixer. The volumetric flow rates of these two liquid phases ( W Q : deionized water saturated with O 2 ; R Q : dye solution) were identical in all the experiments, which both ranged from 80 to 2000 mL•h -1 .

  (a) and (b). The dye solution (previously saturated with O 2 to make sure that all the dihydroresorufin was converted to pink resorufin) and deionized water saturated with O 2 were delivered from a 60 mL syringe by syringe pumps III and IV (Harvard Apparatus, PHD 22/2000, USA) respectively. The connections to the two inlets of the Tjunction connector were different for each solution: a capillary (inner diameter d c,in = 250 µm, outer diameter d c,out = 365 µm, cross-sectional area 8 , and a transparent PTFE tube (inner diameter d t,in = 1 mm, outer diameter d t,out = 3 mm). At the outlet of the connector, the capillary was carefully inserted and aligned to the central axis of the tube. Such experimental set-up made possible to generate two-liquid phase laminar coflows under appropriate operating conditions. The dye solution was injected from the capillary and the deionized water saturated with O 2 from the PTFE tube, which meant that the flow of the dye solution was surrounded symmetrically and annularly by the deionized water at the outlet tube of the connector (see Fig. 3. b). The same camera as in the micromixer experiments was set at the outlet of the connector to record the radial profiles of pink color intensity and their evolution along the axial position in the PTFE tube. The volumetric flow rates of these two liquid phases ( ' W Q for deionized water saturated in oxygen;' R Q for dye solution) were both ranged from 3 to 12 mL•h -1 . The associated liquid velocities ' u were ranged between 0.017 m•s -1 and 0.068 m•s -1 , the capillary numbers ' the capillary, m) from 4.2 to 16.9.

2 OD 2 OD

 22 The experimental set-up to measure was identical to the one described to measure B D , except that the deionized water saturated with O 2 was injected from the capillary and the dye solution (previously flushed by nitrogen, colorless dihydroresorufin) from the tube. As a consequence, in this case, the flow of deionized water was surrounded symmetrically and annularly by the dye solution at the outlet tube of the connector. Both volumetric flow rates ranged from 3 to 12 mL•h -1 . The associated liquid velocities ' ' u inside the capillary were defined as 0.017 m•s-1 

For the experiments related

  to the measurement of the diffusion coefficient of B D , a typical image is displayed in Fig.4(a). It was decided to choose the origin of the radial r-axis at the midline of the capillary and the origin of the axial z axis at the outlet of the capillary. By image treatment, the grey value of each pixel along the r-direction at a given axial position z, be unchanged at various z, and was then noted max GV .The grey value of the background image was noted ) location r was also normalized by the diameter of the tube, noted as r*.The evolution of the normalized grey value * GV (which are proportional to the normalized concentration of resorufin) as a function of the normalized radial position r* is shown in Fig.4(b) for various axial positions z. It can be observed that:

2 OD

 2 , the same method was employed to obtain the evolution of the normalized grey value * GV versus the normalized radial position r*.

Fig. 4 . 2 OD 2 OD

 422 (b), which corresponds to a purely radial diffusive mechanism. profile becomes parallel, indicating a pure diffusion of oxygen from the inner flow to the surrounding. As a consequence, here also, in order to determine an appropriate value of , adequate axial positions should be chosen as initial moment for simulation (t = 0 s). An axial position of z = 2.30 mm has been selected.As shown in Fig.8(b), the radial profile of grey values presents a more complicated shape for the diffusion of oxygen in the dye solution than for the one of dihydroresorufin in deionized water. Indeed, it consists of three parts: two peaks and one central plateau between the two peaks. The peaks correspond to the highest gradients of the concentration of O 2 , and thus represent the main contribution to the overall diffusion process. The predicted value of corresponding to the profiles reported in Fig.8(b) equals

Fig. 9 2 O

 92 Fig. 9 compares the experimental radial profiles of grey values (proportional to equivalent

2 OD

 2 , two other axial locations, z = 3.06 mm and z = 3.82 mm, were tested for the operation condition corresponding to 9

2 OD 2 OD 2 OD 2 OD 2 OD has the same order of magnitude 2 OD 2 OD

 2222222 equals to 3.2 ×10 -9 m 2 •s -1 . The variations of the predicted diffusion coefficients as a function of the axial location z are plotted in Fig.11for different operating conditions. As previously observed for the diffusion coefficient of dihydroresorufin B D , for both conditions, decreases strongly as z increases, and converges towards a plateau for z larger than 4 mm. At last, by optimizing both the conditions, one finds = (3.2 ± 0.1)×10 -9 m 2 •s -1 . This value than the one in pure water, 1.75×10 -9 m 2 •s -1 , reported in the literature[START_REF] Galambos | Micro-Fluidic Diffusion Coefficient Measurement[END_REF][START_REF] Yano | Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution[END_REF] . A more advanced comparison with literature data remains difficult as the present liquid phase composition is specific (sodium hydroxide, glucose and resazurin). One can yet mention the value of 3.5×10 -9 m 2 •s -1 , reported by Yano et al45 for the diffusion of oxygen in 0.1 M KOH solution.Hatta number Ha and enhancement factor EThanks to the knowledge of the diffusion coefficients of O 2 ( = (3.2 ± 0.1)×10 -9 m 2 •s -1 ) and of dihydroresorufin (D B = (8.65 ± 0.21)×10 -11 m 2 •s -1 ), the enhancement factor associated with the colorimetric reaction can be calculated using Eq. (13). Considering a concentration of dihydroresorufin in the liquid bulk Bb C equals to 5.1×10 -4 mol•L -1 and a concentration of oxygen at saturation *

  This paper presented original optical methods to determine the Hatta number Ha and the enhancement factor E associated with the colorimetric reaction proposed by Dietrich et al. (2013) 1 to visualize and locally characterize the gas-liquid mass transfer. It was based on the combination of specific experiments in microstructured devices with modelling approaches. They enabled the maximal characteristic time of the fast reaction to be determined and as well as the diffusion coefficients of the dye (dihydroresorufin) and O 2 . It was demonstrated that the oxygen colorimetric reaction was instantaneous and no enhancement of the gas-liquid mass transfer by this extremely fast reaction

2 = 1 ߮- 3 •s - 1 2 Re

 21312 reaction constant, m 3 • (mol•s) -1 k L = liquid side mass transfer coefficient, m•s -1 Q = volumetric flow rate, m 3 •s -1 r = radial position, m of dihydroresorufin and oxygen, mol•m 3 •s -1 t react = reaction characteristic time, s u = liquid velocity in the micromixer, m•s -1 z = axial position, m Greek letters ݒ = stoichiometry coefficient µ L = dynamic viscosity of the dye solution, Pa•s µ L ' = dynamic viscosity of the deionized water, Pa•s ρ L = density of the dye solution, kg•m -3 ρ L ' = density of the deionized water, kg•m -3 σ L = surface tension of the dye solution, N•m -1 σ L ' = surface tension of the deionized water, N•m -= transferred mass flux of oxygen, kg•m Dimensionless numbers E = enhancement factor Ca = Capillary number, =µ L •u/σ L Ha = Hatta number, Ha 2 =D O2 •k 2 •C Bb /k L = Reynold number, =ρ L •d h •u/µ L Da = Damköhler number, =k L •a•τ
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 1456789 Fig. 1 Reaction scheme for the reversible oxidation-reduction colorimetric reactions between resorufin and dihydroresorufin. The oxidation reaction is quasi-instantaneous, and the reduction reaction is slow (few minutes). 82x52mm (300 x 300 DPI)

  ) requires the knowledge of the reaction kinetics constant, 2

														k and the
	liquid-side mass transfer coefficient, L k . The constant 2 k can be deduced from the reaction
	characteristic time react t . As only its maximum value has been determined (	t	react	≤	7.2 ms, see section
	"Reaction characteristic time"), only the minimum value of the reaction constant 2 k can be calculated
	as follows:												
	(	2	)	min	(	max 1 )	*	2	2	.	72	10	5
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To validate this value of B D , this procedure has been repeated for several positions z (higher than 2.6 mm), using the experimental profile at the previous axial position for each one, and under two operating conditions ( '

). In Fig. 7, the variation of the predicted diffusion coefficients D B is reported as a function of the axial position z.

It can be observed that, for both conditions, the value of D B decreases as z increases, and then converges towards a plateau for z greater than 4 mm. This indicates that the fitting between the experimental and theoretical concentration profiles must be done relatively far from the outlet of the capillary, namely only for axial positions z for which the edge of the colored flow starts to be parallel to the wall of the tube. Note that, this plateau is reached at smaller axial positions for ( '

this could be explained by the conic structure of the flow which is more stable/horizontal in the latter operating condition. For both conditions, after the z = 4 mm position, the optimization procedure gives a value of the diffusion coefficient of dihydroresorufin D B = (8.65 ± 0.21)×10 -11 m²•s -1 . This value is in agreement with the orders of magnitude of the diffusion coefficients of dye classically reported in the literature: for example, the diffusion coefficient of "meta" benzopurpurine in 0.002 M NaOH solution [START_REF] Robinson | The Diffusion Coefficients of Dye Solutions and their Interpretation[END_REF] is 3.15 ×10 -10 m²•s -1 , and the one of methylene blue in 0.01 M NaCl solution [START_REF] Leaist | The effects of aggregation, counterion binding, and added sodium chloride on diffusion of aqueous methylene blue[END_REF] being 1.2 ×10 -10 m²•s -1 . 

Diffusion coefficient of oxygen

: the pink color represents the areas where the two solutions (deionized water saturated with O 2 and dihydroresorufin solution) enter into contact and react. As observed previously, for the measurement of D B , the edge of the colored flow is not parallel to the wall of the tube at the initial stage (i.e. close the outlet of the capillary), due to the occurrence of some convective effects; afterwards, the