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Scientific Correspondence

Genome-Wide Annotation of Remorins, a Plant-Specific
Protein Family: Evolutionary and
Functional Perspectives1[W]
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Remorins were discovered in a screen for plasma
membrane (PM) proteins differentially phosphorylated
in the presence of oligogalacturonides (Farmer et al.,
1989). The first remorin was initially designated as pp34,
as it corresponded to a phosphorylated protein with a
molecular mass of 34 kD in purified PM preparations
from potato (Solanum tuberosum; Jacinto et al., 1993). After
a section in J.L. Borge’s ‘‘Book of Imaginary Beings,’’
in which the remora fish is described to attach itself to
larger fish and ships, this protein was renamed remorin
(Reymond et al., 1996) due to its hydrophilic profile and
its ability to attach to PMs (E. Farmer, personal commu-
nication).

Several proteomic approaches on PM preparations
from tobacco (Nicotiana tabacum) leaves and Arabidop-
sis (Arabidopsis thaliana) seedlings now suggest local-
ization of remorins in association with PMs (Watson
et al., 2003; Marmagne et al., 2004; Mongrand et al.,
2004; Sazuka et al., 2004; Nelson et al., 2006; Valot et al.,
2006). Interestingly, remorins have also been found in
detergent-resistant membrane fractions, called lipid
rafts (Mongrand et al., 2004; Shahollari et al., 2004;
Bhat and Panstruga, 2005; Laloi et al., 2007; Lefebvre
et al., 2007). Lipid rafts are characterized by an enrich-
ment of sterols, sphingolipids, and steryl-glycosides,
and are believed to be functional microdomains in
PMs (Peskan et al., 2000; Mongrand et al., 2004; Borner
et al., 2005; Laloi et al., 2007). Most recently, Lefebvre
and coworkers demonstrated the presence of remorins
in lipid raft fractions from root PMs of the model
legume Medicago truncatula (Lefebvre et al., 2007).

While little is known about the function of these
microdomains in plants, key signaling processes dur-
ing HIV-1 infection (Manes et al., 2000; Ono and Freed,
2001), spreading of malarial parasites and the New-
castle disease virus, as well as prion conversion occur
at lipid rafts in mammalian systems (Samuel et al.,
2001; Nishina et al., 2004; Laliberte et al., 2006).

Some remorins share physical properties with vi-
ral movement proteins due to their hydrophobic
N-terminal region. The C-terminal domain is generally
predicted to consist of coiled-coil domains, a feature
that appears to be common to all remorin proteins.
This region was found to be responsible for the ability
of remorins to form oligomeric filamentous structures
in vitro, suggesting that these proteins might be struc-
tural components of plant cytoskeletons and/or the
membrane skeletons (Bariola et al., 2004). In addition,
expression of a remorin from tomato (Solanum lycoper-
sicum) was observed in embryonic, apical, and vascu-
lar tissue (Bariola et al., 2004). However, astonishingly,
there is no published genetic evidence in any plant
species that can help us to decipher putative functions
of remorins. The few reported attempts to generate
plant mutants in which one or more of the ubiqui-
tously expressed remorin genes were knocked out
either failed or did not lead to an obvious phenotype
(Reymond et al., 1996; Bariola et al., 2004).

Searches in databases of fully sequenced plant spe-
cies revealed the existence of eight, 16, and 19 remorin
genes in Populus trichocarpa, Arabidopsis, and rice
(Oryza sativa), respectively (Supplemental Table S1).
Patterns of differentially regulated remorin genes and
proteins have been reported in an increasing number
of transcriptomic and proteomic studies. Since many
of these are annotated as ‘‘unknown function,’’ they
need to be properly classified and given suitable no-
menclature. Here, we report on a genome-wide survey
of the remorin family throughout fully sequenced
plant genomes. We combined a phylogenetic approach
with various in silico sequence-scanning tools (align-
ments, and motif and domain predictions) and anal-
ysis of available genetic and genomic data to identify
a specific remorin signature and to define several
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groups within the remorin family. We used this clas-
sification to propose a general nomenclature for re-
morins that should help to differentiate between the
different members in future studies.

IDENTIFICATION OF A GENERIC
REMORIN SIGNATURE

Keyword and BLAST searches among available data
allowed us to retrieve approximately 1,000 remorin
sequences corresponding to more than 130 remorin
proteins from 55 different plant species (Supplemental
Table S1). Importantly, no significant hits were identi-
fied among sequence data from other kingdoms
(fungi, animals, archaeabacteria, and eubacteria). Un-
expectedly, no remorin genes were found in algae
(neither by BLAST against publicly available data nor
in the Ectocarpus siliculosus full-genome sequence; M.
Cock, personal communication), while remorins were
identified in mosses and ferns.

Canonical remorins, such as StREM (Reymond et al.,
1996; now StREM1.3), are characterized by the pres-
ence of an N-terminal and a C-terminal PFAM domain
(Remorin_N: PF03766; Remorin_C: PF03763). Higher
sequence variability in N-terminal regions of remorins
suggests structural and functional divergence and
indicates that a suitable classification and nomencla-
ture are needed. In contrast, the Remorin_C domain,
identified by InterProScan using default parameters,
appeared to be well conserved among all remorin
proteins. It was thus considered as the remorin sig-
nature and was used to validate potential family mem-
bers.

A striking property of the Remorin_C domain is
the high content of charged residues (e.g. 45%
for StREM1.3), illustrated by well-conserved charged
regions as shown in Figure 1. The presence of re-
markably hydrophilic domains with GRAVY (grand

average of hydropathy) indices between 21.4
and 20.5 (Supplemental Table S1) results in a high hy-
drophilicity, posing the question how these proteins
are tightly associated with membranes. Neither trans-
membrane domains nor membrane anchor signatures
were found in any of the studied sequences (Supple-
mental Table S2).

Some particularly conserved residues can be out-
lined: position 11 of Remorin_C is occupied by an
aromatic residue (mainly Trp); positions 18, 22, and 25
by positively charged residues; and position 30 by an
aliphatic residue for all but one sequence (Fig. 1).
Position 33 harbors a Trp in all sequences, except in
Physcomitrella patens and Ceratopteris richardii, and
positions 75 and 80 are Alas in most of the proteins.
Because of their very high conservation, these amino
acids can be considered as identifying features of the
Remorin_C domain. In addition, a 23-amino-acid-long
coiled-coil structure between Remorin_C residues 40
to 63 is predicted with a very high probability (Mar-
coils probability .90%). Prediction of the different
positions in heptad repeats (Fig. 1, top diagram) re-
veals aliphatic residues for sites a and d that form the
core of the coiled-coil region. In comparison with
coiled-coil domains from other proteins, in remorins
these motifs consist of a higher number of charged
residues (56% for StREM1.3) in positions b, c, d, and e.
This characteristic could be responsible for the high
stability of protein interactions mediated by this do-
main (Burkhard et al., 2001).

THE REMORIN FAMILY CONSISTS OF SIX

DIFFERENT GROUPS

With the aim of considering only full-length pro-
teins and to avoid a bias of the study toward only
highly expressed family members, we focused mainly
on genes/proteins from plants with annotated genomes.
As recent proteomic studies report the identification

Figure 1. The remorin signature. Highly conserved residues within the Remorin_C domain of the 85 remorin proteins that were
considered for phylogenetic analysis are shown. Prediction of the position along the heptad repeat of the coiled-coil structure is
given in the top panel. pos., Position in Remorin_C domain alignment; r, aromatic residues; 1, positively charged residues; f,
aliphatic residues; % refers to the number of sequences showing the indicated residue at the indicated position, among the list
of 85 remorins given in Supplemental Table S1.
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of remorins in legumes (Watson et al., 2003; Wienkoop
and Saalbach, 2003; Valot et al., 2006; Lefebvre et al.,
2007), all 10 remorin sequences of the partially se-
quenced model legume M. truncatula have been in-
cluded in the analysis as representative remorins for
the Fabaceae family. Considering that plant species
that diverged early in evolution are likely to contain
ancestral remorin sequences, all available remorins
from ferns, mosses, and gymnosperms were also in-
corporated. This led to a list of 85 remorins (Supple-
mental Table S1) on which phylogenetic analysis was
performed, as described in detail in Supplemental
Materials and Methods S1.

Two distinct phylogenetic trees were built, one
using the full-length amino acid sequences (Fig. 2)

and the other using only Remorin_C domain se-
quences (data not shown). Both trees were very sim-
ilar, with the main exception that using full-length
sequences allows clustering of remorins that lack an
N-terminal domain in a single group. Considering that
N-terminal regions may confer functional specificity to
the proteins, we favored the use of full-length se-
quences in the following analyses.

For the final grouping leading to the proposed
nomenclature, results from the phylogenetic analysis
were combined with domain features and similarities
between different remorin proteins. Due to significant
differences, mainly in the N-terminal regions, the
remorin family was subdivided into six separate
groups. Such subdivision based on domain features

Figure 2. Phylogenetic and domain organization of the remorin family based on their protein sequences. The right box shows the
color code used to indicate evolutionary positions within the plant kingdom (according to the Angiosperm Phylogeny Group,
2003) and domain elements used for classification. In the diagrams domain lengths are proportional to the average protein
sequence length (except for groups 5 and 6, for which the representation of the N-terminal region is intercepted by ‘‘//,’’
indicating a variable length of this module within these two groups). Underlined sequences contain Remorin_N domains
identified by InterProScan. Bootstrap values (%) are given along the most important branch points. True branch lengths were
inferred by maximum-likelihood analysis; the upper-left scale represents a probability of 0.1 amino acid changes per site. The
tree was reconstructed using parsimony analysis. For clarity of the figure, a shortened nomenclature was used (e.g. At1.1 for
AtRem1.1). The first number in the proposed name indicates the corresponding group (e.g. At1.3 is the third member of group 1).
Abbreviations: Ac, Adiantum capillus-veneris; Ak, Amborella trichopoda; Ap, Allium cepa; At, Arabidopsis; Cr, C. richardii; Mc,
Mesembryanthemum crystallinum; Mt, M. truncatula; Na, Nuphar advena; Nt, tobacco; Os, rice; Pa, Persea americana; Pd,
Pinus taeda; Pi, Pinus pinaster; Pp, P. patens; Ps, Picea sitchensis; Pt, P. trichocarpa; Sl, tomato; St, Solanum tuberosum; Wm,
Welwitschia mirabilis; Zm, Zea mays.
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enabled us to discriminate between groups 1, 2, and 3
on those parts of the tree where phylogenetic separa-
tion was less clear (Fig. 2; Table I).

Group 1 (Subgroups 1a and 1b): Canonical Remorins
with a Pro-Rich N-Terminal Region

This group gathers all remorins that possess both
Remorin_N and Remorin_C domains identified by
InterProScan. Genomic data support coherence of this
group as most genes consist of five exons, except for
AtREM1.3 and OsREM1.2, in which the last two exons
were fused by deletion of an intron. Generally, group
1 remorins are characterized by a high Pro content in
the N-terminal region (only group 4 members have
similar numbers of Pros in this region). Group 1 re-
morins were subdivided into group 1a (8.9% Pros) and
group 1b (14.4% Pros) based on their N-terminal amino
acid composition (Table I; Supplemental Fig. S2).

Group 1a remorins are about 200 amino acids long
with a very homologous N-terminal region (about 82
amino acids). Four well-conserved motifs were iden-

tified by MEME/MAST (Multiple Em for Motif Elic-
itation/Motif Alignment and Search Tool; Bailey and
Elkan, 1994) in these N-terminal regions (Supplemen-
tal Table S2). They bear two ELMs (Eukaryotic Linear
motifs; Puntervoll et al., 2003): a casein kinase Ser/Thr
phosphorylation site and a motif found in cargo adap-
tor proteins that bind clathrin heavy chains. These
elements, although not functionally characterized in
remorins, underline the potential importance of phos-
phorylation events and membrane association for
these proteins. Phylogenetic clustering of this group is
remarkable as it assembles branches of ancestral
plants: One is comprised of sequences from ferns
and gymnosperms, the second consists of sequences
from early angiosperms, and two other branches con-
tain exclusively monocot sequences. Only two dicot
remorin sequences from Arabidopsis and potato be-
long to this group.

One of them, AtREM1.1, shows increased expres-
sion in senescing leaves, roots, and xylem, and after
salt and osmotic stress and abscisic acid (ABA) treat-
ment (Supplemental Table S3). The set of Arabidopsis

Table I. Structural characteristics of remorins

Structural features were identified for all remorins and were combined with phylogenetic clustering of the different remorin isoforms to propose a
group classification. Numbers of exons were obtained from public databases for genes of all sequenced plant species or newly assembled for M.
truncatula sequences (T. Ott, unpublished data). Details of MEME motifs can be found in Supplemental Table S2. *, Number of amino acids. **,
Average e value for domain recognition: 1, .10210; 11, .10215; 111, .10230; 1111, ,10230 (3). ***, Two exceptions with four exons:
OsREM1.2 for group 1a and AtREM1.3 for group 1b. NA, Not applicable; Rem_C, Remorin_C domain; Rem_N, Remorin_N domain.

Group
No. of

Exons

N-Terminal Part Properties Remorin_C

Plant Groups Covered
Length* Pro Content

Rem_N

Domain?

Remarkable

Features

Rem_C

Length*

Homology to

Rem_C**

% of N

terminus

1a 5*** 79.6 6 10.7 8.9 6 3.2 Yes MEME motifs 1, 2, 3, 4 107 6 4.7 111 < Gymnosperms (Pinales,
Gnetales)

< Archaic angiosperms
(Amborellaceae,
Nympheaceae)

< Monocots
(Liliales, Poales)

1b 5*** 82.6 6 11.5 14.4 6 3.1 Yes MEME motifs 5, 6, 7, 8 109.2 6 0.7 1111 < Core eudicots
(Caryophyllales,
Fabales, Malpighiales,
Brassicales, Solanales)

2 5 86.2 6 7.3 5.8 6 1.3 No MEME motif 9 109 6 0.0 1111 < Eurosids I (Malpighiales,
Fabales)

3 3 12.6 6 4.9 4.6 6 4.3 No NA 111 6 0.8 11 < Rosids (Malpighiales,
Fabales, Brassicales)

4 2 159.8 6 30.5 10.6 6 3.2 No Ser rich (11.7% 6 4.2%) 111 6 0.8 1111 < Monocots (Poales)
MEME motifs 10, 11, 12, 13 < Dicots (Fabales,

Brassicales)
5 4–7 90.6 6 45.3 4.0 6 2.9 No MEME motifs 14, 15 110 6 0.7 1 < Monocots (Poales)

< Dicots (Fabales,
Brassicales)

6 2–7 278.5 6 88.7 7.8 6 2.2 No Ser rich (13.2% 6 2.2%) and
Gly rich (6.5% 6 2.7%)

110 6 6.0 111 < Monocots (Poales)

MEME motifs 16, 17, 18, 19 < Dicots (Fabales,
Brassicales, Solanales)
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genes showing the best expression correlation to
AtREM1.1 expression is markedly enriched in genes
associated with cell wall biology and extracellular
functions (Fig. 3). Several of the well-correlated genes
encode proteins with structural, signaling, or kinase
activity. These data point to a possible link of group
1 remorins with cell wall biology and/or assembly.

Group 1b is the second group of proteins compris-
ing both Remorin_N and Remorin_C domains, but
their N-terminal regions contain twice the number of
Pro residues compared to group 1a remorins. Only
dicotyledonous plant species fall into this subgroup,
suggesting that the Pro enrichment of the Remorin_N
domain occurred after divergence of dicots. Group 1b
contains the first discovered remorins, StREM1.3
(Reymond et al., 1996) and LeREM1 (Bariola et al.,
2004; now named SlREM1.2), to which most of the
current literature refers. The described Arabidopsis
remorin AtDBP (AtREM1.3) and most remorins cur-
rently identified in proteomic screens of membrane
preparations also cluster in this group (Watson et al.,
2003; Marmagne et al., 2004; Mongrand et al., 2004;
Sazuka et al., 2004; Nelson et al., 2006; Valot et al.,
2006). Association with membranes thus seems to be a
common feature of group 1b remorins. MEME motifs
found in the N-terminal part of group 1b remorins
are close to those found for group 1a (Supplemental

Table S2). In addition to the Eukaryotic Linear Motif
identified in group 1a, group 1b well-conserved motifs
also notably bear an endoplasmic reticulum retention
and retrieving signal.

Abundance of group 1b remorins in proteomic
studies may be explained by the high expression level
of the corresponding genes. Indeed, AtREM1.2 and
AtREM1.3 are among the 10% most highly and ubiq-
uitously expressed genes in Arabidopsis (Supplemen-
tal Table S3). AtREM1.2 and AtREM1.4 are likely to
represent genes derived from a recent duplication
event (Supplemental Fig. S1), and their function may
therefore be redundant.

Expression of group 1b genes in Arabidopsis is
markedly increased in mature and/or senescing tis-
sues (mature leaves, roots, mature pollen, flowers) and
in vascular tissue (Bariola et al., 2004; AtGenExpress).
Transient gene induction was also found following abi-
otic stress treatment, such as cold, osmotic, or drought
(Bray, 2002; Reddy et al., 2002), and by addition of the
phytohormone ABA (AtGenExpress; Lin et al., 2003).
Another link with plant hormones is also suggested by
remorin AtREM1.3 (Alliotte et al., 1989), which was
copurified with the cytokinin-induced response regu-
lator AtARR4 (Yamada et al., 1998). Differential ex-
pression of group 1b remorins was also observed
during plant-microbe interactions—in Arabidopsis

Figure 3. Coexpression analysis of remorins throughout the Arabidopsis transcriptome. Expression data from hybridizations
using At22k Affymetrix GeneChips were used to retrieve a list containing 100 genes showing highest Pearson correlation
coefficients for different remorin genes at http://www.bar.utoronto.ca/. Graphs represent the normalized frequency of each
function in the list of well-correlated genes compared to randomly selected genes among the Arabidopsis genome (Toufighi et al.,
2005). Error bars indicate variation over 100 different sets of randomly selected genes.
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upon infection with Pseudomonas syringae (Journot-
Catalino et al., 2006) and in Lycopersicon hirsutum after
inoculation with Clavibacter michiganensis (Coaker
et al., 2004). Whether a direct correlation exists be-
tween abiotic/biotic factors and hormone-mediated
responses remains to be elucidated. Several genes that
were found to be coexpressed with group 1b remorins
in Arabidopsis encode proteins associated with PMs,
the Golgi network, and cell wall components. Many of
them have functions related to response to stress, cell
organization, and signaling (Fig. 3).

Group 2: Remorins Hitherto Found in Legumes

and Poplar

Group 2 remorins contain the canonical Remorin_C
domain (Fig. 1), while their N-terminal domain shows no
significant protein homology to the Remorin_N domain
of group 1 remorins and contains fewer Pro residues.
Moreover, the MEME motifs found in their N-terminal
regions differ from those of group 1. So far, group 2
contains only proteins from legumes (exemplified by
sequences from M. truncatula) and P. trichocarpa (no
group 2 remorins being found in Arabidopsis or rice).

Interestingly, a group 2 remorin was found during
transcriptome and proteome approaches to be induced
during symbiotic interactions between legumes and
rhizobial bacteria (Fedorova et al., 2002; Wienkoop and
Saalbach, 2003; Colebatch et al., 2004; El Yahyaoui
et al., 2004). Thus, this gene was named symREM
(MtREM2.2; T. Ott, unpublished data). Orthologs of
this gene can only be found in other legumes, such as
Lotus japonicus and Glycine max.

In addition, a gene encoding a group 2 remorin was
found to be strongly induced during the symbiotic
interaction between the model legume L. japonicus and
the mycorrhizal fungus Glomus intraradices (Kistner
et al., 2005). However, the absence of orthologous
sequences in rice or other plants that are able to un-
dergo a mycorrhizal symbiosis suggests that this re-
morin isoform is not essential for such interaction.

Group 3: Short Remorins

Remorins from group 3 only consist of a Remorin_C
domain that is more divergent with some conserved,
positively charged residues being replaced by ali-
phatic amino acids. Nevertheless, it includes the es-
sential residues of the remorin signature. The absence
of an N-terminal domain suggests that group 3 may
serve basic functions. AtREM3.1 and AtREM3.2 show
high sequence similarities with the C-terminal regions
of AtREM6.6 (group 6) and AtREM1.2 (group 1),
respectively. These genes are believed to result from
ancient gene duplications (Supplemental Fig. S1). Dif-
ferential expression of AtREM3.2 has been found under
abiotic stress conditions, while for AtREM3.1 no ex-
pression data have been deposited in the AtGenExpress
database.

Group 4: Remorins with Alternative Pro-Rich

N-Terminal Regions

The Remorin_C domain of group 4 remorins is very
similar to that of canonical remorins, and this group
also contains genes comprising only two exons. Group
4 remorins are characterized by a long Pro- and Ser-
rich N-terminal region (about 160 amino acids), that
does not show any significant homology to the group
1 Remorin_N domain. Conserved motifs found in
group 4 N-terminal regions (Supplemental Table S2)
indicate that most of these remorins possess (1) two
positions resembling phosphopeptide-binding sites
from proteins associated with cell-cycle checkpoint
and DNA repair functions, and (2) a site predicted to
mediate protein-protein interaction through binding
of short Pro-rich regions within proteins.

Sequence similarities suggest that AtREM4.1 and
AtREM4.2 were derived from each other by a recent
duplication event within the Arabidopsis genome (Sup-
plemental Fig. S1). These two genes are predominantly
expressed in green, aerial plant organs, namely, cau-
line and senescing leaves, as well as stems. They are
strongly stress responsive, showing a marked in-
crease after osmotic, salt, and drought stresses, and
treatment of plants with phytohormones such as ABA
and brassinosteroids. Furthermore, these genes are
transcriptionally induced upon pathogen infections
(Supplemental Table S3). Such links are supported by
the expression of group 4 remorins being correlated
with those of genes associated with chloroplasts and
plastids, energy pathways, as well as abiotic or biotic
stimuli (Fig. 3).

Group 5: Remorins with Low N-Terminal Pro Content

Group 5 remorins show a more divergent Remorin_C
domain, as indicated by lower score values given
by protein motif-scanning programs (Table I). This
group consists of a highly variable N-terminal region,
although all members contain two conserved MEME
motifs that bear putative phosphorylation sites (Sup-
plemental Table S2). Due to the absence of the group
5 remorin (AtREM5.1) from the ATH1 GeneChip
and the lack of any significant sequence similarity of
their N-terminal regions, it remains difficult to pre-
dict the functionality of remorins from this group.
However, MtREM5.1 of M. truncatula, the putative or-
tholog of AtREM5.1, is one of the major remorins ex-
pressed in seeds (V. Benedito and M. Udvardi, personal
communication).

Group 6: Long Remorins

The last group contains remorins ranging from
240 to 522 amino acids in length. The size of their
N-terminal regions is variable and may reflect the
existence of several subgroups, which are difficult to
define based on currently available data. Interestingly,
sequence similarities in the N-terminal regions of
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some members of group 6 were found with a xylulo-
kinase homolog from Strongylocentrotus purpuratus
(involved in pentose and glucuronate interconversion;
GI:72085098) and MurB reductase from P. patens (in-
volved in amino-sugar conversion; GI:76880168). In
addition, four conserved MEME motifs can be de-
tected in their N-terminal regions, indicating that many
remorins of this group contain (1) conserved putative
phosphorylation sites, (2) a predicted protein-protein
interaction motif, and, for a subgroup of them, (3) a
predicted Tyr-based sorting signal responsible for the
interaction with an adaptor protein complex.

Transcript levels of Arabidopsis remorins AtREM6.5
and AtREM6.1 are highest in meristematic tissues. A
remarkable consistency in repression of these genes
after pathogen infection, cold and osmotic stress, as
well as induction after salt stress was also noted (see
Supplemental Table S3). Interestingly, another study
predicted a putative recognition site for the bacterial
effector protein AvrRpt2, encoding a Cys protease,
within a group 6 remorin (AtREM6.1; Chisholm et al.,
2005). However, such direct targeting of remorins
by bacterial proteases and other roles during plant-
microbe interactions remain to be proven.

POSSIBLE BIOLOGICAL ROLES OF REMORINS

Remorin proteins appear to be specific to the plant
kingdom. The absence of remorins in algae, but their
presence in mosses, ferns, and higher plants, suggests
that the emergence of remorins coincided with the
colonization of land. It is very likely that this coloni-
zation required chemical adaptation of cell walls to
cope with particularly rigorous selection pressure.
Evolution in cell wall composition is probably related
to the emergence of an upright position and the acqui-
sition of vascular tissue. Major differences in primary
cell wall components were found by comparing taxa
from charophytes (the closest extant algal ancestor of
land plants), bryophytes, and pteridophytes to vascular
plants. For example, major components of cell walls,
such as xyloglucan (the main hemicellulose) and Hyp-
rich glycoproteins (major components of cell walls),
are present in bryophytes, pteridophytes, and vascular
plants, but are not detectable in charophytes. Similarly,
acid hydrolysis of cell wall-rich material revealed that
uronic acids were more abundant in ancestral plants
than in more recent vascular ones, and that GalUA is
more abundant in bryophytes and charophytes than in
vascular plants. Finally, mixed-linkage glucan was
absent from all algae and bryophytes tested (for re-
view, see Popper and Fry, 2003).

Interestingly, the canonical potato StREM1.3 was
found to be able to bind both simple and complex
galacturonides, and interaction with polyanionic cell
or cell wall components can be hypothesized (Reymond
et al., 1996). It remains an intriguing question as to
whether remorins were positively selected together
with these molecules, thus giving an adaptive advan-
tage that allowed aquatic-to-land transition.

Precise biological roles of different remorins from the
various groups remain to be investigated, but gene ex-
pression data suggest that some of these proteins might
have key functions during responses to biotic and abiotic
stimuli and might possibly be involved in hormone-
mediated responses and signal transduction. Transient
and rapid induction of gene expression (e.g. AtREM1.2,
AtREM1.4, and AtREM6.1) upon biotic stimuli, such as
powdery mildew infection, suggests possible roles in
early stages of plant-microbe interactions. Whether such
roles can be directly linked to cell wall- and/or PM-
associated functions remains to be elucidated.

With respect to the variability of the N-terminal
parts among the different groups and the hypothesis
that this region confers functional specificity of the
protein, different functions might be expected.

Interestingly, no homozygous insertion mutants are
available for any remorin gene in Arabidopsis, possi-
bly indicating lethal phenotypes when remorin gene
expression is completely abolished. Other model sys-
tems, such as symbiotic root nodulation, as described
above, may therefore be helpful to elucidate the bio-
logical functions of certain remorins. The nomencla-
ture suggested here should simplify analysis and
classification of detected remorin transcripts and pro-
teins during future experiments and lead to a more
comprehensive view of this novel protein family.
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Supplemental Figure S1. Chromosomal positions and duplication events

for remorin genes within the Arabidopsis genome.

Supplemental Figure S2. Global alignment of 85 remorin proteins used

for phylogenetic analysis.
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