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1. Introduction

Genomic selection aims at predicting one or several pheno-
types on the basis of available genetic information (mark-
ers). In plant and animal genetics, deriving an accurate
prediction of complex traits is of major importance for
the early detection and selection of individuals of high ge-
netic value. Due to the continued advancement of high-
throughput genotyping and sequencing technologies, ge-
netic information is now available at low cost in the form
of thousands of markers. On the other hand, acquiring trait
information remains expensive, and a typical experiment
will only contain a few hundreds of phenotyped individu-
als. This leads to the classical “high dimensional setting”
where the number of features is much higher than the num-
ber of observations available for training. Consequently
regularization methods such as Ridge or Lasso regression
or their Bayesian counterparts have been proposed since the
very beginning of genomic selection (de los Campos et al.,
2012).

In many application fields, statisticians have successfully
made use of the ability of regularized methods to take
into account distinctive features of the data (Scholkopf &
Smola, 2002). In genomics for instance it is current prac-
tice to integrate biological prior knowledge such as gene
networks, pathways or GO attributes to the regularization
function to improve both the performance and the inter-
pretability of the prediction function. In genomic selec-
tion regularized methods have mostly been used for their
ability to handle high dimensional data, and little attention
has been devoted to the development of penalty functions
including prior knowledge. Moreover, while several traits
are usually considered in a given experiment, most meth-
ods only perform single trait genomic selection, neglecting
correlations between phenotypes and leading to poor per-
formance for the prediction of traits with low heritability.

To circumvent these limitations, we consider the general
linear model to simultaneously predict q responses (output

variables) using the same set of p markers (input variables)
based on a training sample {(x;,y;)},_; . One has
yi =B'x; +ei,

e, ~N(O,R), Vi=1,...,n, ()

where €; is a noise term with a ¢g-dimensional unknown co-
variance matrix R, and B is the p X g matrix of regression
coefficients (we omit the intercept term and center the data
for clarity). The purposes of the present work are the fol-
lowing: ¢) to account for the dependency structure between
the outputs, i.e. to integrate the estimation of R in the
inference process; 4) to integrate some prior information
about linkage disequilibrium to account for the dependency
structure between markers and evaluate its influence on the
different phenotypes; 4i7) to induce sparsity on partial co-
variances rather than on the regression coefficients B, since
according to the Gaussian graphical models (GGM) direct
effects are measured by partial covariances between pre-
dictors and responses. We present our estimator to achieve
these three goals, and illustrate its behavior through an ap-
plication to the Brassica napus dataset (Kole et al., 2002).

2. Model setup and learning
2.1. Convex parametrization of multivariate regression

The statistical framework arises from a different
parametrization of (1), making a connection between
multivariate regression and GGM that was first underlined
in Sohn & Kim (2012). This amounts to investigate the
joint probability distribution of (x;,y;) in the Gaussian
case, with the following block-wise decomposition of the
covariance matrix 3 and its inverse 2 = X1

> = <2xx ny> , Q= (Qxx Qxy) ) (2)

Yyx  Nyy Qyx Qyy

Back to the distribution of y; conditional on x;, multivari-
ate Gaussian analysis shows that, for centered x; and y;,

yi|xi ~ N (—Q;;nyxi, Q;;) . (3)
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Introducing the empirical matrices of covariance Sy, =
nTt Y VY] S = nT YL xix], and Syx =
n~t YT yix!, the log-likelihood associated with these
parameters — which is a conditional likelihood regarding
the joint model (2) — verifies

2
T log L(Q2xy, Slyy) = —log [Qyy| + tr (Syy Qyy)
+ 267 (Sxy Qyx) + t1(QyxSxxQxy Qyy ) + cst. (4)

This has been referred to as a partial or conditional Gaus-
sian Graphical Model in the recent literature (cGGM, see
Yin & Li, 2011; Sohn & Kim, 2012; Lee & Liu, 2012;
Yuan & Zhang, 2012). We notice by comparing the cGGM
(3) to the multivariate regression model (1) that Q;; =
Rand B = —Qxyﬂ;;. Although equivalent to (1),
parametrization (3) shows two important differences with
several implications. First, the negative log likelihood (4)
can be shown to be jointly convex in (£2xy, 2y, ) While its
counterpart in (B, R~!) is only biconvex. Hence, mini-
mization problems involving (4) are amenable to a global
solution, which facilitates both optimization and theoretical
analysis. The conditional negative log-likelihood (4) will
thus serve as a building block for our learning criterion.
Second, it unveils new interpretations for the relationships
between input and output variables, as discussed in Sohn &
Kim (2012): €, describes the direct links between pre-
dictors and responses, the support of which we are looking
for to select relevant interactions. On the other hand, B
entails both direct and indirect influences, possibly due to
strong correlations between the responses, described by the
covariance matrix R (or equivalently its inverse (2y).

2.2. Structured regularization with underlying sparsity

Our regularization scheme starts by considering some
structural prior information: adjacent markers (inputs) on
the sequence should have similar direct relationships with
the phenotypic traits (outputs). This depicts a pattern on
the predictors that acts along the rows of B or {2, as sub-
stantiated by the following Bayesian point of view.

Bayesian interpretation. Assume similarities between
inputs can be encoded into a matrix L. The Bayesian
framework provides a convenient setup to define the way
the structural information should be accounted for when
learning the coefficients. In the single output case (see, e.g.
Marin & Robert, 2007), the conjugate prior for 3 would
be V(0,L~1). Combined with the covariance between the
outputs, this gives vec(B) ~ N (0,R @ L~!), where ®
is the Kronecker product. By properties of the vec oper-
ator this can be equivalently stated for the direct links as
vec(Qxy) ~ N(0,R™! ® L™1). Choosing such a prior
results in

1
log P(yy |L, R) = Str (Q,:CyLﬂxyR) + cst.

LD-based regularization. Information about linkage
disequilibrium between markers can be used to define the
regularization matrix L. Genetic maps provide the ge-
netic distances between the markers. This distance is ex-
pressed in centi-Morgan (cM), meaning that the correlation
between two markers distant from a distance of d cM is p?,
where p = .98! The covariance matrix L' can hence be
defined as L;jl = p%ii . Because of the Markovian structure
of linkage disequilibrium (the associated graphical model
is a chain graph), L is tridiagonal with general elements

1— p2d1—1,i+2di,i+1
I e [ D)
. _pdm+1
4,041 1_ dein_l

and w; ; = 01if |¢ — j| > 1. For the first (resp. last) marker,
the distance d;_1 ; (resp. d; ;1) is infinite.

Link to structured regression methods. When ¢ = 1,
R turns to a variance 0% and 2y a vector wxy, SO as

1 T o’
5t (2LLOGR) = Tl Lo,

When L = I, we recognize the regularization term of ridge
regression. Coupled with a /; norm, we meet back the
Elastic-Net of Zou & Hastie (2005). If L is the Laplacian of
a graph describing direct relationships between parameters
this is the structured Elastic-Net of Slawski et al. (2010).

Criterion. By this argument, we propose the following
criterion with two regularizing terms: a smooth trace term
relying on the available structural information L and a ¢;
norm encouraging sparsity among the direct links. The op-
timization problem turns to the joint minimization of

1
J(Qxy, Qyy) = T log L(Qxy, Qyy)
A _
+ ?Qtr (L ey Qyy) + A1 [ Dy ll1. (5)

Optimization. Thanks to the convexity of (4) combined
with the trace and ¢ norms, Problem (5) is jointly convex
in (Qxy, Qyy) when (A1, \2) are fixed. An algorithm al-
ternating optimization on 2y, and 2, is guaranteed to
converge to the minimum:

~ (k+1) A (k)

Q" =argminJy,x, (Qyy > Lyy), (6a)
ny>0
~ (k+1) . o (k+1)
xy =argminJy,y, (Qxy, Qyy ). (6b)

Qyy

We can solve analytically (6a) when g < n based on simple
matrix algebra, while (6b) can be recast as an Elastic-Net
problem, for which very efficient algorithms are available.

"This value directly arises from the definition of the cM itself.



Multi-trait genomic selection via structured regularized multivariate regression

3. Genomic selection in Brassica napus

In the study conducted by Ferreira et al. (1995) and Kole
et al. (2002), n = 103 lines of Brassica napus where con-
sidered, on which p = 300 genetic markers and ¢ = 8
traits (responses) were recorded. Traits included are per-
cent winter survival for 1992, 1993, 1994, 1997 and 1999
(surv92, surv93, surv94, surv97, surv99, respectively), and
days to flowering after no vernalization (flower0), 4 weeks
vernalization (flowerd) or 8 weeks vernalization (flowerS8).
We applied the proposed methodology to study the influ-
ence of each marker on the traits and compare its predictive
performance with these of its competitors. Prediction error
(PE) was estimated by randomly splitting the 103 samples
into a test set and a training set with sizes 33 and 70. Be-
fore adjusting the models, we first scaled the outcomes on
the training and test sets to facilitate interpretability. Five-
fold cross-validation was used on the training set to choose
the tuning parameters. The estimated PE is given in Ta-
ble 1. All methods provide similar results although the one
we propose provides the smallest error for five of the eight
traits. It also shows that the survival traits have a larger
residual variability than the flowering traits, suggesting a
higher sensitivity to environmental conditions. A picture of
the estimated between-response covariance matrix is given
in Figure 1. In this context, this matrix reflects the correla-
tion between the traits that are either explained by an unex-
plored part of the genotype, by the environment or by some
interaction between the two. The residuals of the flowering
times exhibit strong correlations, whereas the correlation
between the survival rates are weak.

e .
correlation

surve3- [ |

05

00
survo2 - . -05
flower8 - .
flower4 - .
flower0 - .

' ' ' ' ' ' ' '
flower0 flower4 flower8 surv92 surv93 surv94 surv97 surv99

Figure 1. Brassica study: residual covariance estimation

We then turned to the effects of each marker on the dif-
ferent traits. The left panel of Figure 2 gives both the re-
gression coefficients (top) and the direct effects® (bottom).
The grey zones correspond to chromosomes 2, 8 and 10, re-

’we represent —Qxy to facilitate the comparison with B.

spectively. The exact location of the markers within these
chromosomes are displayed in the right panel, where the
size of the dots reflects the absolute value of the regres-
sion coefficients (top) and of the direct effects (bottom).
The interest of considering direct effects rather than regres-
sion coefficients appears clearly here, looking for example
at chromosome 2. Three large overlapping regions are ob-
served in the coefficient plot, for each flowering trait. A
straightforward interpretation would suggest that the cor-
responding region controls the general flowering process.
The direct effect plot allows to go deeper and shows that
these three responses are actually controlled by separated
sub-regions within this chromosome. The confusion in the
coefficient plot only results from the strong correlations ob-
served between the three flowering traits.
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Method surv92 surv93 surv94  surv97  surv99 flower0 flower4 flower8 | Mean PE
LASSO 0.79 0.98 0.90 1.02 1.00 0.58 0.53 0.74 0.818
group-LASSO 0.90 1.00 0.92 0.99 0.92 0.59 0.55 0.74 0.825
E-net (no LD) 0.87 1.01 0.97 1.03 1.03 0.55 0.54 0.69 0.836
Str. E-net (with LD) 0.75 0.98 0.89 1.03 1.02 0.55 0.50 0.74 0.808
our proposal (with LD) 0.77 0.96 0.84 1.00 1.02 0.48 0.46 0.68 0.77

Table 1. Estimated prediction error for the Brassica napus data
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Figure 2. Brassica Study: estimation of direct and indirect genetic effects of the markers on the traits



